Lecture 4

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Inverse trigonometric functions, sketching the graphs

- Inverse trigonometric functions: $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$
- Sketching the graphs

The sine function $f(x) = \sin x$ is NOT one-to-one function, but on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ it is one-to-one The inverse is denoted by

 $\sin^{-1}x$

 $\sin^{-1} x$ has domain [-1,1] and range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

The sine function $f(x) = \sin x$ is NOT one-to-one function, but on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ it is one-to-one The inverse is denoted by

$\sin^{-1}x$

 $\sin^{-1} x$ has domain [-1,1] and range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

The cosine function $f(x) = \cos x$ for $x \in [0, \pi]$ is one-to-one function. It has an inverse function denoted by

 $\cos^{-1}x$

 $\cos^{-1} x$ has domain [-1, 1] and range $[0, \pi]$.

The sine function $f(x) = \sin x$ is NOT one-to-one function, but on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ it is one-to-one The inverse is denoted by

$\sin^{-1}x$

 $\sin^{-1} x$ has domain [-1,1] and range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

The cosine function $f(x) = \cos x$ for $x \in [0, \pi]$ is one-to-one function. It has an inverse function denoted by

 $\cos^{-1}x$

 $\cos^{-1} x$ has domain [-1, 1] and range $[0, \pi]$.

Example: Sketch the graphs of $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$

Sketch the curve satisfying

$$y=f\left(x-a\right) +b.$$

- 1) shift the curve y = f(x) to the right by *a*
- 2) shift upward by **b**

Sketch the curve satisfying

$$y=f\left(x-a\right) +b.$$

1) shift the curve y = f(x) to the right by a

2) shift upward by **b**

Example: Sketch the curve

 $y = (x-2)^6 + 3$

Sketching the graphs

Sketch the graphs of the following functions:

 e^{-x^2} $\frac{2}{2+x^4}$ $|1 + x^5|$ $\ln x^4$ $\sqrt{\frac{2x}{x-6}}$