Lecture 11

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Integrals

Lecture 11

(1) The area problem
(2) Definition of a definite integral
(3) The fundamental theorem of calculus

The area problem

Let us find the area under the graph of $y=f(x)$ between $x=a$ and $x=b$:

The area problem

Let us find the area under the graph of $y=f(x)$ between $x=a$ and $x=b$:

In the graph, a "typical rectangle" is shown with width Δx and height y. Its area is $y \Delta x$. If we add all these typical rectangles, starting from a and finishing at b, the area is approximately:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Now if we let $\Delta x \rightarrow 0$, we can find the exact area.

Definition of a definite integral

Let f be a function which is continuous on the closed interval $[a, b]$. We divide this interval into n subintervals of equal width $\Delta x=(b-a) / n$.

Let x_{i} be the endpoints of these subintervals and x_{i}^{*} be a sample point in the i th subinterval $\left[x_{i-1}, x_{i}\right]$.

The definite integral of f from a to b is defined as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If this limit exists, we say that f is integrable on interval $[a, b]$.

The Fundamental Theorem of Calculus

First Fundamental Theorem of Calculus.

Let $f(x)$ be a continuous real-valued function defined on a closed interval $[a, b]$. Let g be the function defined, for all \times in $[a, b]$, by

$$
g(x)=\int_{a}^{x} f(z) d z
$$

Then g is continuous on $[a, b]$, differentiable on the open interval (a, b), and $g^{\prime}(x)=f(x)$.

The Fundamental Theorem of Calculus

First Fundamental Theorem of Calculus.

Let $f(x)$ be a continuous real-valued function defined on a closed interval $[a, b]$. Let g be the function defined, for all \times in $[a, b]$, by

$$
g(x)=\int_{a}^{x} f(z) d z
$$

Then g is continuous on $[a, b]$, differentiable on the open interval (a, b), and $g^{\prime}(x)=f(x)$.

Second Fundamental Theorem of Calculus

Let $f(x)$ be a continuous real-valued function defined on a closed interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is $F^{\prime}(x)=f(x)$. This theorem is employed to compute the definite integral of a function $f(x)$ for which an

Examples

Evaluate the following definite integrals

$$
\int_{1}^{2} \frac{1}{x} d x \quad \int_{-2}^{2} \frac{1}{x^{2}} d x
$$

