Lecture 2

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Complex plane, functions

Lecture 2

(1) Complex plane and set $|z|=1$.
(2) Functions (domain, range, rigorous notation, etc.)
(3) Inverse functions

Complex plane

The set $|z|=1$

Complex plane

The set $|z|=1$ is the circle of radious 1 with centre at $z=0$.

Complex plane

The set $|z|=1$ is the circle of radious 1 with centre at $z=0$.
Example: Sketch, in the complex plane, where $|z-1|<2$.

Complex plane

The set $|z|=1$ is the circle of radious 1 with centre at $z=0$.
Example: Sketch, in the complex plane, where $|z-1|<2$.
Solution: $|z-1|<2$ can be written as $\sqrt{(a-1)^{2}+b^{2}}<2$ or $(a-1)^{2}+b^{2}<4$. That is a space inside of circle with radius 2 and centre at $z=1$.

Complex plane

The set $|z|=1$ is the circle of radious 1 with centre at $z=0$.
Example: Sketch, in the complex plane, where $|z-1|<2$.
Solution: $|z-1|<2$ can be written as $\sqrt{(a-1)^{2}+b^{2}}<2$ or $(a-1)^{2}+b^{2}<4$. That is a space inside of circle with radius 2 and centre at $z=1$.

Example: Sketch, in the complex plane, where $|z-3+i|<1$.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.
The range of f is the set of all possible values of $f(x)$.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.
The range of f is the set of all possible values of $f(x)$.
The most rigorous notation is

$$
f: x \rightarrow f(x)
$$

where f refers to the function, while $f(x)$ refers to the value at point x.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.
The range of f is the set of all possible values of $f(x)$.
The most rigorous notation is

$$
f: x \rightarrow f(x)
$$

where f refers to the function, while $f(x)$ refers to the value at point x.
Examples. What are the domains and ranges of each of the following functions:
(a) $f(x)=x^{24}$.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.
The range of f is the set of all possible values of $f(x)$.
The most rigorous notation is

$$
f: x \rightarrow f(x)
$$

where f refers to the function, while $f(x)$ refers to the value at point x.
Examples. What are the domains and ranges of each of the following functions:
(a) $f(x)=x^{24}$.
(b). $f(x)=\sqrt{x+5}$.

Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly one element $f(x)$ in a set B.

The set A is called the domain of f.
The range of f is the set of all possible values of $f(x)$.
The most rigorous notation is

$$
f: x \rightarrow f(x)
$$

where f refers to the function, while $f(x)$ refers to the value at point x.
Examples. What are the domains and ranges of each of the following functions:
(a) $f(x)=x^{24}$.
(b). $f(x)=\sqrt{x+5}$.
(c) $g(t)=\frac{5}{t^{2}-t}$.

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

How to find the inverse function of a one-to-one function?

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

How to find the inverse function of a one-to-one function?
Step 1: write $y=f(x)$

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B.
Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

How to find the inverse function of a one-to-one function?
Step 1: write $y=f(x)$
Step 2: solve this equation for x

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B.
Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

How to find the inverse function of a one-to-one function?
Step 1: write $y=f(x)$
Step 2: solve this equation for x
Step 3: to express f^{-1} as a function of x interchanging x and y

Inverse functions

Definition. A function f is called a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition. Let f be a one-to-one function with domain A and range B.
Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad y=f(x)
$$

How to find the inverse function of a one-to-one function?
Step 1: write $y=f(x)$
Step 2: solve this equation for x
Step 3: to express f^{-1} as a function of x interchanging x and y
Example: Find the inverse function of $f(x)=x^{2}+3$ for $x>0$.

