Lecture 10

Sergei Fedotov

20912 - Introduction to Financial Mathematics

- Binomial Model for Stock Price
- Option Pricing on Binomial Tree
- **③** Matching Volatility σ with u and d

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

The binomial model for the stock price is a discrete time model:

• The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$, ...

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$, ...
- The price either moves up $S \rightarrow Su$ or down $S \rightarrow Sd$ with $d < e^{r\Delta t} < u$.

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$,...
- The price either moves up $S \rightarrow Su$ or down $S \rightarrow Sd$ with $d < e^{r\Delta t} < u$.
- The probability of up movement is q.

Continuous random model for the stock price: $dS = \mu Sdt + \sigma SdW$

The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$,...
- The price either moves up $S \rightarrow Su$ or down $S \rightarrow Sd$ with $d < e^{r\Delta t} < u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$,...
- The price either moves up $S \rightarrow Su$ or down $S \rightarrow Sd$ with $d < e^{r\Delta t} < u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

We divide the time to expiration T into several time steps of duration $\Delta t = T/N$, where N is the number of time steps in the tree.

Continuous random model for the stock price: $dS = \mu S dt + \sigma S dW$

The binomial model for the stock price is a discrete time model:

- The stock price S changes only at discrete times Δt , $2\Delta t$, $3\Delta t$,...
- The price either moves up $S \rightarrow Su$ or down $S \rightarrow Sd$ with $d < e^{r\Delta t} < u$.
- The probability of up movement is q.

Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price.

We divide the time to expiration T into several time steps of duration $\Delta t = T/N$, where N is the number of time steps in the tree.

Example: Let us sketch the binomial tree for N = 4.

We introduce the following notations:

• S_n^m is the *n*-th possible value of stock price at time-step $m\Delta t$.

We introduce the following notations:

• S_n^m is the *n*-th possible value of stock price at time-step $m\Delta t$.

Then $S_n^m = u^n d^{m-n} S_0^0$, where n = 0, 1, 2, ..., m.

 S_0^0 is the stock price at the time t = 0. Note that u and d are the same at every node in the tree.

We introduce the following notations:

• S_n^m is the *n*-th possible value of stock price at time-step $m\Delta t$.

Then $S_n^m = u^n d^{m-n} S_0^0$, where n = 0, 1, 2, ..., m.

 S_0^0 is the stock price at the time t = 0. Note that u and d are the same at every node in the tree.

For example, at the third time-step $3\Delta t$, there are four possible stock prices: $S_0^3 = d^3 S_0^0$, $S_1^3 = u d^2 S_0^0$, $S_2^3 = u^2 d S_0^0$ and $S_3^3 = u^3 S_0^0$.

At the final time-step $N\Delta t$, there are N + 1 possible values of stock price.

We denote by C_n^m the *n*-th possible value of call option at time-step $m\Delta t$.

We denote by C_n^m the *n*-th possible value of call option at time-step $m\Delta t$.

• Risk Neutral Valuation (backward in time):

$$C_n^m = e^{-r\Delta t} \left(p C_{n+1}^{m+1} + (1-p) C_n^{m+1} \right).$$

Here $0 \le n \le m$ and $p = \frac{e^{r\Delta t} - d}{u - d}$.

We denote by C_n^m the *n*-th possible value of call option at time-step $m\Delta t$.

• Risk Neutral Valuation (backward in time):

$$C_n^m = e^{-r\Delta t} \left(p C_{n+1}^{m+1} + (1-p) C_n^{m+1} \right).$$

Here $0 \le n \le m$ and $p = \frac{e^{r\Delta t} - d}{u - d}$.

• Final condition: $C_n^N = \max \left(S_n^N - E, 0 \right)$, where n = 0, 1, 2, ..., N, E is the

strike price.

We denote by C_n^m the *n*-th possible value of call option at time-step $m\Delta t$.

• Risk Neutral Valuation (backward in time):

$$C_n^m = e^{-r\Delta t} \left(p C_{n+1}^{m+1} + (1-p) C_n^{m+1} \right).$$

Here $0 \le n \le m$ and $p = \frac{e^{r\Delta t} - d}{u - d}$.

• Final condition: $C_n^N = \max \left(S_n^N - E, 0 \right)$, where n = 0, 1, 2, ..., N, E is the

strike price.

The current option price C_0^0 is the expected payoff in a risk-neutral world, discounted at risk-free rate r: $C_0^0 = e^{-rT} \mathbb{E}_p[C_T]$.

Example: N = 4.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

First equation: $qu + (1 - q)d = e^{\mu\Delta t}$.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

First equation: $qu + (1 - q)d = e^{\mu\Delta t}$.

• Variance of the return: Continuous model: var $\left[\frac{\Delta S}{S}\right] = \sigma^2 \Delta t$ (Lecture2)

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

First equation:
$$qu + (1 - q)d = e^{\mu\Delta t}$$

• Variance of the return: Continuous model: $var\left[\frac{\Delta S}{S}\right] = \sigma^2 \Delta t$ (Lecture2) On the binomial tree: $var\left[\frac{\Delta S}{S}\right] =$ $q(u-1)^2 + (1-q)(d-1)^2 - [q(u-1) + (1-q)(d-1)]^2 =$ $qu^2 + (1-q)d^2 - [qu + (1-q)d]^2$.

Recall: $var[X] = \mathbb{E}[X^2] - [\mathbb{E}(X)]^2$.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

First equation:
$$qu + (1 - q)d = e^{\mu\Delta t}$$

• Variance of the return: Continuous model: $var\left[\frac{\Delta S}{S}\right] = \sigma^2 \Delta t$ (Lecture2) On the binomial tree: $var\left[\frac{\Delta S}{S}\right] =$ $q(u-1)^2 + (1-q)(d-1)^2 - [q(u-1) + (1-q)(d-1)]^2 =$ $qu^2 + (1-q)d^2 - [qu + (1-q)d]^2$. Recall: $var[X] = \mathbb{E}[X^2] - [\mathbb{E}(X)]^2$.

Second equation: $qu^2 + (1-q)d^2 - [qu + (1-q)d]^2 = \sigma^2 \Delta t$.

We assume that the stock price starts at the value S_0 and the time step is Δt . Let us find the expected stock price, $\mathbb{E}[S]$, and the variance of the return, $var\left[\frac{\Delta S}{S}\right]$, for continuous and discrete models.

• Expected stock price: Continuous model: $\mathbb{E}[S] = S_0 e^{\mu \Delta t}$. On the binomial tree: $\mathbb{E}[S] = qS_0u + (1-q)S_0d$.

First equation:
$$qu + (1 - q)d = e^{\mu\Delta t}$$

• Variance of the return: Continuous model: $var\left[\frac{\Delta S}{S}\right] = \sigma^2 \Delta t$ (Lecture2) On the binomial tree: $var\left[\frac{\Delta S}{S}\right] =$ $q(u-1)^2 + (1-q)(d-1)^2 - [q(u-1) + (1-q)(d-1)]^2 =$ $qu^2 + (1-q)d^2 - [qu + (1-q)d]^2$. Recall: $var[X] = \mathbb{E}[X^2] - [\mathbb{E}(X)]^2$. Second equation: $qu^2 + (1-q)d^2 - [qu + (1-q)d]^2 = \sigma^2 \Delta t$. Third equation: $u = d^{-1}$.

From the first equation we find $q = \frac{e^{\mu\Delta t} - d}{u - d}$.

This is the probability of an up movement in the real world.

From the first equation we find $q = \frac{e^{\mu\Delta t} - d}{u - d}$.

This is the probability of an up movement in the real world. Substituting

this probability into the second equation, we obtain

$$e^{\mu\Delta t}(u+d) - ud - e^{2\mu\Delta t} = \sigma^2\Delta t.$$

From the first equation we find $q = \frac{e^{\mu \Delta t} - d}{u - d}$.

This is the probability of an up movement in the real world. Substituting

this probability into the second equation, we obtain

$$e^{\mu\Delta t}(u+d)-ud-e^{2\mu\Delta t}=\sigma^2\Delta t.$$

Using $u = d^{-1}$, we get

$$e^{\mu\Delta t}(u+\frac{1}{u})-1-e^{2\mu\Delta t}=\sigma^2\Delta t.$$

This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5).

From the first equation we find $q = \frac{e^{\mu \Delta t} - d}{u - d}$.

This is the probability of an up movement in the real world. Substituting

this probability into the second equation, we obtain

$$e^{\mu\Delta t}(u+d)-ud-e^{2\mu\Delta t}=\sigma^2\Delta t.$$

Using $u = d^{-1}$, we get

$$e^{\mu\Delta t}(u+\frac{1}{u})-1-e^{2\mu\Delta t}=\sigma^2\Delta t.$$

This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5).

One can obtain $u \approx e^{\sigma\sqrt{\Delta t}} \approx 1 + \sigma\sqrt{\Delta t}$ and $d \approx e^{-\sigma\sqrt{\Delta t}}$.

These are the values of u and d obtained by Cox, Ross, and Rubinstein in 1979.

Recall: $e^x \approx 1 + x$ for small x.