Lecture 31

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Green's Theorem

Lecture 30

(1) Green's theorem
(2) Independence of path

Line integral

We define the line integral of $\overrightarrow{\mathbf{f}}$ along a smooth curve C as

$$
\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{a}^{b} \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{r}}(t)) \cdot d \overrightarrow{\mathbf{r}}^{\prime}(t) d t
$$

Suppose that the vector field $\overrightarrow{\mathbf{f}}$ on \mathbb{R}^{2} is given in component form by the equation

$$
\overrightarrow{\mathbf{f}}=P(x, y) \overrightarrow{\mathbf{i}}+Q(x, y) \overrightarrow{\mathbf{j}}
$$

then

$$
\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{C} P(x, y) d x+Q(x, y) d y
$$

Green's Theorem

Green's Theorem. Let C be a positively oriented simple closed curve in the plane. Let D be the region bounded by C. If $P(x, y)$ and $Q(x, y)$ are continuous on D, then

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Note that positive orientation refers to counterclockwise traversal of C.

Green's Theorem

Green's Theorem. Let C be a positively oriented simple closed curve in the plane. Let D be the region bounded by C. If $P(x, y)$ and $Q(x, y)$ are continuous on D, then

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Note that positive orientation refers to counterclockwise traversal of C.
Example. Find

$$
\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}
$$

for the vector field

$$
\overrightarrow{\mathbf{f}}=(-y, x),
$$

where C is the circle of radius a.

Independence of path

We say that the line integral $\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}$ is independent of path if

$$
\int_{C_{1}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{C_{2}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}
$$

for any two paths C_{1} and C_{2} that have the same initial and terminal points.

Independence of path

We say that the line integral $\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}$ is independent of path if

$$
\int_{C_{1}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{C_{2}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}
$$

for any two paths C_{1} and C_{2} that have the same initial and terminal points.
Theorem. Let C be a plane curve given by the parametric equation $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}(t), a \leq t \leq b$. Let $\varphi(x, y)$ be a differentiable function whose gradient $\nabla \varphi$ is continuous on C. Then

$$
\int_{C} \nabla \varphi \cdot d \overrightarrow{\mathbf{r}}=\varphi(\overrightarrow{\mathbf{r}}(b))-\varphi(\overrightarrow{\mathbf{r}}(b))
$$

Independence of path

We say that the line integral $\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}$ is independent of path if

$$
\int_{C_{1}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{C_{2}} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}
$$

for any two paths C_{1} and C_{2} that have the same initial and terminal points.
Theorem. Let C be a plane curve given by the parametric equation $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}(t), a \leq t \leq b$. Let $\varphi(x, y)$ be a differentiable function whose gradient $\nabla \varphi$ is continuous on C. Then

$$
\int_{C} \nabla \varphi \cdot d \overrightarrow{\mathbf{r}}=\varphi(\overrightarrow{\mathbf{r}}(b))-\varphi(\overrightarrow{\mathbf{r}}(b)) .
$$

Proof: Using the definition of the line integral, we write

$$
\int_{C} \nabla \varphi \cdot d \overrightarrow{\mathbf{r}}=\int_{a}^{b} \nabla \varphi(\overrightarrow{\mathbf{r}}(t)) \cdot d \overrightarrow{\mathbf{r}}^{\prime}(t) d t
$$

