Lecture 23

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Tangent plane and chain rules

Lecture 23

(1) Linear approximation of $f(x, y)$
(2) Differential
(3) Chain rules

Linear approximation and tangent plane

Linear approximation of a function f of two variables at a point (a, b) :

$$
f(x, y) \simeq f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linear approximation and tangent plane

Linear approximation of a function f of two variables at a point (a, b) :

$$
f(x, y) \simeq f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

An equation for the tangent plane to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$ is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linear approximation and tangent plane

Linear approximation of a function f of two variables at a point (a, b) :

$$
f(x, y) \simeq f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

An equation for the tangent plane to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$ is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Example: Find an equation of the tangent plane to the paraboloid

$$
z=\frac{x^{2}+y^{2}}{2}
$$

at the point $(1,1,1)$.

Differential and chain rule

For a differentiable function of two variables, $z=f(x, y)$ we define the differential as

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Differential and chain rule

For a differentiable function of two variables, $z=f(x, y)$ we define the differential as

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Example: Find the differential $d V$ for the volume of cone V with base radius r and height h.

Differential and chain rule

For a differentiable function of two variables, $z=f(x, y)$ we define the differential as

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Example: Find the differential $d V$ for the volume of cone V with base radius r and height h.

Chain rule (case 1). If $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are differentiable functions of t, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Differential and chain rule

For a differentiable function of two variables, $z=f(x, y)$ we define the differential as

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Example: Find the differential $d V$ for the volume of cone V with base radius r and height h.

Chain rule (case 1). If $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are differentiable functions of t, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example: Find $\frac{d z}{d t}$ for $z=x^{2}+y^{2}$, where $x=\sin (2 t)$ and $y=\cos (2 t)$.

