Lecture 14

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Techniques of Integration

Lecture 14

(1) The area enclosed by the ellipse
(2) Hyperbolic substitutions
(3) Areas between curves

The area enclosed by the ellipse

Example: Find the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The area enclosed by the ellipse

Example: Find the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Because the ellipse is symmetrical, the total area A is four times the area of the first quadrant

Solving the equation for y, we obtain

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

Then

The area enclosed by the ellipse

Example: Find the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Because the ellipse is symmetrical, the total area A is four times the area of the first quadrant

Solving the equation for y, we obtain

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

Then

$$
\frac{A}{4}=\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

To find this integral, we use the substitution: $x=a \sin \theta \ldots$

Hyperbolic substitutions

Example: Find

$$
\int \frac{d x}{\sqrt{x^{2}+a^{2}}}
$$

Let us use the substitution:

$$
x=a \sinh \theta
$$

and the identity:

$$
\cosh ^{2} \theta-\sinh ^{2} \theta=1
$$

Hyperbolic substitutions

Example: Find

$$
\int \frac{d x}{\sqrt{x^{2}+a^{2}}}
$$

Let us use the substitution:

$$
x=a \sinh \theta
$$

and the identity:

$$
\cosh ^{2} \theta-\sinh ^{2} \theta=1
$$

Why hyperbolic?

Areas between curves (Problem Sheet 8, 3)

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and two lines $x=a, x=b$, where f and g are continuous and $g(x) \leq f(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Areas between curves (Problem Sheet 8, 3)

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and two lines $x=a, x=b$, where f and g are continuous and $g(x) \leq f(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: Find the area of the region enclosed by the parabolas

$$
y=x^{2} \quad y=2 x-x^{2}
$$

Areas between curves (Problem Sheet 8, 3)

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and two lines $x=a, x=b$, where f and g are continuous and $g(x) \leq f(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: Find the area of the region enclosed by the parabolas

$$
y=x^{2} \quad y=2 x-x^{2}
$$

Some regions are best treated by regarding x as a function of y.
Example: Find the area of the region enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Areas between curves (Problem Sheet 8, 3)

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and two lines $x=a, x=b$, where f and g are continuous and $g(x) \leq f(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: Find the area of the region enclosed by the parabolas

$$
y=x^{2} \quad y=2 x-x^{2}
$$

Some regions are best treated by regarding x as a function of y.
Example: Find the area of the region enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Points of intersections are $(-1,-2)$ and $(5,4)$.
We should integrate between $y=-2$ and $y=4$

Areas between curves (Problem Sheet 8, 3)

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and two lines $x=a, x=b$, where f and g are continuous and $g(x) \leq f(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: Find the area of the region enclosed by the parabolas

$$
y=x^{2} \quad y=2 x-x^{2}
$$

Some regions are best treated by regarding x as a function of y.
Example: Find the area of the region enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Points of intersections are $(-1,-2)$ and $(5,4)$.
We should integrate between $y=-2$ and $y=4$

