Lecture 6

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Derivatives

Lecture 6

(1) Interpretation of the derivative as a slope of tangent line
(2) Interpretation of the derivative as a rate of change

Tangent line to curve

Motivation: The problem of finding the tangent line to a curve. Let us assume that the curve C is described by the equation $y=f(x)$. Our aim is to find the tangent line to C at the point $(a, f(a))$.

Tangent line to curve

Motivation: The problem of finding the tangent line to a curve. Let us assume that the curve C is described by the equation $y=f(x)$. Our aim is to find the tangent line to C at the point $(a, f(a))$.

The first step is to compute the slope of the secant line

$$
m=\frac{f(x)-f(a)}{x-a}
$$

Equation for secant line $y=m(x-a)+f(a)$.

Tangent line to curve

Motivation: The problem of finding the tangent line to a curve. Let us assume that the curve C is described by the equation $y=f(x)$. Our aim is to find the tangent line to C at the point $(a, f(a))$.

The first step is to compute the slope of the secant line

$$
m=\frac{f(x)-f(a)}{x-a}
$$

Equation for secant line $y=m(x-a)+f(a)$.
We write an equation of the tangent line to the curve $y=f(x)$ at the point ($a, f(a))$ as follows

$$
y=f^{\prime}(a)(x-a)+f(a), \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

where $f^{\prime}(a)$ is a derivative of a function f at a if this limit exists.

Tangent line to curve

Motivation: The problem of finding the tangent line to a curve. Let us assume that the curve C is described by the equation $y=f(x)$. Our aim is to find the tangent line to C at the point $(a, f(a))$.

The first step is to compute the slope of the secant line

$$
m=\frac{f(x)-f(a)}{x-a}
$$

Equation for secant line $y=m(x-a)+f(a)$.
We write an equation of the tangent line to the curve $y=f(x)$ at the point ($a, f(a))$ as follows

$$
y=f^{\prime}(a)(x-a)+f(a), \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

where $f^{\prime}(a)$ is a derivative of a function f at a if this limit exists.
The tangent line to $y=f(x)$ at the point $(a, f(a))$ is the line through $(a, f(a))$ whose slope is equal to the derivative $f^{\prime}(a)$.

Alternative expression for the derivative

If $h=x-a$, then $x=a+h$ and the derivative at point a can be written as follows

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Alternative expression for the derivative

If $h=x-a$, then $x=a+h$ and the derivative at point a can be written as follows

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Definition. The derivative of a function $f(x)$ at point x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example: Find the derivative of the function $f(x)=\frac{2}{x}$ from the definition of $f^{\prime}(x)$.

Alternative expression for the derivative

If $h=x-a$, then $x=a+h$ and the derivative at point a can be written as follows

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Definition. The derivative of a function $f(x)$ at point x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example: Find the derivative of the function $f(x)=\frac{2}{x}$ from the definition of $f^{\prime}(x)$.

Example: If $f(x)=x^{2}+1$, find a formula for $f^{\prime}(x)$ and illustrate by comparing the graphs of $y=f(x)$ and $y=f^{\prime}(x)$.

Example: Find an equation of the tangent line to the parabola $y=-x^{2}+5$ at the point $(2,1)$.

Interpretation of the derivative as a rate of change

Quotient:

$$
\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{h}
$$

is called the average rate of change of $f(x)$ with respect to x.
Derivative:

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

as a instantaneous rate of change.

Interpretation of the derivative as a rate of change

Quotient:

$$
\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{h}
$$

is called the average rate of change of $f(x)$ with respect to x.
Derivative:

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

as a instantaneous rate of change.
Example: The position of a particle is given by the equation $s(t)=2+t^{3}$. Find the velocity of a particle at $t=2$.

Derivatives

If we use the notation $y=f(x)$, then some common alternative notations for the derivative are as follows

$$
f^{\prime}(x), \quad y^{\prime}, \quad \frac{d y}{d x}, \quad \frac{d f}{d x}, \quad \frac{d}{d x} f(x)
$$

