Lecture 30

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Line Integrals

Lecture 30

(1) Parametric equations of curves
(2) Line integral

Line integral

Let us start with a plane curve C given by the parametric equations

$$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}(t)
$$

or

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

Line integral

Let us start with a plane curve C given by the parametric equations

$$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}(t)
$$

or

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

We define the line integral of $\overrightarrow{\mathbf{f}}$ along a smooth curve C as

$$
\int_{C} \overrightarrow{\mathbf{f}} \cdot d \overrightarrow{\mathbf{r}}=\int_{a}^{b} \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{r}}(t)) \cdot d \overrightarrow{\mathbf{r}}^{\prime}(t) d t
$$

Examples

Example 1: Find the line integral of

$$
\overrightarrow{\mathbf{f}}=\nabla\left(x^{2}-y^{2}\right)
$$

on one quarter of the circle

$$
x^{2}+y^{2}=1
$$

from $(0,1)$ to $(1,0)$.

Examples

Example 1: Find the line integral of

$$
\overrightarrow{\mathbf{f}}=\nabla\left(x^{2}-y^{2}\right)
$$

on one quarter of the circle

$$
x^{2}+y^{2}=1
$$

from $(0,1)$ to $(1,0)$.
Example 2: Find the line integral of

$$
\overrightarrow{\mathbf{f}}=\nabla\left(x^{2}-y^{2}\right)
$$

on a straight line from $(0,1)$ to $(1,0)$.

