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Contents

The second half of this short course will focus on algorithms in
Bayesian inverse problems, in particular algorithms for computing
expectations with respect to the posterior distribution.

The emphasis will be on convergence properties of the algorithms
rather than implementation.

The first lecture will focus on standard Monte Carlo methods:
sampling methods based on independent and identically distributed
(i.i.d.) samples.

The second lecture will focus on Markov chain Monte Carlo
methods: sampling methods based on correlated and approximate
samples.
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Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo ’04] [Stuart ’10]

We are interested in the following inverse problem: given observational
data y ∈ RJ , determine model parameter u ∈ Rn such that

y = G(u) + η,

where η ∼ N(0,Γ) represents observational noise.

In the Bayesian approach, the solution to the inverse problem is the
posterior distribution µy on Rn, given by

dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u; y)

)
,

where Z = Eµ0
(

exp
(
− Φ(·; y)

))
and Φ(u; y) = 1

2‖y − G(u)‖2Γ.
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Bayesian Inverse Problems
Computing expectations

We will here focus on computing the expected value of a quantity of
interest φ(u), φ : Rn → R, under the posterior distribution µy.

In most cases, we do not have a closed form expression for the
posterior distribution µy, since the normalising constant Z is not
known explicitly.
(Exception: forward map G linear and prior µ0 Gaussian ⇒ posterior
µy also Gaussian.)

However, the prior distribution is known in closed form, and
furthermore often has a simple structure (e.g. multivariate Gaussian
or independent uniform).
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Bayesian Inverse Problems
Computing Expectations

Using Bayes’ Theorem, we can write Eµy [φ] as

Eµy [φ] =

∫
Rn
φ(u) dµy(u)

=

∫
Rn
φ(u)

dµy

dµ0
(u) dµ0(u)

=
1

Z

∫
Rn
φ(u) exp[−Φ(u; y)] dµ0(u)

=
Eµ0 [φ exp[−Φ(·; y)]]

Eµ0 [exp[−Φ(·; y)]]
.

We have rewritten the posterior expectation as a ratio of two prior
expectations.

We will now use Monte Carlo methods to estimate the two prior
expectations.
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Standard Monte Carlo Method
Sampling methods and random number generators

The standard Monte Carlo method is a sampling method.

To estimate Eµ0 [f ], for some f : Rn → R, sampling methods use a
sample average:

Eµ0 [f ] =

∫
Rn
f(u) dµ0(u) ≈

N∑
i=1

wi f(u(i)),

where the choice of samples {u(i)}Ni=1 and weights {wi}Ni=1

determines the sampling method.

In standard Monte Carlo, wi = 1
N and {u(i)}Ni=1 is a sequence of

independent and identically distributed (i.i.d.) random variables:
{u(i)}Ni=1 are mutually independent and u(i) ∼ µ0, for all 1 ≤ i ≤ N .

Since µ0 is fully known and simple, i.i.d. samples from µ0 can be
generated on a computer using a (pseudo-)random number generator.
For more details, see [Robert, Casella ’99], [L’Ecuyer ’11].
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Standard Monte Carlo Method
Definition of Monte Carlo Estimator

In the Bayesian inverse problem, we want to compute

Eµy [φ] =
Eµ0 [φ exp[−Φ(·; y)]]

Eµ0 [exp[−Φ(·; y)]]
.

Using Monte Carlo, we approximate this by

Eµ0 [φ exp[−Φ(·; y)]] ≈ 1

N

N∑
i=1

φ(u(i)) exp[−Φ(u(i); y)],

Eµ0 [exp[−Φ(·; y)]] ≈ 1

N

N∑
i=1

exp[−Φ(u(i); y)],

where {u(i)}Ni=1 is an i.i.d. sequence distributed according to µ0.

(It is also possible to use different samples in the two estimators.)
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Standard Monte Carlo Method
Definition of Monte Carlo Estimator

In applications, it is usually not possible to evaluate φ and Φ exactly,
since this involves the solution of the forward problem.

I In the groundwater flow example, it involves the solution of a PDE.

Denote by φh and Φh numerical approximations to φ and Φ,
respectively, where h is the step length of the numerical method.

The computable Monte Carlo ratio estimator of Eµy [φ] is then

Eµy [φ] ≈
1
N

∑N
i=1 φh(u(i)) exp[−Φh(u(i); y)]
1
N

∑N
i=1 exp[−Φh(u(i); y)]

:=
Q̂MC
h,N

ẐMC
h,N

.

There are two sources of error in the Monte Carlo ratio estimator:

I the sampling error due to using Monte Carlo,

I the discretisation error due to the numerical approximation.
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Convergence of Standard Monte Carlo Method
Expected Value and Variance [Billingsley ’95]

Consider a general Monte Carlo estimator ÊMC
h,N = 1

N

∑N
i=1 fh(u(i)), with

{u(i)}Ni=1 an i.i.d. sequence distributed as µ0.

Lemma (Expected Value and Variance)

E[ÊMC
h,N ] = Eµ0 [fh], V[ÊMC

h,N ] =
Vµ0 [fh]

N
.

Proof: Since {u(i)}Ni=1 is an i.i.d. sequence, we have

E
[ 1

N

N∑
i=1

fh(u(i))
]

=
1

N
E
[ N∑
i=1

fh(u(i))
]

=
1

N

N∑
i=1

Eµ0 [fh] = Eµ0 [fh],

and

V
[ 1

N

N∑
i=1

fh(u(i))
]

=
1

N2
V
[ N∑
i=1

fh(u(i))
]

=
1

N2

N∑
i=1

Vµ0 [fh] =
1

N
Vµ0 [fh].
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Convergence of Standard Monte Carlo Method
Central Limit Theorem [Billingsley ’95]

Theorem (Central Limit Theorem)

If Vµ0 [fh] ∈ (0,∞), then as N →∞ we have

ÊMC
h,N

D−→ N (Eµ0 [fh],
Vµ0 [fh]

N
).

Here,
D−→ denotes convergence in distribution, i.e. point-wise convergence

of the distribution function: with X ∼ N (Eµ0 [fh],
Vµ0 [fh]
N ),

Pr[ ÊMC
h,N ≤ x ]→ Pr[X ≤ x ], ∀x ∈ R.

The Central Limit Theorem crucially uses the fact that ÊMC
h,N is based on

i.i.d. samples. If this is not the case, we require stronger assumptions
and/or obtain a different limiting distribution.
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Convergence of Standard Monte Carlo Method
Strong Law of Large Numbers [Billingsley ’95]

Theorem (Strong Law of Large Numbers)

If Eµ0 [|fh|] <∞, then as N →∞ we have

ÊMC
h,N

a.s.−−→ Eµ0 [fh].

Here,
a.s.−−→ denotes almost sure convergence, i.e. convergence with

probability 1:
Pr
[
ÊMC
h,N → Eµ0 [fh]

]
= 1.

The Strong Law of Large Numbers crucially uses the fact that ÊMC
h,N is

based on i.i.d. samples. If this is not the case, we may require stronger
assumptions
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Convergence of Standard Monte Carlo Method
Mean Square Error [Billingsley ’95]

A measure of accuracy of ÊMC
h,N = 1

N

∑N
i=1 fh(u(i)) as an estimator of

Eµ0 [f ] is given by the mean square error (MSE):

e(ÊMC
h,N )2 := E[(ÊMC

h,N − Eµ0 [f ])2].

Theorem (Mean Square Error)

e(ÊMC
h,N )2 =

Vµ0 [fh]

N︸ ︷︷ ︸
sampling error

+ (Eµ0 [fh − f ])2︸ ︷︷ ︸
numerical error

.

Proof: Since E[ÊMC
h,N ] = Eµ0 [fh] and V[ÊMC

h,N ] =
Vµ0 [fh]
N , we have

e(ÊMC
h,N )2 = E

[(
ÊMC
h,N − Eµ0 [fh] + Eµ0 [fh]− Eµ0 [f ]

)2]
= E

[(
ÊMC
h,N − Eµ0 [fh]

)2]
+ E

[(
Eµ0 [fh − f ]

)2]
=

Vµ0 [fh]

N
+ (Eµ0 [fh − f ])2.
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Convergence of Standard Monte Carlo Method
Mean Square Error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT ’16]

Recall: Eµy [φ] =
Eµ0 [φ exp[−Φ(·;y)]]

Eµ0 [exp[−Φ(·;y)]] =: QZ ≈
Q̂MC
h,N

ẐMC
h,N

.

We know how to bound the MSEs of the individual estimators Q̂MC
h,N

and ẐMC
h,N . Can we bound the MSE of Q̂MC

h,N/Ẑ
MC
h,N?

Rearranging the MSE and applying the triangle inequality, we have

e
(Q̂MC

h,N

ẐMC
h,N

)2
= E

[(Q
Z
−
Q̂MC
h,N

ẐMC
h,N

)2]
≤ 2

Z2

(
E
[
(Q− Q̂MC

h,N )2
]

+ E
[
(Q̂MC

h,N/Ẑ
MC
h,N )2(Z − ẐMC

h,N )2
])
.
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Convergence of Standard Monte Carlo Method
Mean Square Error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT ’16]

e
(
Q̂MC
h,N

ẐMC
h,N

)2
≤ 2

Z2

(
E
[
(Q− Q̂MC

h,N )2
]

+ E
[
(Q̂MC

h,N/Ẑ
MC
h,N )2(Z − ẐMC

h,N )2
])

Theorem (Hölder’s Inequality)

For any random variables X,Y and p, q ∈ [1,∞], with p−1 + q−1 = 1,

E[|XY |] ≤ E[|X|p]1/p E[|Y |q]1/q.

Here, E[|X|∞]1/∞ := ess supX.

If ess sup{u(i)}Ni=1
(Q̂MC

h,N/Ẑ
MC
h,N )2 ≤ C, for a constant C independent of N

and h, then the MSE of Q̂MC
h,N/Ẑ

MC
h,N can be bounded in terms of the

individual MSEs of Q̂MC
h,N and ẐMC

h,N .

For more details, see [Scheichl, Stuart, ALT ’16].
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Multilevel Monte Carlo Method
Motivation

The standard Monte Carlo estimator ÊMC
h,N = 1

N

∑N
i=1 fh(u(i)) of Eµ0 [f ]

has mean square error

e(ÊMC
h,N )2 =

Vµ0 [fh]

N
+ (Eµ0 [fh − f ])2.

To make e(ÊMC
h,N )2, small we need to

choose a large number of samples N ,

choose a small step length h in our numerical approximation.

Since the cost of sampling methods grows as

cost per sample× number of samples

the cost of standard Monte Carlo can be prohibitively large in applications.
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Multilevel Monte Carlo Method
Definition of Multilevel Monte Carlo Estimator [Giles, ’08], [Heinrich ’01]

The multilevel method works with a decreasing sequence of step lengths
{h`}L`=0, where hL gives the most accurate numerical approximation.

Linearity of expectation gives us

Eµ0 [fhL ] = Eµ0 [fh0 ] +

L∑
`=1

Eµ0
[
fh` − fh`−1

]
.

The multilevel Monte Carlo (MLMC) estimator

ÊML
{M`,N`} =

1

N0

N0∑
i=1

fh0(u(i,0)) +

L∑
`=1

1

N`

N∑̀
i=1

fh`(u
(i,`))− fh`−1

(u(i,`)),

is a sum of L+ 1 independent MC estimators.
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Convergence of Multilevel Monte Carlo Method
Expected Value and Variance [Giles, ’08]

ÊML
{M`,N`} =

1

N0

N0∑
i=1

fh0(u(i,0)) +

L∑
`=1

1

N`

N∑̀
i=1

fh`(u
(i,`))− fh`−1

(u(i,`))

Lemma (Expected Value and Variance)

E[ÊML
{M`,N`}] = Eµ0 [fhL ], V[ÊML

{M`,N`}] =
V[fh0 ]

N0
+

L∑
`=1

V[fh` − fh`−1
]

N`
.

Proof: Uses the linearity of expectation and the fact the L+ 1 estimators
are independent, together with results for standard Monte Carlo.
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Convergence of Multilevel Monte Carlo Method
Central Limit Theorem and Strong Law of Large Numbers [Billingsley ’95]

Theorem (Central Limit Theorem)

If σ2
ML := V[fh0 ]N−1

0 +
∑L

`=1 V[fh` − fh`−1
]N−1

` ∈ (0,∞) and
{V[fh` − fh`−1

]}L`=1 satisfies a Lindeberg condition, then as {N`}L`=0 →∞
we have

ÊML
{M`,N`}

D−→ N (Eµ0 [fhL ], σ2
ML).

Proof: Requires Lindeberg condition to deal with sum of L+ 1 Monte
Carlo estimators. For details, see [Collier et al ’15] and [Billingsley ’95].

Theorem (Strong Law of Large Numbers)

If Eµ0 [|fh` |] <∞ for 0 ≤ ` ≤ L, then as {N`}L`=0 →∞ we have

ÊML
{M`,N`}

a.s.−−→ Eµ0 [fhL ].

Proof: Follows from the linearity of a.s. convergence, together with
results for standard Monte Carlo.
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Convergence of Multilevel Monte Carlo Method
Mean Square Error of Multilevel Monte Carlo [Giles, ’08]

Theorem (Mean Square Error)

e(ÊML
{M`,N`})

2 =
V[fh0 ]

N0
+

L∑
`=1

V[fh` − fh`−1
]

N`︸ ︷︷ ︸
sampling error

+ (Eµ0 [fhL − f ])2︸ ︷︷ ︸
numerical error

.

Proof: The derivation is identical to the standard Monte Carlo case.

Thus,

N0 still needs to be large, but samples are much cheaper to obtain on
coarse grid.

N` (` > 0) much smaller, since V[fh` − fh`−1
]→ 0 as h` → 0.
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Convergence of Multilevel Monte Carlo Method
Numerical Comparison: Mean Square Error

We compute Eµy [φ] for a typical model problem in groundwater flow,
using a ratio of standard Monte Carlo and multilevel Monte Carlo
estimators.

Computational Cost is computed as number of FLOPS required.
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[Scheichl, Stuart, ALT ’16]
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