Lecture 19

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Test revision + Cross Product

Lecture 19

(1) Test revision
(2) Cross product as determinant
(3) Scalar triple products and volume of parallelepiped

Cross product

We can write the cross product as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

where

$$
\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

Example
Find the cross product of two vectors

$$
\overrightarrow{\mathbf{a}}=(3,2,-1) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=(1,-1,1)
$$

Scalar triple product and volume of parallelepiped

Scalar triple product of the three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is

$$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Scalar triple product and volume of parallelepiped

Scalar triple product of the three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is

$$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

The volume V of the parallelepiped determined by three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is the magnitude of their scalar triple product $V=|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$.

Scalar triple product and volume of parallelepiped

Scalar triple product of the three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is

$$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

The volume V of the parallelepiped determined by three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is the magnitude of their scalar triple product $V=|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$.

Area of triangle $A B C$:

$$
\left.\left.\frac{1}{2} \right\rvert\, \overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}\right)\left|=\frac{1}{2}\right| \overrightarrow{\mathbf{A B}}||\overrightarrow{\mathbf{A C}}| \sin \theta
$$

where $\theta=\angle C A B$

Scalar triple product and volume of parallelepiped

Scalar triple product of the three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is

$$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

The volume V of the parallelepiped determined by three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is the magnitude of their scalar triple product $V=|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$.

Area of triangle $A B C$:

$$
\left.\left.\frac{1}{2} \right\rvert\, \overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}\right)\left|=\frac{1}{2}\right| \overrightarrow{\mathbf{A B}}||\overrightarrow{\mathbf{A C}}| \sin \theta
$$

where $\theta=\angle C A B$
Example. Find the area of the triangle with vertices at $\overrightarrow{\mathbf{A}}=(3,3,3)$, $\overrightarrow{\mathbf{B}}=(1,1,1)$ and $\overrightarrow{\mathbf{C}}=(5,4,3)$.

