Lecture 12

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Indefinite Integrals and Techniques of Integration

Lecture 12

(1) Indefinite integrals
(2) Elementary integrals
(3) Techniques of integration

Indefinite integrals

The notation $\int f(x) d x$ is used for an antiderivative of f and is called an indefinite integral

$$
\int f(x) d x=F(x) \quad \text { means } \quad F^{\prime}(x)=f(x)
$$

Example:

$$
\int \frac{1}{x} d x=\ln x+C \quad \text { means } \quad \frac{d}{d x}(\ln x+C)=\frac{1}{x}
$$

Table of indefinite integrals.

Some basic integrals:

$f(x)$	$\int f(x) \mathrm{d} x$
e^{x}	$e^{x}+C$
x^{n} for $n \neq-1$	$\frac{x^{n+1}}{n+1}+C$
$1 / x$ for $x \neq 0$	$\ln \|x\|+C$
a^{x} or $e^{x \ln (a)}$ for $a \neq 1, a>0$	$\frac{a^{x}}{\ln (a)}+C$
$e^{a x}$ for $a \neq 0$	$\frac{e^{a x}}{a}+C$
$\cos (a x)$ for $a \neq 0$	$\frac{1}{a} \sin (a x)+C$
$\sin (a x)$ for $a \neq 0$	$-\frac{1}{a} \cos (a x)+C$
$\frac{1}{x^{2}+a^{2}}$ for $a \neq 0$	$\frac{1}{a} \tan ^{-1}(x / a)+C$
$\frac{1}{a^{2}-x^{2}}$ for $\|x\|<\|a\|, a \neq 0$	$\frac{1}{a} \tanh ^{-1}(x / a)+C$
$\frac{1}{x^{2}-a^{2}}$ for $\|x\|>\|a\|, a \neq 0$	$-\frac{1}{a} \operatorname{coth}^{-1}(x / a)+C$
$\frac{1}{x^{2}-a^{2}}$ for $\|x\| \neq\|a\|, a \neq 0$	$\frac{1}{2 a} \ln \left\|\frac{x-a}{x+a}\right\|+C$
$\frac{1}{\sqrt{x^{2}+a^{2}}}$ for $a \neq 0$	$\sinh ^{-1}(x / a)+C$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$ for $\|x\|<a, a>0$	$\sin ^{-1}(x / a)+C$
$\frac{1}{\sqrt{x^{2}-a^{2}}}$ for $x>a, a>0$	$\cosh ^{-1}(x / a)+C$
$\frac{1}{\sqrt{x^{2}-a^{2}}}$ for $x<-a, a>0$	$-\cosh ^{-1}(-x / a)+C$

Techniques of integration

The Substitution Rule. Let $u=g(x)$ be a differentiable function with range D and f be continuous on D, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is the integral version of the Chain Rule.

Techniques of integration

The Substitution Rule. Let $u=g(x)$ be a differentiable function with range D and f be continuous on D, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is the integral version of the Chain Rule.
Proof: Let F be an antiderivative of $f: F^{\prime}(x)=f(x)$, then

$$
\int F^{\prime}(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

This is because of the Chain Rule:

$$
\frac{d}{d x}[F(g(x))]=F^{\prime}(g(x)) g^{\prime}(x)
$$

Let us make the change of variables or substitution as $u=g(x)$, then....

The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$
\int 6 x^{5} \cos \left(x^{6}+34\right) d x
$$

We make the substitution $u=x^{6}+34$

The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$
\int 6 x^{5} \cos \left(x^{6}+34\right) d x
$$

We make the substitution $u=x^{6}+34$
Note that at the final stage we have to return to the original variable x.

The Substitution Rule Examples

The main idea behind the Substitution Rule is to replace a relatively complicated integral by a simple integral by using the change of variables $x \rightarrow u$. The new variable u is a function of x.

Example: Find

$$
\int 6 x^{5} \cos \left(x^{6}+34\right) d x
$$

We make the substitution $u=x^{6}+34$
Note that at the final stage we have to return to the original variable x.
Example: Find

$$
\int \sqrt{1+e^{x}} e^{x} d x
$$

Let $u=1+e^{x}$, then...

Substitution Rule for Definite Integrals

The Substitution Rule for Definite Integrals. Let $g^{\prime}(x)$ be a continuous function on the closed interval $[a, b]$ and $f(x)$ be continuous function on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Substitution Rule for Definite Integrals

The Substitution Rule for Definite Integrals. Let $g^{\prime}(x)$ be a continuous function on the closed interval $[a, b]$ and $f(x)$ be continuous function on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

Example: Find

$$
\int_{0}^{4} \sqrt{2 x+1} d x
$$

