Lecture 10

Lecturer: Prof. Sergei Fedotov

10131 - Calculus and Vectors

Euler's formula

Lecture 10

(1) Euler's formula
(2) Polar form of complex numbers

Euler's formula

Show that the Maclaurin series for $\sin x$ is

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

for all $x \in \mathbb{R}$

Euler's formula

Show that the Maclaurin series for $\sin x$ is

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

for all $x \in \mathbb{R}$
The Maclaurin series for $\cos x$:

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

for all $x \in \mathbb{R}$

Euler's formula

Show that the Maclaurin series for $\sin x$ is

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

for all $x \in \mathbb{R}$
The Maclaurin series for $\cos x$:

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

for all $x \in \mathbb{R}$
Euler formula: Let us use the Maclaurin series expansion for $e^{i x}$
$e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\ldots=1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}$
Then....

Polar form of complex numbers

Any complex number $z=a+b i$ can be represented by polar coordinates (r, θ) as $z=a+b i=r \cos \theta+r \sin \theta i$. Thus we can write

$$
z=r(\cos \theta+i \sin \theta)
$$

where $r=|z|=\sqrt{a^{2}+b^{2}}$ and $\tan \theta=\frac{b}{a}$. The angle θ is called the argument of z. By using Euler's formula we can write

$$
z=r e^{i \theta}
$$

Polar form of complex numbers

Any complex number $z=a+b i$ can be represented by polar coordinates (r, θ) as $z=a+b i=r \cos \theta+r \sin \theta i$. Thus we can write

$$
z=r(\cos \theta+i \sin \theta)
$$

where $r=|z|=\sqrt{a^{2}+b^{2}}$ and $\tan \theta=\frac{b}{a}$. The angle θ is called the argument of z. By using Euler's formula we can write

$$
z=r e^{i \theta}
$$

Example: Write $z=1+i$ and $z=\sqrt{3}-i$ in the polar form and $r e^{i \theta}$

Taylor series

Example: Find the first two nonzero terms in the Taylor series for

$$
f(x)=\sin x
$$

at $a=\pi$

