Lecture 15

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Length of a Curve and Parametric Equations

- Length of a curve
- Q Curves defined by parametric equations
- Old Calculus with parametric curves

Length of a curve

Let f' be a continuous function on [a, b], then the length of the curve y = f(x) with $a \le x \le b$ is

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} dx.$$

Let f' be a continuous function on [a, b], then the length of the curve y = f(x) with $a \le x \le b$ is

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} dx.$$

Suppose that a curve C is defined by the equation y = f(x). Let s(x) be the distance along C, arclength function...

Then

$$ds = \sqrt{(dx)^2 + (dy)^2}$$

Let f' be a continuous function on [a, b], then the length of the curve y = f(x) with $a \le x \le b$ is

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} dx.$$

Suppose that a curve C is defined by the equation y = f(x). Let s(x) be the distance along C, arclength function...

Then

$$ds = \sqrt{(dx)^2 + (dy)^2}$$

Example: Find the length of the arc of $y = x^{\frac{3}{2}}$ between the points (1,1) and $(2, 2\sqrt{2})$.

$$x = x(t), \quad y = y(t)$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point (x(t), y(t)) varies and traces out a curve C, which is called a parametric curve.

$$x = x(t), \quad y = y(t)$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point (x(t), y(t)) varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x = \cos t$ and $y = \sin t$, $0 \le t \le 2\pi$?

$$x = x(t), \quad y = y(t)$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point (x(t), y(t)) varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x = \cos t$ and $y = \sin t$, $0 \le t \le 2\pi$? The parameter t can be interpreted as the angle.

$$x = x(t), \quad y = y(t)$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point (x(t), y(t)) varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x = \cos t$ and $y = \sin t$, $0 \le t \le 2\pi$? The parameter t can be interpreted as the angle.

Example: Sketch the curve with parametric equations $x = \sin t$ and $y = \sin^8 t$.

Theorem. Let *C* be a curve described by the parametric equations x = x(t), y = y(t), $\alpha \le t \le \beta$, where x'(t) and y'(t) are continuous on $[\alpha, \beta]$ and *C* is traversed exactly once as *t* increases from α to β , then the length of *C* is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

Theorem. Let *C* be a curve described by the parametric equations x = x(t), y = y(t), $\alpha \le t \le \beta$, where x'(t) and y'(t) are continuous on $[\alpha, \beta]$ and *C* is traversed exactly once as *t* increases from α to β , then the length of *C* is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

Example: Find the length of unit circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Theorem. Let *C* be a curve described by the parametric equations x = x(t), y = y(t), $\alpha \le t \le \beta$, where x'(t) and y'(t) are continuous on $[\alpha, \beta]$ and *C* is traversed exactly once as *t* increases from α to β , then the length of *C* is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

Example: Find the length of unit circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.