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Contents

@ The second half of this short course will focus on algorithms in
Bayesian inverse problems, in particular algorithms for computing
expectations with respect to the posterior distribution.

@ The emphasis will be on convergence properties of the algorithms
rather than implementation.

@ The first lecture will focus on standard Monte Carlo methods:
sampling methods based on independent and identically distributed
(i.i.d.) samples.

@ The second lecture will focus on Markov chain Monte Carlo

methods: sampling methods based on correlated and approximate
samples.
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Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo '04] [Stuart '10]

@ We are interested in the following inverse problem: given observational
data y € R/, determine model parameter u € R™ such that

y=G(u)+n,
where 7 ~ N(0,T") represents observational noise.

@ In the Bayesian approach, the solution to the inverse problem is the
posterior distribution p¥ on R™, given by

du?
dZo( u) = %exp(—@(wy)),

where Z = By, (exp (— @(4y)) ) and ®(usy) = Hlly — ()3
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Bayesian Inverse Problems

Computing expectations

@ We will here focus on computing the expected value of a quantity of
interest ¢(u), ¢ : R™ — R, under the posterior distribution pY.

@ In most cases, we do not have a closed form expression for the
posterior distribution 1Y, since the normalising constant Z is not
known explicitly.

(Exception: forward map G linear and prior ;9 Gaussian = posterior
pY also Gaussian.)

@ However, the prior distribution is known in closed form, and
furthermore often has a simple structure (e.g. multivariate Gaussian
or independent uniform).
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Bayesian Inverse Problems

Computing Expectations

Using Bayes' Theorem, we can write E,y[¢] as

Eulo] = - ¢(u) dp? (u)
apy
= - q&(u)d—uo(u) dpo(u)
= % ¢(u) exp[—P(u; y)] dpo(u)
Rn
_ Eplpexp[=2(59)]]
Epolexp[—2(5y)]]

We have rewritten the posterior expectation as a ratio of two prior
expectations.

We will now use Monte Carlo methods to estimate the two prior
expectations.
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Standard Monte Carlo Method

Sampling methods and random number generators

@ The standard Monte Carlo method is a sampling method.

@ To estimate E,, [f], for some f : R™ — R, sampling methods use a

sample average:
N

Euolf] = i flu) dup(u) ~ Zwi f(u(i)),
' i=1
where the choice of samples {u(}}Y; and weights {w;}}\,
determines the sampling method.

e In standard Monte Carlo, w; = + and {uN s a sequence of
independent and identically distributed (i.i.d.) random variables:
{u(i)}ij\il are mutually independent and u® ~ 1o, forall 1 <i < N.

@ Since pyg is fully known and simple, i.i.d. samples from g can be
generated on a computer using a (pseudo-)random number generator.
For more details, see [Robert, Casella '99], [L'Ecuyer '11].
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Standard Monte Carlo Method

Definition of Monte Carlo Estimator
@ In the Bayesian inverse problem, we want to compute

Epuo[¢ exp[=2(:;y)]]

Ewld) = E, ool 0050

@ Using Monte Carlo, we approximate this by

Eyo (¢ exp[—@ Z@b @) exp[-@(ul; y)],
1 & .
Eplexp[-(sy)]] = > exp[-o(ul;y)),
=1

where {u(W} is an i.i.d. sequence distributed according to 1.

(It is also possible to use different samples in the two estimators.)
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Standard Monte Carlo Method

Definition of Monte Carlo Estimator

@ In applications, it is usually not possible to evaluate ¢ and ® exactly,
since this involves the solution of the forward problem.

» In the groundwater flow example, it involves the solution of a PDE.

@ Denote by ¢;, and ®; numerical approximations to ¢ and @,
respectively, where h is the step length of the numerical method.

@ The computable Monte Carlo ratio estimator of E,;s [¢] is then

& iy Sn(u?) exp[~@p(uVsy)] QUK
& Sy exp[—® (uld; )] v

E,w (6] =

@ There are two sources of error in the Monte Carlo ratio estimator:

» the sampling error due to using Monte Carlo,
» the discretisation error due to the numerical approximation.
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Convergence of Standard Monte Carlo Method
Expected Value and Variance [Billingsley '95]

Consider a general Monte Carlo estimator E}LVI](\? =+ Zf\il Fr(u®), with

{u®}N | anii.d. sequence distributed as 1.

Lemma (Expected Value and Variance)

E[ENS] = Eulfal,  VIENS] = Vﬂ;\[[f nl

Proof: Since {u(V}Y  is ani.i.d. sequence, we have

1 & . . 4 1 &
B[ )] = TE[ X )] = + 3 Bl = Bl
=1 =1 =1

and

N N
[ )] = ¥[S0 = o 3 Vil = il
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Convergence of Standard Monte Carlo Method
Central Limit Theorem [Billingsley '95]

Theorem (Central Limit Theorem)
IfV [ fn] € (0,00), then as N — oo we have

BYS By N (B[], Lot

Here, LD, denotes convergence in distribution, i.e. point-wise convergence
of the distribution function: with X ~ A/(E,, [f4], —2al"]),

PrE){ <z] > Pr[X <z], VzeR

The Central Limit Theorem crucially uses the fact that E}}IJS is based on
i.i.d. samples. If this is not the case, we require stronger assumptions
and/or obtain a different limiting distribution.
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Convergence of Standard Monte Carlo Method
Strong Law of Large Numbers [Billingsley '95]

Theorem (Strong Law of Large Numbers)
If Eu[| fr]] < oo, then as N — oo we have

EMC - No[fh]'

Here, “* denotes almost sure convergence, i.e. convergence with
probability 1:
Pr[ENN — Eyolfa)] =

The Strong Law of Large Numbers crucially uses the fact that EI\N is
based on i.i.d. samples. If this is not the case, we may require stronger
assumptions
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Convergence of Standard Monte Carlo Method
Mean Square Error [Billingsley '95]

A measure of accuracy of E}}Iﬁ = L3N fru(u?) as an estimator of
[E,,,[f] is given by the mean square error (MSE):

e(ENN)? == E[(ENY — By [f])°).
Theorem (Mean Square Error)
(B2 = Yoty i 1)
—_——

—

. numerical error
sampling error

Proof: Since ]E[E%g] =E,,[fn] and V[E%g] = V“OT[M, we have

e(BN5)? = B[ (NS — By fn] + Euolfa) = Euolf)’]
= E[(BYS — Epulf))°] + B[ Bralfn — 1)°]

Yoo bl @l 112
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Convergence of Standard Monte Carlo Method

Mean Square Error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT "16]

. Epql¢ exp[—@(59)]] _ . N_@M»C
o Recall: Eyv[g] = Ié‘;?()[[eipli[—é(-;y@;]]“ = % - 25/1%

@ We know how to bound the MSEs of the individual estimators @hMJ%
and 2}1;/11(\3[ Can we bound the MSE of @%4](\7,/2}1\/{197

@ Rearranging the MSE and applying the triangle inequality, we have
(CORL (R Oy
ag) ~EZ T g

Zi< Q- QMC) ]+ E[(QMC/ZMC) Z - ZMC) D

Schillings/Teckentrup (Edinburgh) Bayesian Inverse Problems 11 May 2017 14 / 24



Convergence of Standard Monte Carlo Method

Mean Square Error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT "16]

AMC \ 2 - > R N
(25)" < 2(El@- QN9 + ELQN/ 2092 - Z)7))

Theorem (Holder's Inequality)
For any random variables X,Y and p,q € [1,00], with p~! 4+ ¢~ ' =1,
E[|IXY]] < E[IX "]V E[|y|e]"/e.

Here, E[|X|>°]'/> := esssup X.

If ess SUD ()} N | (@ZIE, 2%9,)2 < C, for a constant C' independent of N
and h, then the MSE of @hM](\jf 2,12/[](\3, can be bounded in terms of the
individual MSEs of Q) and Z}1§.

For more details, see [Scheichl, Stuart, ALT '16].
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Multilevel Monte Carlo Method

Motivation

The standard Monte Carlo estimator EhN =% Z U f(w®) of By [f]
has mean square error

(B2 = ) - 11

To make e(ENS)?, small we need to

@ choose a large number of samples NV,

@ choose a small step length h in our numerical approximation.
Since the cost of sampling methods grows as
cost per sample x number of samples

the cost of standard Monte Carlo can be prohibitively large in applications.
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Multilevel Monte Carlo Method

Definition of Multilevel Monte Carlo Estimator [Giles, '08], [Heinrich '01]

The multilevel method works with a decreasing sequence of step lengths
{he}L_,, where b, gives the most accurate numerical approximation.

Linearity of expectation gives us
L
Epo [fno] = Epio [frol + ZENO [fhz - fheq]'
=1

The multilevel Monte Carlo (MLMC) estimator
(3, (i,¢ 1,0)
Bl = 3o )+ 308 3 ) 60,
is a sum of L + 1 independent MC estimators.
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Convergence of Multilevel Monte Carlo Method
Expected Value and Variance [Giles, '08]

{]M[’N[} N Z fho (Z 0) + Z Z fhe g 6) fhe—l (U(LE))

Lemma (Expected Value and Variance)

A Y L Vifhe = fhoey
E[EME v) = Eolfngl, VIENE yol = %zo] Ly [thfh )

Proof: Uses the linearity of expectation and the fact the L + 1 estimators
are independent, together with results for standard Monte Carlo.
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Convergence of Multilevel Monte Carlo Method
Central Limit Theorem and Strong Law of Large Numbers [Billingsley '95]

Theorem (Central Limit Theorem)

If o2y = V[fn)Ngt + St Vifn, — fre JN;* € (0,00) and
{VIfn, — fn,_ )}l satisfies a Lindeberg condition, then as {Ny,}£_, — oo

we have ~ D
E~1[\/I]\/IIIZ,N5} - N(E,uo [th]a Ul%/IL)'

Proof: Requires Lindeberg condition to deal with sum of L + 1 Monte
Carlo estimators. For details, see [Collier et al '15] and [Billingsley '95].

Theorem (Strong Law of Large Numbers)
IfEuol| fn,|] < oo for 0 < € < L, then as {N;}t_, — oo we have

E?/IZ\};,NZ} £> ENO [th]'

Proof: Follows from the linearity of a.s. convergence, together with
results for standard Monte Carlo.
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Convergence of Multilevel Monte Carlo Method
Mean Square Error of Multilevel Monte Carlo [Giles, '08]

Theorem (Mean Square Error)
ML 2 _ Vfn] + iv[fhe — Jhe_] n

(Bl = e N Bl = 1)

Ny
numerical error

/=1

sampling error

Proof: The derivation is identical to the standard Monte Carlo case.

Thus,

@ N still needs to be large, but samples are much cheaper to obtain on
coarse grid.

e Ny (¢ > 0) much smaller, since V[fy, — f5,_,] = 0 as hy — 0.
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Convergence of Multilevel Monte Carlo Method

Numerical Comparison: Mean Square Error

e We compute E,;s[¢] for a typical model problem in groundwater flow,
using a ratio of standard Monte Carlo and multilevel Monte Carlo
estimators.

@ Computational Cost is computed as number of FLOPS required.

100 10"
T T
—a—| ep.. —— ndep..
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8 . 8
T 0 g 10’
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[Scheichl, Stuart, ALT '16]
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