Lecture 18

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Cross Product

Lecture 18

(1) Cross product
(2) Basis vectors
(3) Cross product as determinant

Definition

For two vectors

$$
\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=\left(b_{1}, b_{2}, b_{3}\right)
$$

we define the cross product $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Definition

For two vectors

$$
\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=\left(b_{1}, b_{2}, b_{3}\right)
$$

we define the cross product $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Theorem
The $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is orthogonal to both vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. Proof:

Definition

For two vectors

$$
\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=\left(b_{1}, b_{2}, b_{3}\right)
$$

we define the cross product $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Theorem
The $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is orthogonal to both vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.
Proof:
Theorem
If θ is angle between vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

Proof:

Definition

For two vectors

$$
\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=\left(b_{1}, b_{2}, b_{3}\right)
$$

we define the cross product $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Theorem
The $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is orthogonal to both vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.
Proof:

Theorem

If θ is angle between vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

Proof:
Geometric interpretation: the magnitude of $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is the area of the parallelogram having $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ as sides.

Basis vectors

It is convenient to introduce the basis vectors:

$$
\overrightarrow{\mathbf{i}}=(1,0,0), \quad \overrightarrow{\mathbf{j}}=(0,1,0), \quad \overrightarrow{\mathbf{k}}=(0,0,1)
$$

They have length 1 and point in directions of the positive x, y, z axes.

Basis vectors

It is convenient to introduce the basis vectors:

$$
\overrightarrow{\mathbf{i}}=(1,0,0), \quad \overrightarrow{\mathbf{j}}=(0,1,0), \quad \overrightarrow{\mathbf{k}}=(0,0,1)
$$

They have length 1 and point in directions of the positive x, y, z axes. If $\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right)$, then we write

$$
\overrightarrow{\mathbf{a}}=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}
$$

Basis vectors

It is convenient to introduce the basis vectors:

$$
\overrightarrow{\mathbf{i}}=(1,0,0), \quad \overrightarrow{\mathbf{j}}=(0,1,0), \quad \overrightarrow{\mathbf{k}}=(0,0,1)
$$

They have length 1 and point in directions of the positive x, y, z axes.
If $\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right)$, then we write

$$
\overrightarrow{\mathbf{a}}=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}
$$

Unit vector in the direction of the vector $\overrightarrow{\mathbf{a}}$ is a vector with length 1 defined as follows

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}
$$

Basis vectors

It is convenient to introduce the basis vectors:

$$
\overrightarrow{\mathbf{i}}=(1,0,0), \quad \overrightarrow{\mathbf{j}}=(0,1,0), \quad \overrightarrow{\mathbf{k}}=(0,0,1)
$$

They have length 1 and point in directions of the positive x, y, z axes.
If $\overrightarrow{\mathbf{a}}=\left(a_{1}, a_{2}, a_{3}\right)$, then we write

$$
\overrightarrow{\mathbf{a}}=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}
$$

Unit vector in the direction of the vector $\overrightarrow{\mathbf{a}}$ is a vector with length 1 defined as follows

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}
$$

Example: Find the unit vector in the direction of the vector $3 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{k}}$.

Determinants

Determinant of order 2 :

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

Determinants

Determinant of order 2 :

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

Determinant of order 3:

$$
\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=c_{1}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
$$

Cross product

We can write the cross product as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

where

$$
\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

Cross product

We can write the cross product as

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

where

$$
\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

Example
Find the cross product of two vectors

$$
\overrightarrow{\mathbf{a}}=(3,2,-1) \quad \text { and } \quad \overrightarrow{\mathbf{b}}=(1,-1,1)
$$

