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© Indefinite integrals
© Elementary integrals

© Techniques of integration
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Indefinite integrals

The notation [ f(x)dx is used for an antiderivative of f and is called an
indefinite integral

/f(x)dx = F(x) means F'(x)=f(x)
Example:

1 1
/—dx:lnx+C means i(In><+C):—
X dx X
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Table of indefinite integrals.

Some basic integrals:
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Techniques of integration

The Substitution Rule. Let u = g(x) be a differentiable function with
range D and f be continuous on D, then

[ fletg (de = [ Flu)d

This is the integral version of the Chain Rule.
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Techniques of integration

The Substitution Rule. Let u = g(x) be a differentiable function with
range D and f be continuous on D, then

[ fletg (de = [ Flu)d
This is the integral version of the Chain Rule.

Proof: Let F be an antiderivative of f: F’(x) = f(x), then

[ Frletg ) = Flg()) + C.
This is because of the Chain Rule:
2 [F(s60)] = F(800)8 ()

Let us make the change of variables or substitution as u = g(x), then....
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The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively

complicated integral by a simple integral by using the change of variables
x — u. The new variable v is a function of x.

Example: Find
/ 6x° cos (x6 + 34) dx.

We make the substitution v = x% + 34
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The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively

complicated integral by a simple integral by using the change of variables
x — u. The new variable v is a function of x.

Example: Find
/ 6x° cos (x6 + 34) dx.
We make the substitution v = x% + 34

Note that at the final stage we have to return to the original variable x.
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The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively
complicated integral by a simple integral by using the change of variables
x — u. The new variable v is a function of x.

Example: Find
/ 6x° cos (x6 + 34) dx.

We make the substitution u = x% + 34
Note that at the final stage we have to return to the original variable x.

Example: Find
/\/1 + eXe*dx.

Let u =1+ €¥, then...
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Substitution Rule for Definite Integrals

The Substitution Rule for Definite Integrals . Let g’(x) be a continuous

function on the closed interval [a, b] and f(x) be continuous function on
the range of u = g(x), then

b g(b)
/ f(g(X))g’(x)dx/() f(u)du.
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Substitution Rule for Definite Integrals

The Substitution Rule for Definite Integrals . Let g’(x) be a continuous

function on the closed interval [a, b] and f(x) be continuous function on
the range of u = g(x), then

b g(b)
/ f(g(X))g’(x)dx/() f(u)du.

Example: Find
4
/ V2x + 1dx.
0
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