Lecture 5

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

The limit of a function

Lecture 5

(1) The limit of the function:

$$
\lim _{x \rightarrow a} f(x)
$$

(2) Continuity

Limit

We define

$$
\lim _{x \rightarrow a} f(x)=A
$$

The basic idea of the limit is that we can make the values of $f(x)$ arbitrary close to A with values of x approaching a. Note that $x \neq a$.

Example: Find the limits

$$
\lim _{x \rightarrow 1}\left(x^{2}-4\right), \quad \lim _{x \rightarrow 3}\left(x^{2}-4\right)
$$

Limit

We define

$$
\lim _{x \rightarrow a} f(x)=A
$$

The basic idea of the limit is that we can make the values of $f(x)$ arbitrary close to A with values of x approaching a. Note that $x \neq a$.

Example: Find the limits

$$
\lim _{x \rightarrow 1}\left(x^{2}-4\right), \quad \lim _{x \rightarrow 3}\left(x^{2}-4\right)
$$

Example: Find the limit $\lim _{x \rightarrow 0} f(x)$ for the following functions

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
2 x+1 & \text { for } & x \leq 0 \\
x^{2}-x & \text { for } & x>0
\end{array}\right. \\
& f(x)=\left\{\begin{array}{lll}
\frac{5 x+|x|}{x} & \text { for } & x \neq 0 \\
0 & \text { for } & x=0
\end{array}\right.
\end{aligned}
$$

Limits

We define

$$
\lim _{x \rightarrow a^{-}} f(x)=A
$$

and say the left-hand limit of $f(x)$. The symbol $x \rightarrow a^{-}$means that x approaches a and we consider only $x<a$.

We define

$$
\lim _{x \rightarrow a^{+}} f(x)=A
$$

and say the right-hand limit of $f(x)$.

Limits

We define

$$
\lim _{x \rightarrow a^{-}} f(x)=A
$$

and say the left-hand limit of $f(x)$. The symbol $x \rightarrow a^{-}$means that x approaches a and we consider only $x<a$.

We define

$$
\lim _{x \rightarrow a^{+}} f(x)=A
$$

and say the right-hand limit of $f(x)$.
Infinite limits: $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} f(x)=-\infty$
Example. Find the limits:

$$
\lim _{x \rightarrow 0} x^{-2} \quad \lim _{x \rightarrow 4^{+}} \frac{3 x}{x-4} \quad \lim _{x \rightarrow 4^{-}} \frac{3 x}{x-4}
$$

Limits

Limits at infinity:

$$
\lim _{x \rightarrow \infty} f(x)=A \quad \lim _{x \rightarrow-\infty} f(x)=A
$$

The line $y=A$ is called a horizontal asymptote of the curve $y=f(x)$.
Example: Find

$$
\lim _{x \rightarrow \infty} \frac{3 x^{4}+x+5}{2 x^{4}+45 x+56}
$$

Limits

Limits at infinity:

$$
\lim _{x \rightarrow \infty} f(x)=A \quad \lim _{x \rightarrow-\infty} f(x)=A .
$$

The line $y=A$ is called a horizontal asymptote of the curve $y=f(x)$.
Example: Find

$$
\lim _{x \rightarrow \infty} \frac{3 x^{4}+x+5}{2 x^{4}+45 x+56}
$$

Limit Laws. Suppose the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\begin{aligned}
& \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& \lim _{x \rightarrow a}[f(x) \times g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)
\end{aligned}
$$

Continuity

Definition.

A function f is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This definition implicitly requires

1) $f(a)$ is defined (a is in the domain of f)
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Continuity

Definition.

A function f is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This definition implicitly requires

1) $f(a)$ is defined (a is in the domain of f)
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Example: Find the value A for which the following function is continuous for all $x \in \mathbb{R}$

$$
f(x)=\left\{\begin{array}{lll}
\frac{4}{4+x^{4}} & \text { if } & x \neq 0 \\
A & \text { if } & x=0
\end{array}\right.
$$

