Lecture 8

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Implicit differentiation. Maximum and minimum values.

Lecture 8

(1) Derivatives of inverse trigonometric and logarithmic functions
(2) Logarithmic differentiation
(3) Maximum and minimum values, second derivative test

Derivatives of inverse trigonometric and logarithmic functions

Show that

$$
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Derivatives of inverse trigonometric and logarithmic functions

Show that

$$
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Solution: Let us find the derivatives of $\sin ^{-1}(x)$ by using implicit differentiation. Let $y=\sin ^{-1} x$ which means that $x=\sin y$ for $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Then....

Derivatives of inverse trigonometric and logarithmic functions

Show that

$$
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Solution: Let us find the derivatives of $\sin ^{-1}(x)$ by using implicit differentiation. Let $y=\sin ^{-1} x$ which means that $x=\sin y$ for $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Then....

Show that

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} .
$$

Derivatives of inverse trigonometric and logarithmic functions

Show that

$$
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Solution: Let us find the derivatives of $\sin ^{-1}(x)$ by using implicit differentiation. Let $y=\sin ^{-1} x$ which means that $x=\sin y$ for $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Then....

Show that

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

Solution: We find the derivatives of $\log _{a} x$ by using implicit differentiation. Let $y=\log _{a} x$. It means that $a^{y}=x$. We differentiate this equation implicitly with respect to x and obtain...

Logarithmic differentiation

Logarithmic differentiation.

Example: Find the derivative

$$
y=\frac{\sqrt{x^{2}+1}}{(3 x+1)^{5}}
$$

Solution: We take logarithms of both sides of this equation:

$$
\ln y=\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+1)
$$

Differentiating implicitly wrt x, we obtain...

Maximum and minimum values

Definition. A function f has an absolute maximum at c if $f(x) \leq f(c)$ for all x in the domain D of f. The number $f(c)$ is called the maximum value of f in D. Similarly, f has an absolute minimum at c if $f(c) \leq f(x)$.

Definition. A function f has a local maximum at c if if $f(x) \leq f(c)$ for all x in some open interval containing c.

Maximum and minimum values

Definition. A function f has an absolute maximum at c if $f(x) \leq f(c)$ for all x in the domain D of f. The number $f(c)$ is called the maximum value of f in D. Similarly, f has an absolute minimum at c if $f(c) \leq f(x)$.

Definition. A function f has a local maximum at c if if $f(x) \leq f(c)$ for all x in some open interval containing c.

Definition. A stationary (critical) point of f is a point c for which

$$
f^{\prime}(c)=0
$$

Second derivative test

Suppose that the second derivative $f^{\prime \prime}(x)$ is continuous near c.

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c;
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Second derivative test

Suppose that the second derivative $f^{\prime \prime}(x)$ is continuous near c.

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c;
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
$f^{\prime \prime}(x)$ determines the rate of change of $f^{\prime}(x)$. If $f^{\prime \prime}(c)>0$, then $f^{\prime}(x)$ is increasing at $x=c$.

Second derivative test

Suppose that the second derivative $f^{\prime \prime}(x)$ is continuous near c.

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c;
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
$f^{\prime \prime}(x)$ determines the rate of change of $f^{\prime}(x)$. If $f^{\prime \prime}(c)>0$, then $f^{\prime}(x)$ is increasing at $x=c$.

Example: Find the stationary points and determine their nature for the function:

$$
f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x+3
$$

Example: Sketch the graph of

$$
y=\frac{x}{x^{2}+1}
$$

