Lecture 15

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Length of a Curve and Parametric Equations

Lecture 15

(1) Length of a curve
(2) Curves defined by parametric equations
(3) Calculus with parametric curves

Length of a curve

Let f^{\prime} be a continuous function on $[a, b]$, then the length of the curve $y=f(x)$ with $a \leq x \leq b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Length of a curve

Let f^{\prime} be a continuous function on $[a, b]$, then the length of the curve $y=f(x)$ with $a \leq x \leq b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Suppose that a curve C is defined by the equation $y=f(x)$. Let $s(x)$ be the distance along C, arclength function...
Then

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

Length of a curve

Let f^{\prime} be a continuous function on $[a, b]$, then the length of the curve $y=f(x)$ with $a \leq x \leq b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Suppose that a curve C is defined by the equation $y=f(x)$. Let $s(x)$ be the distance along C, arclength function...
Then

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

Example: Find the length of the arc of $y=x^{\frac{3}{2}}$ between the points $(1,1)$ and $(2,2 \sqrt{2})$.

Curves defined by parametric equations

The functions

$$
x=x(t), \quad y=y(t)
$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point $(x(t), y(t))$ varies and traces out a curve C, which is called a parametric curve.

Curves defined by parametric equations

The functions

$$
x=x(t), \quad y=y(t)
$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point $(x(t), y(t))$ varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x=\cos t$ and $y=\sin t, 0 \leq t \leq 2 \pi$?

Curves defined by parametric equations

The functions

$$
x=x(t), \quad y=y(t)
$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point $(x(t), y(t))$ varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x=\cos t$ and $y=\sin t, 0 \leq t \leq 2 \pi$? The parameter t can be interpreted as the angle.

Curves defined by parametric equations

The functions

$$
x=x(t), \quad y=y(t)
$$

are called the parametric equations for the curve. Each value of t (the parameter) determines a point (x, y). As t varies, the point $(x(t), y(t))$ varies and traces out a curve C, which is called a parametric curve.

Example: What curve is represented by the parametric equations $x=\cos t$ and $y=\sin t, 0 \leq t \leq 2 \pi$? The parameter t can be interpreted as the angle.

Example: Sketch the curve with parametric equations $x=\sin t$ and $y=\sin ^{8} t$.

Calculus with parametric curves

Theorem. Let C be a curve described by the parametric equations $x=x(t), y=y(t), \quad \alpha \leq t \leq \beta, \quad$ where $x^{\prime}(t)$ and $y^{\prime}(t)$ are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Calculus with parametric curves

Theorem. Let C be a curve described by the parametric equations $x=x(t), y=y(t), \quad \alpha \leq t \leq \beta, \quad$ where $x^{\prime}(t)$ and $y^{\prime}(t)$ are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example: Find the length of unit circle $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Calculus with parametric curves

Theorem. Let C be a curve described by the parametric equations $x=x(t), y=y(t), \quad \alpha \leq t \leq \beta, \quad$ where $x^{\prime}(t)$ and $y^{\prime}(t)$ are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example: Find the length of unit circle $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

