Lecture 25

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Taylor series and directional derivative

Lecture 25

(1) Taylor series expansion of $f(x, y)$
(2) Directional derivative of $f(x, y)$

Taylor series

We consider only the quadratic approximation to $f(x, y)$ at (a, b). If $f(x, y)$ has continuous second-order partial derivatives at (a, b), then the Taylor series of f at (a, b) is

$$
\begin{gathered}
f(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+ \\
\frac{1}{2!} f_{x x}(a, b)(x-a)^{2}+\frac{1}{2!} f_{y y}(a, b)(y-b)^{2}+f_{x y}(a, b)(x-a)(y-b)+\ldots
\end{gathered}
$$

Taylor series

We consider only the quadratic approximation to $f(x, y)$ at (a, b). If $f(x, y)$ has continuous second-order partial derivatives at (a, b), then the Taylor series of f at (a, b) is

$$
\begin{gathered}
f(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+ \\
\frac{1}{2!} f_{x x}(a, b)(x-a)^{2}+\frac{1}{2!} f_{y y}(a, b)(y-b)^{2}+f_{x y}(a, b)(x-a)(y-b)+\ldots
\end{gathered}
$$

Example: Find the Taylor series of

$$
f(x, y)=\sin (x y)
$$

at the point $\left(1, \frac{\pi}{2}\right)$ (only quadratic approximation).

Directional derivative

The purpose is to find the rate of change of $f(x, y)$ in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$.

Definition.
The directional derivative of f at (x, y) in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$ is

$$
D_{\overrightarrow{\mathbf{u}}} f=\lim _{h \rightarrow 0} \frac{f\left(x+h u_{1}, y+h u_{2}\right)-f(x, y)}{h}
$$

Directional derivative

The purpose is to find the rate of change of $f(x, y)$ in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$.

Definition.
The directional derivative of f at (x, y) in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$ is

$$
D_{\overrightarrow{\mathbf{u}}} f=\lim _{h \rightarrow 0} \frac{f\left(x+h u_{1}, y+h u_{2}\right)-f(x, y)}{h}
$$

Theorem.
If f is a differentiable function of x and y, then the directional derivative of f at (x, y) is

$$
D_{\overrightarrow{\mathbf{u}}} f=f_{x}(x, y) u_{1}+f_{y}(x, y) u_{2} .
$$

Directional derivative

The purpose is to find the rate of change of $f(x, y)$ in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$.

Definition.
The directional derivative of f at (x, y) in the direction of unit vector $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}\right)$ is

$$
D_{\overrightarrow{\mathbf{u}}} f=\lim _{h \rightarrow 0} \frac{f\left(x+h u_{1}, y+h u_{2}\right)-f(x, y)}{h}
$$

Theorem.
If f is a differentiable function of x and y, then the directional derivative of f at (x, y) is

$$
D_{\overrightarrow{\mathbf{u}}} f=f_{x}(x, y) u_{1}+f_{y}(x, y) u_{2} .
$$

Directional Derivative and Gradient

If we introduce the Gradient Vector

$$
\nabla f=\left(f_{x}(x, y), f_{y}(x, y)\right)
$$

then the directional derivative can be written as

$$
D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}} .
$$

Directional Derivative and Gradient

If we introduce the Gradient Vector

$$
\nabla f=\left(f_{x}(x, y), f_{y}(x, y)\right)
$$

then the directional derivative can be written as

$$
D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}} .
$$

Example:
Find the directional derivative $D_{\overrightarrow{\mathbf{u}}} f$ of the function defined by

$$
f(x, y)=x^{2}+y^{4}
$$

in the direction of the vector

$$
\overrightarrow{\mathbf{v}}=(1,2) .
$$

