Lecture 21

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Distance of the point from the lines and planes

Lecture 21

(1) Symmetric equations for line
(2) Distance from a point to the line and planes

Symmetric equations for line

Recall that symmetric equations for line are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Symmetric equations for line

Recall that symmetric equations for line are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Examples.

1. Find the symmetric equations for the line of intersection L between two planes

$$
x+y+z=1, \quad x+y-z=1
$$

Solution: Since L lies in both planes, it is perpendicular to both of normal vectors. Thus the vector $\overrightarrow{\mathbf{v}}=(a, b, c)$ can be found as a cross product of these normal vectors.

Symmetric equations for line

Recall that symmetric equations for line are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Examples.

1. Find the symmetric equations for the line of intersection L between two planes

$$
x+y+z=1, \quad x+y-z=1
$$

Solution: Since L lies in both planes, it is perpendicular to both of normal vectors. Thus the vector $\overrightarrow{\mathbf{v}}=(a, b, c)$ can be found as a cross product of these normal vectors.
2. Find the angle between two planes

$$
x+y+z=1, \quad x+y-z=1
$$

Distance form the point to the line and plane

Show that the distance $/$ of the point $\overrightarrow{\mathbf{P}}$ from the line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}_{0}}+t \overrightarrow{\mathbf{v}}$ is

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \times \overrightarrow{\mathbf{v}}\right|}{|\overrightarrow{\mathbf{v}}|}
$$

Distance form the point to the line and plane

Show that the distance I of the point $\overrightarrow{\mathbf{P}}$ from the line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}_{0}}+t \overrightarrow{\mathbf{v}}$ is

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \times \overrightarrow{\mathbf{v}}\right|}{|\overrightarrow{\mathbf{v}}|}
$$

Example: Find the distance from the point $\overrightarrow{\mathbf{P}}=(0,1,0)$ to the line $x(t)=2+t, y(t)=1-t, z(t)=t$.

Distance form the point to the line and plane

Show that the distance I of the point $\overrightarrow{\mathbf{P}}$ from the line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}_{0}}+t \overrightarrow{\mathbf{v}}$ is

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \times \overrightarrow{\mathbf{v}}\right|}{|\overrightarrow{\mathbf{v}}|}
$$

Example: Find the distance from the point $\overrightarrow{\mathbf{P}}=(0,1,0)$ to the line $x(t)=2+t, y(t)=1-t, z(t)=t$.

Show that the distance $/$ of the point $\overrightarrow{\mathbf{P}}$ from the plane $\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}_{0}}\right) \cdot \overrightarrow{\mathbf{n}}=0$ can be calculated as

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \cdot \overrightarrow{\mathbf{n}}\right|}{|\overrightarrow{\mathbf{n}}|}
$$

Distance form the point to the line and plane

Show that the distance I of the point $\overrightarrow{\mathbf{P}}$ from the line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}_{0}}+t \overrightarrow{\mathbf{v}}$ is

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \times \overrightarrow{\mathbf{v}}\right|}{|\overrightarrow{\mathbf{v}}|}
$$

Example: Find the distance from the point $\overrightarrow{\mathbf{P}}=(0,1,0)$ to the line $x(t)=2+t, y(t)=1-t, z(t)=t$.

Show that the distance $/$ of the point $\overrightarrow{\mathbf{P}}$ from the plane $\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}_{0}}\right) \cdot \overrightarrow{\mathbf{n}}=0$ can be calculated as

$$
I=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}_{0}}\right) \cdot \overrightarrow{\mathbf{n}}\right|}{|\overrightarrow{\mathbf{n}}|}
$$

Example: Find the distance from the point $\overrightarrow{\mathbf{P}}=(1,1,3)$ to the $x-z$ plane (the plane containing the x and z axes).

