Lecture 7

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Differentiation Rules

Lecture 7

(1) Chain rule

(2) L'Hospital rule

(3) Implicit differentiation

Chain Rule

The Chain Rule. If $y=f(u)$ and $u=g(x)$ are differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

or

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Chain Rule

The Chain Rule. If $y=f(u)$ and $u=g(x)$ are differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

or

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Example: Differentiate the following functions

$$
y=\sqrt{1+x^{3}}, \quad y=\sin ^{2} x, \quad y=e^{\sin ^{5} x}
$$

We observe that these are the composite functions. If we let $u=g(x)=1+x^{3}$, then we can write $y=f(u)=\sqrt{u}$

L'Hospital rule

L'Hospital's Rule. We assume that the functions $f(x)$ and $g(x)$ are differentiable, the derivative $g^{\prime}(x) \neq 0$ and

$$
\lim _{x \rightarrow a} f(x)=0 \quad \lim _{x \rightarrow a} g(x)=0
$$

or

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

L'Hospital rule

L'Hospital's Rule. We assume that the functions $f(x)$ and $g(x)$ are differentiable, the derivative $g^{\prime}(x) \neq 0$ and

$$
\lim _{x \rightarrow a} f(x)=0 \quad \lim _{x \rightarrow a} g(x)=0
$$

or

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Examples: Find the following limits:

$$
\lim _{x \rightarrow 2} \frac{\ln (x-1)}{x-2}, \quad \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}
$$

Higher Derivatives and Implicit Differentiation

Higher derivatives.

$f^{\prime}(x)$ is also a function, so $f^{\prime}(x)$ may have a derivative of its own. Notation for the $n^{\text {th }}$ derivative:

$$
\frac{d^{n} f}{d x^{n}}
$$

Higher Derivatives and Implicit Differentiation

Higher derivatives.

$f^{\prime}(x)$ is also a function, so $f^{\prime}(x)$ may have a derivative of its own. Notation for the $n^{\text {th }}$ derivative:

$$
\frac{d^{n} f}{d x^{n}}
$$

Implicit differentiation.

Example: For $x^{2}+y^{2}=9$, find $\frac{d y}{d x}$ and an equation of the tangent line to the circle at point $(2, \sqrt{5})$.

