Lecture 3

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Exponential and logarithmic functions

Lecture 3

(1) Inverse functions
(2) Exponential and logarithmic functions
(3) Sketching the graphs
(9) Hyperbolic functions

Inverse functions

The graph of f^{-1} is obtained by reflecting the graph of f about the line $y=x$.

Example: Sketch the graph of $f(x)=\sqrt{-x}$ and its inverse.

Inverse functions

The graph of f^{-1} is obtained by reflecting the graph of f about the line $y=x$.

Example: Sketch the graph of $f(x)=\sqrt{-x}$ and its inverse.

The domain of f^{-1} is the range of f
The range of f^{-1} is the domain of f

Exponential functions

Definition. An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where a is a positive constant.

Exponential functions

Definition. An exponential function is a function of the form

$$
f(x)=a^{x},
$$

where a is a positive constant.
Law of exponent: for any positive number a and real numbers x and y :

$$
a^{x+y}=a^{x} a^{y} .
$$

Exponential functions

Definition. An exponential function is a function of the form

$$
f(x)=a^{x},
$$

where a is a positive constant.
Law of exponent: for any positive number a and real numbers x and y :

$$
a^{x+y}=a^{x} a^{y}
$$

Logarithmic functions

Definition. The exponential function $f(x)=a^{x}$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base a. Standard notation is

$$
\log _{a} .
$$

Logarithmic functions

Definition. The exponential function $f(x)=a^{x}$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base a. Standard notation is

$$
\log _{a}
$$

Law of logarithms: for any real numbers x and y :

$$
\begin{gathered}
\log _{a}\left(a^{x}\right)=x \text { for } x \in \mathbb{R} \\
a^{\log _{a} x}=x \text { for } x>0
\end{gathered}
$$

Remember: $f^{-1}(f(x))=x$

Logarithmic functions

Definition. The exponential function $f(x)=a^{x}$ is one-to-one function. It has an inverse function f^{-1} called the logarithmic function with base a. Standard notation is

$$
\log _{a}
$$

Law of logarithms: for any real numbers x and y :

$$
\begin{gathered}
\log _{a}\left(a^{x}\right)=x \text { for } x \in \mathbb{R} \\
a^{\log _{a} x}=x \text { for } x>0
\end{gathered}
$$

Remember: $f^{-1}(f(x))=x$

Sketching the graphs

Example 1: Sketch the graph of the function $2-2^{x}$ and determine the domain and range

Sketching the graphs

Example 1: Sketch the graph of the function $2-2^{x}$ and determine the domain and range

Example 1: Sketch the graph of the function $\ln (3-x)+1$ and determine the domain and range

Hyperbolic functions

Hyperbolic functions are defined by using the exponential functions

$$
\begin{gathered}
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \\
\tanh x=\frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x=\frac{\cosh x}{\sinh x}
\end{gathered}
$$

Hyperbolic functions

Hyperbolic functions are defined by using the exponential functions

$$
\begin{gathered}
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \\
\tanh x=\frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x=\frac{\cosh x}{\sinh x}
\end{gathered}
$$

$\sinh x, \tanh x$ and $\operatorname{coth} x$ are all one-to-one functions, so that their domains are not restricted in constracting inverses

Hyperbolic functions

Hyperbolic functions are defined by using the exponential functions

$$
\begin{gathered}
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \\
\tanh x=\frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x=\frac{\cosh x}{\sinh x}
\end{gathered}
$$

$\sinh x, \tanh x$ and $\operatorname{coth} x$ are all one-to-one functions, so that their domains are not restricted in constracting inverses

Example: Sketch the graph of the function $\cosh x$ and determine the domain and range

