Lecture 3

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Exponential and logarithmic functions

Inverse functions

- Exponential and logarithmic functions
- Sketching the graphs
- Hyperbolic functions

The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

Example: Sketch the graph of $f(x) = \sqrt{-x}$ and its inverse.

The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

Example: Sketch the graph of $f(x) = \sqrt{-x}$ and its inverse.

```
The domain of f^{-1} is the range of f
```

The range of f^{-1} is the domain of f

Exponential functions

Definition. An exponential function is a function of the form

$$f(x)=a^x,$$

where a is a positive constant.

Exponential functions

Definition. An exponential function is a function of the form

$$f(x)=a^x,$$

where *a* is a positive constant.

Law of exponent: for any positive number *a* and real numbers *x* and *y*:

$$a^{x+y}=a^xa^y.$$

Exponential functions

Definition. An exponential function is a function of the form

$$f(x)=a^x,$$

where *a* is a positive constant.

Law of exponent: for any positive number *a* and real numbers *x* and *y*:

$$a^{x+y}=a^xa^y.$$

MATH10131

Logarithmic functions

Definition. The exponential function $f(x) = a^x$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base *a*. Standard notation is

 \log_a .

Logarithmic functions

Definition. The exponential function $f(x) = a^x$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base *a*. Standard notation is

 \log_a . Law of logarithms: for any real numbers x and y:

 $\log_a(a^x) = x \text{ for } x \in \mathbb{R}$ $a^{\log_a x} = x \text{ for } x > 0$

Remember: $f^{-1}(f(x)) = x$

Logarithmic functions

Definition. The exponential function $f(x) = a^x$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base a. Standard notation is

log_.

Law of logarithms: for any real numbers x and y:

$$egin{array}{lll} \log_a(a^x) = x & \textit{for} & x \in \mathbb{R} \ a^{\log_a x} = x & \textit{for} & x > 0 \end{array}$$

Remember: $f^{-1}(f(x)) = x$

Example 1: Sketch the graph of the function $2 - 2^x$ and determine the domain and range

Example 1: Sketch the graph of the function $2 - 2^x$ and determine the domain and range

Example 1: Sketch the graph of the function ln(3 - x) + 1 and determine the domain and range

Hyperbolic functions are defined by using the exponential functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

Hyperbolic functions are defined by using the exponential functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

 $\sinh x$, $\tanh x$ and $\coth x$ are all one-to-one functions, so that their domains are not restricted in constracting inverses

Hyperbolic functions are defined by using the exponential functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$

$$tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

 $\sinh x$, $\tanh x$ and $\coth x$ are all one-to-one functions, so that their domains are not restricted in constracting inverses

Example: Sketch the graph of the function $\cosh x$ and determine the domain and range