Lecture 10

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 10

(1) Binomial Model for Stock Price
(2) Option Pricing on Binomial Tree
(3) Matching Volatility σ with u and d

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- The price either moves up $S \rightarrow S u$ or down $S \rightarrow S d$ with $d<e^{r \Delta t}<u$.

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- The price either moves up $S \rightarrow S u$ or down $S \rightarrow S d$ with $d<e^{r \Delta t}<u$.
- The probability of up movement is q.

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- The price either moves up $S \rightarrow S u$ or down $S \rightarrow S d$ with $d<e^{r \Delta t}<u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- The price either moves up $S \rightarrow S u$ or down $S \rightarrow S d$ with $d<e^{r \Delta t}<u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

We divide the time to expiration T into several time steps of duration $\Delta t=T / N$, where N is the number of time steps in the tree.

Binomial model for the stock price

Continuous random model for the stock price: $d S=\mu S d t+\sigma S d W$
The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- The price either moves up $S \rightarrow S u$ or down $S \rightarrow S d$ with $d<e^{r \Delta t}<u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

We divide the time to expiration T into several time steps of duration $\Delta t=T / N$, where N is the number of time steps in the tree.

Example: Let us sketch the binomial tree for $N=4$.

Stock Price Movement in the Binomial Model

We introduce the following notations:

- S_{n}^{m} is the n-th possible value of stock price at time-step $m \Delta t$.

Stock Price Movement in the Binomial Model

We introduce the following notations:

- S_{n}^{m} is the n-th possible value of stock price at time-step $m \Delta t$.

Then $S_{n}^{m}=u^{n} d^{m-n} S_{0}^{0}, \quad$ where $n=0,1,2, \ldots, m$.
S_{0}^{0} is the stock price at the time $t=0$. Note that u and d are the same at every node in the tree.

Stock Price Movement in the Binomial Model

We introduce the following notations:

- S_{n}^{m} is the n-th possible value of stock price at time-step $m \Delta t$.

Then $S_{n}^{m}=u^{n} d^{m-n} S_{0}^{0}, \quad$ where $n=0,1,2, \ldots, m$.
S_{0}^{0} is the stock price at the time $t=0$. Note that u and d are the same at every node in the tree.

For example, at the third time-step $3 \Delta t$, there are four possible stock prices: $\quad S_{0}^{3}=d^{3} S_{0}^{0}, S_{1}^{3}=u d^{2} S_{0}^{0}, S_{2}^{3}=u^{2} d S_{0}^{0}$ and $S_{3}^{3}=u^{3} S_{0}^{0}$.

At the final time-step $N \Delta t$, there are $N+1$ possible values of stock price.

Call Option Pricing on Binomial Tree

We denote by C_{n}^{m} the n-th possible value of call option at time-step $m \Delta t$.

Call Option Pricing on Binomial Tree

We denote by C_{n}^{m} the n-th possible value of call option at time-step $m \Delta t$.

- Risk Neutral Valuation (backward in time):

$$
C_{n}^{m}=e^{-r \Delta t}\left(p C_{n+1}^{m+1}+(1-p) C_{n}^{m+1}\right)
$$

Here $0 \leq n \leq m$ and $p=\frac{e^{r \Delta t}-d}{u-d}$.

Call Option Pricing on Binomial Tree

We denote by C_{n}^{m} the n-th possible value of call option at time-step $m \Delta t$.

- Risk Neutral Valuation (backward in time):

$$
C_{n}^{m}=e^{-r \Delta t}\left(p C_{n+1}^{m+1}+(1-p) C_{n}^{m+1}\right)
$$

Here $0 \leq n \leq m$ and $p=\frac{e^{r \Delta t}-d}{u-d}$.

- Final condition: $C_{n}^{N}=\max \left(S_{n}^{N}-E, 0\right)$, where $n=0,1,2, \ldots, N, E$ is the strike price.

Call Option Pricing on Binomial Tree

We denote by C_{n}^{m} the n-th possible value of call option at time-step $m \Delta t$.

- Risk Neutral Valuation (backward in time):

$$
C_{n}^{m}=e^{-r \Delta t}\left(p C_{n+1}^{m+1}+(1-p) C_{n}^{m+1}\right)
$$

Here $0 \leq n \leq m$ and $p=\frac{e^{r \Delta t}-d}{u-d}$.

- Final condition: $C_{n}^{N}=\max \left(S_{n}^{N}-E, 0\right)$, where $n=0,1,2, \ldots, N, E$ is the strike price.

The current option price C_{0}^{0} is the expected payoff in a risk-neutral world, discounted at risk-free rate $r: C_{0}^{0}=e^{-r T} \mathbb{E}_{p}\left[C_{T}\right]$.

Example: $N=4$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.

First equation: $q u+(1-q) d=e^{\mu \Delta t}$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$.

On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.
First equation: $q u+(1-q) d=e^{\mu \Delta t}$.

- Variance of the return: Continuous model: var $\left[\frac{\Delta S}{S}\right]=\sigma^{2} \Delta t$ (Lecture2)

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$.

On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.
First equation: $q u+(1-q) d=e^{\mu \Delta t}$.

- Variance of the return: Continuous model: var $\left[\frac{\Delta S}{S}\right]=\sigma^{2} \Delta t$ (Lecture2) On the binomial tree: $\operatorname{var}\left[\frac{\Delta S}{S}\right]=$ $q(u-1)^{2}+(1-q)(d-1)^{2}-[q(u-1)+(1-q)(d-1)]^{2}=$ $q u^{2}+(1-q) d^{2}-[q u+(1-q) d]^{2}$.

Recall: $\operatorname{var}[X]=\mathbb{E}\left[X^{2}\right]-[\mathbb{E}(X)]^{2}$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$.

On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.
First equation: $q u+(1-q) d=e^{\mu \Delta t}$.

- Variance of the return: Continuous model: var $\left[\frac{\Delta S}{S}\right]=\sigma^{2} \Delta t$ (Lecture2) On the binomial tree: $\operatorname{var}\left[\frac{\Delta S}{S}\right]=$ $q(u-1)^{2}+(1-q)(d-1)^{2}-[q(u-1)+(1-q)(d-1)]^{2}=$ $q u^{2}+(1-q) d^{2}-[q u+(1-q) d]^{2}$.

Recall: $\operatorname{var}[X]=\mathbb{E}\left[X^{2}\right]-[\mathbb{E}(X)]^{2}$.
Second equation: $q u^{2}+(1-q) d^{2}-[q u+(1-q) d]^{2}=\sigma^{2} \Delta t$.

Matching volatility σ with u and d

We assume that the stock price starts at the value S_{0} and the time step is Δt. Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, var $\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

- Expected stock price: Continuous model: $\mathbb{E}[S]=S_{0} e^{\mu \Delta t}$.

On the binomial tree: $\mathbb{E}[S]=q S_{0} u+(1-q) S_{0} d$.
First equation: $q u+(1-q) d=e^{\mu \Delta t}$.

- Variance of the return: Continuous model: var $\left[\frac{\Delta S}{S}\right]=\sigma^{2} \Delta t$ (Lecture2) On the binomial tree: $\operatorname{var}\left[\frac{\Delta S}{S}\right]=$ $q(u-1)^{2}+(1-q)(d-1)^{2}-[q(u-1)+(1-q)(d-1)]^{2}=$ $q u^{2}+(1-q) d^{2}-[q u+(1-q) d]^{2}$.

Recall: $\operatorname{var}[X]=\mathbb{E}\left[X^{2}\right]-[\mathbb{E}(X)]^{2}$.
Second equation: $q u^{2}+(1-q) d^{2}-[q u+(1-q) d]^{2}=\sigma^{2} \Delta t$. Third equation: $u=d^{-1}$.

Matching volatility σ with u and d

From the first equation we find $q=\frac{e^{\mu \Delta t}-d}{u-d}$.
This is the probability of an up movement in the real world.

Matching volatility σ with u and d

From the first equation we find $q=\frac{e^{\mu \Delta t}-d}{u-d}$.
This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain

$$
e^{\mu \Delta t}(u+d)-u d-e^{2 \mu \Delta t}=\sigma^{2} \Delta t .
$$

Matching volatility σ with u and d

From the first equation we find $q=\frac{e^{\mu \Delta t}-d}{u-d}$.
This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain

$$
e^{\mu \Delta t}(u+d)-u d-e^{2 \mu \Delta t}=\sigma^{2} \Delta t .
$$

Using $u=d^{-1}$, we get

$$
e^{\mu \Delta t}\left(u+\frac{1}{u}\right)-1-e^{2 \mu \Delta t}=\sigma^{2} \Delta t
$$

This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5).

Matching volatility σ with u and d

From the first equation we find $q=\frac{e^{\mu \Delta t}-d}{u-d}$.
This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain

$$
e^{\mu \Delta t}(u+d)-u d-e^{2 \mu \Delta t}=\sigma^{2} \Delta t
$$

Using $u=d^{-1}$, we get

$$
e^{\mu \Delta t}\left(u+\frac{1}{u}\right)-1-e^{2 \mu \Delta t}=\sigma^{2} \Delta t
$$

This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5).
One can obtain $u \approx e^{\sigma \sqrt{\Delta t}} \approx 1+\sigma \sqrt{\Delta t}$ and $d \approx e^{-\sigma \sqrt{\Delta t}}$.
These are the values of u and d obtained by Cox, Ross, and Rubinstein in 1979.

Recall: $e^{x} \approx 1+x$ for small x.

