Lecture 12

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Indefinite Integrals and Techniques of Integration

- Indefinite integrals
- Elementary integrals
- Techniques of integration

The notation $\int f(x)dx$ is used for an antiderivative of f and is called an indefinite integral

$$\int f(x)dx = F(x)$$
 means $F'(x) = f(x)$

Example:

$$\int \frac{1}{x} dx = \ln x + C \quad means \quad \frac{d}{dx} (\ln x + C) = \frac{1}{x}$$

Table of indefinite integrals.

Some basic integrals:

f(x)	$\int f(x) \mathrm{d}x$
e^x	$e^x + C$
$x^n \ \text{ for } n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$1/x$ for $x \neq 0$	$\ln x + C$
$a^x \ {\rm or} \ e^{x\ln(a)} \ {\rm for} \ a\neq 1, \ a>0$	$\frac{a^x}{\ln(a)} + C$
e^{ax} for $a \neq 0$	$\frac{e^{ax}}{a} + C$
$\cos(ax)$ for $a \neq 0$	$\frac{1}{a}\sin(ax) + C$
$\sin(ax)$ for $a \neq 0$	$-\frac{1}{a}\cos(ax) + C$
$\frac{1}{x^2 + a^2} \text{for } a \neq 0$	$\frac{1}{a}\tan^{-1}(x/a) + C$
$\frac{1}{a^2-x^2} \text{for } x < a , \ a\neq 0$	$\frac{1}{a} \tanh^{-1}(x/a) + C$
$\frac{1}{x^2 - a^2}$ for $ x > a , a \neq 0$	$-\frac{1}{a} \coth^{-1}(x/a) + C$
$\frac{1}{x^2-a^2} \ \ \text{for} \ x \neq a , \ a\neq 0$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right + C$
$\frac{1}{\sqrt{x^2 + a^2}}$ for $a \neq 0$	$\sinh^{-1}(x/a) + C$
$\frac{1}{\sqrt{a^2 - x^2}} \ {\rm for} \ x < a, \ a > 0$	$\sin^{-1}(x/a) + C$
$\frac{1}{\sqrt{x^2 - a^2}}$ for $x > a, a > 0$	$\cosh^{-1}(x/a) + C$
$\frac{1}{\sqrt{x^2 - a^2}}$ for $x < -a, a > 0$	$-\cosh^{-1}(-x/a) + C$

Sergei Fedotov (University of Manchester)

MATH10131

Techniques of integration

The Substitution Rule. Let u = g(x) be a differentiable function with range D and f be continuous on D, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

This is the integral version of the Chain Rule.

Techniques of integration

The Substitution Rule. Let u = g(x) be a differentiable function with range D and f be continuous on D, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

This is the integral version of the Chain Rule.

Proof: Let F be an antiderivative of f: F'(x) = f(x), then

$$\int F'(g(x))g'(x)dx = F(g(x)) + C.$$

This is because of the Chain Rule:

$$\frac{d}{dx}[F(g(x))] = F'(g(x))g'(x).$$

Let us make the change of variables or substitution as u = g(x), then....

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$\int 6x^5 \cos\left(x^6 + 34\right) \, dx.$$

We make the substitution $u = x^6 + 34$

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$\int 6x^5 \cos\left(x^6 + 34\right) \, dx.$$

We make the substitution $u = x^6 + 34$

Note that at the final stage we have to return to the original variable x.

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$\int 6x^5 \cos\left(x^6 + 34\right) \, dx.$$

We make the substitution $u = x^6 + 34$

Note that at the final stage we have to return to the original variable x.

Example: Find

$$\int \sqrt{1+e^x}e^x dx.$$

Let $u = 1 + e^x$, then...

The Substitution Rule for Definite Integrals . Let g'(x) be a continuous function on the closed interval [a, b] and f(x) be continuous function on the range of u = g(x), then

$$\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

The Substitution Rule for Definite Integrals . Let g'(x) be a continuous function on the closed interval [a, b] and f(x) be continuous function on the range of u = g(x), then

$$\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Example: Find

$$\int_0^4 \sqrt{2x+1} dx.$$