Lecture 1

Sergei Fedotov

20912 - Introduction to Financial Mathematics

No tutorials in the first week

Plan de la présentation

(1) Introduction

- Elementary economics background
- What is financial mathematics?
- The role of SDE's and PDE's
(2) Time Value of Money
(3) Continuous Model for Stock Price

General Information

Textbooks:

- J. Hull, Options, Futures and Other Derivatives, 7th Edition, Prentice-Hall, 2008.
- P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives: A Student Introduction, Cambridge University Press, 1995.

General Information

Textbooks:

- J. Hull, Options, Futures and Other Derivatives, 7th Edition, Prentice-Hall, 2008.
- P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives: A Student Introduction, Cambridge University Press, 1995.

Assessment:

In class test: 20\% (12 March, Monday, week 7, 9.00 - 9.50, based on exercise sheets 1-4).
2 hours examination: 80\%

Elementary Economics Background

This course is concerned with mathematical models for financial markets:

Elementary Economics Background

This course is concerned with mathematical models for financial markets:

- Stock Markets, such as NYSE(New York Stock Exchange), London Stock Exchange, etc.

Elementary Economics Background

This course is concerned with mathematical models for financial markets:

- Stock Markets, such as NYSE(New York Stock Exchange), London Stock Exchange, etc.
- Bond Markets, where participants buy and sell debt securities.

Elementary Economics Background

This course is concerned with mathematical models for financial markets:

- Stock Markets, such as NYSE(New York Stock Exchange), London Stock Exchange, etc.
- Bond Markets, where participants buy and sell debt securities.
- Futures and Option Markets, where the derivative products are traded.

Example: European call option gives the holder the right (not obligation) to buy underlying asset at a prescribed time T for a specified price E.

Option market is massive! More money is invested in options than in the underlying securities. The main purpose of this course is to determine the price of options.

Elementary Economics Background

This course is concerned with mathematical models for financial markets:

- Stock Markets, such as NYSE(New York Stock Exchange), London Stock Exchange, etc.
- Bond Markets, where participants buy and sell debt securities.
- Futures and Option Markets, where the derivative products are traded.

Example: European call option gives the holder the right (not obligation) to buy underlying asset at a prescribed time T for a specified price E.

Option market is massive! More money is invested in options than in the underlying securities. The main purpose of this course is to determine the price of options.

Why stochastic differential equations (SDE's) and partial differential equations (PDE's)?

Time value of money

What is the future value $V(t)$ at time $t=T$ of an amount P invested or borrowed today at $t=0$?

Time value of money

What is the future value $V(t)$ at time $t=T$ of an amount P invested or borrowed today at $t=0$?

- Simple interest rate:

$$
\begin{equation*}
V(T)=(1+r T) P \tag{1}
\end{equation*}
$$

where $r>0$ is the simple interest rate, T is expressed in years.

Time value of money

What is the future value $V(t)$ at time $t=T$ of an amount P invested or borrowed today at $t=0$?

- Simple interest rate:

$$
\begin{equation*}
V(T)=(1+r T) P \tag{1}
\end{equation*}
$$

where $r>0$ is the simple interest rate, T is expressed in years.

- Compound interest rate:

$$
\begin{equation*}
V(T)=\left(1+\frac{r}{m}\right)^{m T} P \tag{2}
\end{equation*}
$$

where m is the number interest payments made per annum.

Time value of money

What is the future value $V(t)$ at time $t=T$ of an amount P invested or borrowed today at $t=0$?

- Simple interest rate:

$$
\begin{equation*}
V(T)=(1+r T) P \tag{1}
\end{equation*}
$$

where $r>0$ is the simple interest rate, T is expressed in years.

- Compound interest rate:

$$
\begin{equation*}
V(T)=\left(1+\frac{r}{m}\right)^{m T} P \tag{2}
\end{equation*}
$$

where m is the number interest payments made per annum.

- Continuous compounding:

In the limit $m \rightarrow \infty$, we obtain

$$
\begin{equation*}
V(T)=e^{r T} P \tag{3}
\end{equation*}
$$

since $e=\lim _{z \rightarrow \infty}\left(1+\frac{1}{z}\right)^{z}$. Throughout this course the interest rate r will be continuously compounded.

Simple Model for Stock Price $S(t)$

Let $S(t)$ represent the stock price at time t. How to write an equation for this function?

Simple Model for Stock Price $S(t)$

Let $S(t)$ represent the stock price at time t. How to write an equation for this function?

- Return (relative measure of change):

$$
\begin{equation*}
\frac{\Delta S}{S} \tag{4}
\end{equation*}
$$

where $\Delta S=S(t+\delta t)-S(t)$

Simple Model for Stock Price $S(t)$

Let $S(t)$ represent the stock price at time t. How to write an equation for this function?

- Return (relative measure of change):

$$
\begin{equation*}
\frac{\Delta S}{S} \tag{4}
\end{equation*}
$$

where $\Delta S=S(t+\delta t)-S(t)$ In the limit $\delta t \rightarrow 0$:

$$
\begin{equation*}
\frac{d S}{S} \tag{5}
\end{equation*}
$$

- How to model the return?

Simple Model for Stock Price $S(t)$

Let $S(t)$ represent the stock price at time t. How to write an equation for this function?

- Return (relative measure of change):

$$
\begin{equation*}
\frac{\Delta S}{S} \tag{4}
\end{equation*}
$$

where $\Delta S=S(t+\delta t)-S(t)$ In the limit $\delta t \rightarrow 0$:

$$
\begin{equation*}
\frac{d S}{S} \tag{5}
\end{equation*}
$$

- How to model the return?

Let us decompose the return into two parts: deterministic and stochastic

Modelling of Return

Return:

$$
\begin{equation*}
\frac{d S}{S}=\mu d t+\sigma d W \tag{6}
\end{equation*}
$$

where μ is a measure of the expected rate of growth of the stock price. In general, $\mu=\mu(S, t)$. In simpe models μ is taken to be constant ($\mu=0.1 \div 0.3$).

Modelling of Return

Return:

$$
\begin{equation*}
\frac{d S}{S}=\mu d t+\sigma d W \tag{6}
\end{equation*}
$$

where μ is a measure of the expected rate of growth of the stock price. In general, $\mu=\mu(S, t)$. In simpe models μ is taken to be constant ($\mu=0.1 \div 0.3$).

- $\sigma d W$ describes the stochastic change in the stock price, where $d W$ stands for

$$
\Delta W=W(t+\Delta t)-W(t)
$$

as $\Delta t \rightarrow 0$

- $W(t)$ is a Wiener process
- σ is the volatility $(\sigma=0.2 \div 0.5)$

Stochastic differential equation for stock price

$$
\begin{equation*}
d S=\mu S d t+\sigma S d W \tag{7}
\end{equation*}
$$

Stochastic differential equation for stock price

$$
\begin{equation*}
d S=\mu S d t+\sigma S d W \tag{7}
\end{equation*}
$$

- Simple case: volatility $\sigma=0$

$$
\begin{equation*}
d S=\mu S d t \tag{8}
\end{equation*}
$$

Wiener process

Definition. The standard Wiener process $W(t)$ is a Gaussian process such that

- $W(t)$ has independent increments: if $u \leq v \leq s \leq t$, then $W(t)-W(s)$ and $W(v)-W(u)$ are independent
- $W(s+t)-W(s)$ is $N(0, t)$ and $W(0)=0$

Clearly

- $\mathbb{E} W(t)=0$ and $\mathbb{E} W^{2}=t$, where \mathbb{E} is the expectation operator.

Wiener process

Definition. The standard Wiener process $W(t)$ is a Gaussian process such that

- $W(t)$ has independent increments: if $u \leq v \leq s \leq t$, then $W(t)-W(s)$ and $W(v)-W(u)$ are independent
- $W(s+t)-W(s)$ is $N(0, t)$ and $W(0)=0$

Clearly

- $\mathbb{E} W(t)=0$ and $\mathbb{E} W^{2}=t$, where \mathbb{E} is the expectation operator.
- The increment $\Delta W=W(t+\Delta t)-W(t)$ can be written as
$\Delta W=X(\Delta t)^{\frac{1}{2}}$, where X is a random variable with normal distribution with zero mean and unit variance:

$$
X \sim N(0,1)
$$

- $\mathbb{E} \Delta W=0$ and $\mathbb{E}(\Delta W)^{2}=\Delta t$.

