Lecture 2

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Complex plane, functions

- Complex plane and set |z| = 1.
- Functions (domain, range, rigorous notation, etc.)
- Inverse functions

The set |z| = 1

Example: Sketch, in the complex plane, where |z - 1| < 2.

Example: Sketch, in the complex plane, where |z - 1| < 2.

Solution: |z - 1| < 2 can be written as $\sqrt{(a - 1)^2 + b^2} < 2$ or $(a - 1)^2 + b^2 < 4$. That is a space inside of circle with radius 2 and centre at z = 1.

Example: Sketch, in the complex plane, where |z - 1| < 2.

Solution: |z - 1| < 2 can be written as $\sqrt{(a - 1)^2 + b^2} < 2$ or $(a - 1)^2 + b^2 < 4$. That is a space inside of circle with radius 2 and centre at z = 1.

Example: Sketch, in the complex plane, where |z - 3 + i| < 1.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

The range of f is the set of all possible values of f(x).

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

The range of f is the set of all possible values of f(x).

The most rigorous notation is

$$f: x \to f(x),$$

where f refers to the function, while f(x) refers to the value at point x.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

The range of f is the set of all possible values of f(x).

The most rigorous notation is

$$f: x \to f(x),$$

where f refers to the function, while f(x) refers to the value at point x.

Examples. What are the domains and ranges of each of the following functions:

(a) $f(x) = x^{24}$.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

The range of f is the set of all possible values of f(x).

The most rigorous notation is

$$f: x \to f(x),$$

where f refers to the function, while f(x) refers to the value at point x.

Examples. What are the domains and ranges of each of the following functions:

(a)
$$f(x) = x^{24}$$
.

(b).
$$f(x) = \sqrt{x+5}$$
.

Definition. A function f is a rule that assigns to each element x in a set A exactly one element f(x) in a set B.

The set A is called the domain of f.

The range of f is the set of all possible values of f(x).

The most rigorous notation is

$$f: x \to f(x),$$

where f refers to the function, while f(x) refers to the value at point x.

Examples. What are the domains and ranges of each of the following functions:

(a)
$$f(x) = x^{24}$$
.
(b) $f(x) = \sqrt{x+5}$.

(b).
$$f(x) = \sqrt[3]{x} + \sqrt[3]{x}$$

(c) $g(t) = \frac{5}{t^2 - t}$.

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

How to find the inverse function of a one-to-one function?

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

How to find the inverse function of a one-to-one function?

Step 1: write y = f(x)

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

How to find the inverse function of a one-to-one function?

- Step 1: write y = f(x)
- Step 2: solve this equation for x

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

How to find the inverse function of a one-to-one function?

- Step 1: write y = f(x)
- Step 2: solve this equation for x

Step 3: to express f^{-1} as a function of x interchanging x and y

Definition. A function f is called a **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad y = f(x).$$

How to find the inverse function of a one-to-one function?

Step 1: write y = f(x)

Step 2: solve this equation for x

Step 3: to express f^{-1} as a function of x interchanging x and y

Example: Find the inverse function of $f(x) = x^2 + 3$ for x > 0.