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Abstract

Generic Uniqueness in Polarization Tomography

Sean Holman

Chair of the Supervisory Committee:
Professor Gunther Uhlmann
Department of Mathematics

The problem of polarization tomography is considered on a Riemannian manifold. This

problem comes from the physical problem of recovering the anisotropic part of the dielec-

tric permittivity tensor of a quasi-isotropic medium from polarization measurements made

around the boundary, but is more general. In greater than three dimensions local uniqueness

and stability are established for generic background metrics, and near generic tensor fields

through the study of a related linear inverse problem. The same results are established on

a natural subspace of tensor fields in dimension three.
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Chapter 1

INTRODUCTION

Suppose we have high-frequency monochromatic light passing through an anisotropic

medium. In general, light emerging from such a medium will have a different polarization

from that entering, and by measuring the polarization of the emerging light we might hope

to determine some information about the anisotropy. This inverse problem is known as

polarization tomography ([15], [18], [20]). There exists a significant amount of work in the

optics literature on the practical aspects of this problem, and in particular much work has

been done in the context of the photoelastic effect, where one well known technique of

inversion is integrated photoelasticity ([1], [2], [3], [8], [7]). In the case that the anisotropy

is sufficiently weak we may hope to apply the methods of geometric optics to reduce the

problem to examining the behavior along “rays,” and indeed study how the polarization

evolves as light travels along a given ray. To model such a weak anisotropy we assume that

the medium is not magnetic, and that the dieletric permittivity in the interior is given by

εjl (x) = ε(x)δjl +
1

k
χjl (x). (1.1)

Here k is the wave number, and because of the presence of the factor 1/k in front of the

anisotropic part χjl the equation of the zero approximation of geometric optics is the same

as that of the isotropic medium εjl = ε(x)δjl . Such a medium is called quasi-isotropic and

was originally proposed for study by Kravstov ([12], [13]). Physical media with sufficiently

weak anisotropies such as plasmas and weakly stressed elastic media may be well modeled

by quasi-isotropic media (see [13]). In such physical media χjl may be complex valued, but

is Hermitian.

The inverse problem of determining χjl , the anisotropic part of εjl from polarization

measurements of light with wave number k on the boundary of a given region Ω ⊂ R3

containing a quasi-isotropic medium is considered in [18] and [20]. The same problem

with phase information is also considered in both [15] and [18]. Through the method of
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geometric optics this problem, with phase information, is changed to the geometric problem

on a Riemannian manifold, possibly of dimension greater than 3, described below, and it is

this geometric problem that we will consider in the majority of the present work. For details

of this conversion, and also further details of all the objects defined below, see [18]. The

polarization vector η introduced below corresponds physically to the zero approximation

electrical field normalized to unit length in the background isotropic metric ε(x)e where

e is the Euclidean metric. It is measurements of this vector that we will consider here,

although it should be noted that this vector actually contains both phase and polarization

information.

The following theorem is the main result of the present work.

Theorem 1 Assume that (M, g) is a real-analytic simple manifold of dimension greater

than 3 with real-analytic metric g. If f̂ ∈ τ1
1 (M) is real-analytic, then there exists an ε > 0

such that whenever g′ ∈ S2(M) is another metric on M and f1, f2 ∈ τ1
1 (M) are such that

‖g − g′‖C4S2(M) < ε, and ‖f̂ − fi‖C3τ11 (M) < ε for i = 1 and 2,

if the polarization data of f1 and f2 with respect to the metric g′ are the same then f1 = f2.

Furthermore, there is a stability estimate for such f1 and f2

‖f1 − f2‖L2τ11 (M) ≤ C‖U ′2 − U ′1‖H1β1
1((∂+ΩR)′M)

for some constant C > 0. If the dimension is 3, then the statement of local injectivity still

holds if we also assume that dβ(f1−f2) = 0 and that f1−f2 satisfies the tangential boundary

condition with respect to the metric g. The stability estimate also holds if f1 and f2 are

further restricted to have support within a given compact set K bM where the constant C

in (4.16) may then depend on the set K.

Roughly speaking this theorem says that there is local uniqueness and stability for this

inverse problem near a generic set of tensor fields in a natural subspace of L2, and for a

generic set of background metrics including real-analytic ones. Of course some of the terms

in this statement have not been defined yet. The polarization data of the tensor fields f1 and

f2 is defined in section 1.2, and corresponds to polarization and phase measurements of rays
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passing through a medium with anisotropy corresponding to either f1 or f2 respectively.

The kernel of the differential operator dβ, which is defined in section 1.3, gives the “natural

subspace of L2.”

In section 1.1 we will briefly review the problem and results in the case where the

background metric is Euclidean (when ε(x) = 1) and we work on a region of R3. Section 1.2

then introduces the more general problem on a Riemannian manifold that will be the subject

of the rest of the work, and discusses the main results in that case. In section 1.3 we discuss

a natural non-uniqueness in the inverse problem that occurs in dimension 3. Finally in

section 1.4 we derive the main identity which provides the linearization that we will use to

analyze the general problem.

1.1 Polarization tomography in the Euclidean case

If in (1.1) we assume that ε(x) = 1 is constant, then we are in the case where the background

metric is Euclidean, and the rays, or geodesics, are simply straight lines. In this case we can

consider the evolution of the length normalized complex electrical field vector in the zero

approximation of geometrical optics along each ray. As mentioned above, we will call this

the polarization vector, and will consistently refer to it with the notation η. If we choose

Cartesian coordinates on R3 so that the ray in question is given by {(x1, x2, x3) ∈ R3 |x1 =

a, x2 = b} where a and b are constants, then, as shown in [18], the vector η(x3) is always

perpendicular to the ray, and evolves according to the system of differential equations∂η1

∂x3

∂η2

∂x3

 =
i

2

χ1
1(a, b, x3) η1(x3) + χ1

2(a, b, x3) η2(x3)

χ2
1(a, b, x3) η1(x3) + χ2

2(a, b, x3) η2(x3)

 .

This equation may also be written in a simpler form using the notation Pe3χ = πe3 ◦χ ◦πe3
where πe3 is the orthogonal projection onto the plane perpendicular to the x3 axis. With

this the previous equation becomes

∂η

∂x3
(x3) = (Pe3χ(a, b, x3)) η(x3). (1.2)

It is in this form that we present the equation in the more general case below (see (1.6)).
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The physical field vector (at least in the geometric optics approximation) at a given

point along the ray is actually given by

ξ(t, x3) = Re
[
η(x3)ei(kx

3−ωt+φ0)
]

where φ0 ∈ R is arbitrarily chosen to set the initial phase. The tip of the vector ξ(t)

traverses the so called polarization ellipse as time progresses. Measurement of the physical

parameters of this ellipse together with the phase φ0 precisely gives the vector η(x3), and

we assume that we can make these measurements. Thus, if χ is compactly supported in R3,

then the inverse problem is to recover χ based on knowing the solution of (1.2) along any

line and for any initial data outside the support of χ, evaluated at any point after the ray

has passed through this support.

This inverse problem is nonlinear, and so we would like to study a linearization. In order

to do this let us consider the fundamental matrix for (1.2) along any line. For ξ ∈ S2 we

will write U(x, ξ) for the solution of

ξ · ∇xU(x, ξ) =
i

2
(Pξχ(x)) U(x, ξ) (1.3)

and U(x, ξ) = Id for x · ξ sufficiently negative so that x is not in the support of χ. As

above, Pξχ = πξ ◦χ ◦πξ where πξ is the orthogonal projection onto the plane perpendicular

to ξ. This matrix U(x, ξ) is indeed the fundamental matrix for (1.2) along each ray. By

integrating (1.3) we have∫ t

−∞

i

2
(Pξχ(x+ sξ)) U(x+ sξ, ξ) ds = U(x+ tξ, ξ)− Id. (1.4)

For t sufficiently large, the right hand side of (1.4) is precisely the data of our inverse

problem. We can rewrite (1.4) as∫ t

−∞

i

2
(Pξχ(x+ sξ)) (U(x+ sξ, ξ)− Id) ds+

∫ t

−∞

i

2
(Pξχ(x+ sξ)) ds = U(x+ tξ, ξ)− Id.

If we assume a priori that χ is sufficiently small, then it is possible to show that ‖U − Id‖ ≈

‖χ‖, and so the previous identity looks like∫ t

−∞

i

2
(Pξχ(x+ sξ)) ds+O(‖χ‖2) = U(x+ tξ, ξ)− Id.
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Of course I am being imprecise here, but the details will be given below. From the previous

formula we see that a linearization of the inverse problem is the inversion of the integral

transform which takes χ to

J [χ](x, ξ) =

∫ ∞
−∞

i

2
(Pξχ(x+ sξ)) ds. (1.5)

This linearization is studied in [18] and [15] where it is referred to as the transverse ray

transform. The problem may be studied in dimensions greater than 3 as well, and in such

dimensions the transform is invertible, and there is a stability estimate. In dimension 3 the

transform has a kernel which may be explicitly identified (see [15]), but is invertible on the

orthogonal complement of this kernel, and there is a stability estimate there. Furthermore,

local uniqueness and stability for the nonlinear problem have been established previously in

[15] (actually the results in that work are more general- see below). In the present work we

will study a similar linearization, but we will not just linearize the problem near the zero

tensor field as we have done here. In fact we will study the linearized problem near arbitrary

tensor fields on generic simple Riemannian manifolds, and establish stability in those cases

(Theorems 12 and 13) and uniqueness when the linearization is done near a generic class of

fields (Theorem 15). Here generic means sufficiently close to a real-analytic field or metric.

Using these results we will also show local uniqueness in the nonlinear problem for χ a priori

sufficiently close to some real-analytic reference tensor field.

We now continue to present the same problem in the more general context of a Rieman-

nian manifold.

1.2 Polarization tomography on a Riemannian manifold

The problem of polarization tomography that we will consider here is an inverse problem

defined on a certain class of Riemannian manifolds called compact non-trapping.

Definition 1 A compact, connected Riemannian manifold (M, g) with nonempty, strictly

convex boundary such that no geodesic has infinite length will be called compact non-trapping,

or simply CNT.

The quantities involved in the physical problem of polarization tomography generally are

complex valued, and so we will be considering the complexifications of most of the various
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vector bundles discussed below. To reduce notation we will omit the customary notation

of C for complexification, and for the remainder of this work it will simply be understood

that any real vector bundle is complexified unless a notation such as TRM is used. Also,

the notation 〈·, ·〉g will refer to the sesquilinear inner product on TM (which, in accordance

with the comments above, is really TCM) defined by

〈η, ζ〉g = ηigijζj

in coordinates.

Let (M, g) be a CNT manifold of dimension n ≥ 3. Let i : ∂M → M be the inclusion

mapping, and first consider i∗(TRM
⊕
TM), the direct sum bundle over ∂M . Define the

two subsets of this bundle

Ψ±(∂M) =
{

(ξ, η) ∈ i∗(TRM
⊕

TM) : ‖ξ‖g = 1 , ±〈ξ, ν〉g ≥ 0
}

where ν is the outward pointing normal vector to ∂M . Now, take any f ∈ τ1
1 (M), the space

of smooth (1,1) tensor fields on M. The problem we will consider is that of determining f

given g and the map F [f ] : Ψ−(∂M)→ Ψ+(∂M) defined as follows. For (ξ, η0) ∈ Ψ−(∂M)

let γξ be the unit speed geodesic in (M, g) with initial data ξ. Assume this geodesic has

length l so that γξ(l) ∈ ∂M . Now consider the vector field η along γξ that solves the initial

value problem
Dη

ds
= (Pγ̇ξf)η , η(γξ(0)) = η0. (1.6)

Here Dη/ds is the covariant derivative of η along γξ, and Pγ̇ξf = πγ̇ξfπγ̇ξ where πγ̇ξ is

the orthogonal projection onto the subspace of TγξM perpendicular to γ̇ξ. This formula

corresponds to (1.2) in the Euclidean case. Now we define F [f ](ξ, η0) = (γ̇ξ(l), η(γξ(l))).

Note that, just as in the Euclidean case, from (1.6) we can see that this inverse problem

is nonlinear. In [15] and [18] the authors show that a linearization of the problem is given by

the inversion of the so called transverse ray transformation. If we choose a geodesic γ of g

with length l, and a parallel orthonormal frame {e1(t), ... , en(t)} along the geodesic γ with

en(t) = γ̇(t), then in the coordinates given by this frame the transverse ray transformation

is

J [f ](γ; ξ, η) =

∫ l

0

n−1∑
i,j=1

fij(γ(t))ξiηj dt (1.7)
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where ξ = ξiei(t) and η = ηjej(t) are vector fields parallel along γ. In the Euclidean case

this transform is precisely (1.5). This linearization is actually a special case of the linearized

problems that we will consider in this work. In fact, (1.7) in some sense corresponds to our

linearization near f = 0. Indeed, our method will produce an integral that appears similar

to the transverse ray transform with the addition of weight functions depending on f in a

nonlinear way. We will then fix these weight functions at particular values, and consider this

as a linearization. Using this we will then be able to find results for the nonlinear problem.

When the dimension n is 3, this inverse problem corresponds to the physical problem

described above of determining the anisotropic part of the dielectric permittivity of a quasi-

isotropic medium from polarization and phase data recorded around the boundary. In this

setting the geodesics are considered to be light rays, and the vector field η along γξ given

by (1.6) is the polarization vector mentioned above. The tensor f and the anisotropic part

of the dielectric permittivity are related by the formula

f =
i

2ε
χ. (1.8)

We imagine that we can set the initial polarization vector, η0, as any light ray enters the

medium, and then measure the polarization vector, η(l), as that ray leaves the medium.

In [15] uniqueness and stability of this inverse problem are established under curvature

assumptions on g and a priori smallness assumptions on f . In the present work we establish

local uniqueness and stability results for this inverse problem for generic metrics g, and

for f a priori close to an analytic tensor field. An inverse problem corresponding to (1.6)

without the projection Pγ̇ξ is also considered in [31].

Next we reformulate the geometric inverse problem presented above. First we must

introduce some new notation and terminology.

Definition 2 A semi-basic (m,n) tensor field on M is a tensor field U on TRM whose

representation in any natural coordinates (x, ξ) is of the form

U = uj1 ... jmi1 ... in
(x, ξ)

∂

∂ξj1
⊗ ...⊗ ∂

∂ξjm
⊗ dxi1 ⊗ ...⊗ dxin .

The bundle of (m,n) semi-basic tensors over TRM is naturally isomorphic to the pullback

bundle π∗(Tmn M) where π : TRM →M is the projection mapping. Thus an intuitive way to
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understand semi-basic tensor fields is as tensor fields on M that are also allowed to depend

on the fiber variables ξ. We will most commonly use (1, 1) semi-basic tensors, which at a

given point (x, ξ) ∈ TRM may be identified with linear maps on TxM . The vector space of

(m,n) semi-basic tensors at a given point (x, ξ) ∈ TRM will be denoted by (Bm
n )(x,ξ)(T

RM),

the vector bundle over TRM of (m,n) semi-basic tensors will be Bm
n (TRM), and the set of

(m,n) semi-basic tensor fields will be βmn (TRM). If G is a submanifold of TRM , then we will

denote the set of (m,n) semi-basic tensor fields restricted to G as βmn (G), which is the set

of smooth sections of the vector bundle Bm
n (G). In particular, we will commonly work with

the set of (1,1) semi-basic tensor fields restricted to the unit sphere bundle ΩRM , which is

β1
1(ΩRM).

At this point I would like to make a remark on the notation (x, ξ) for points in TM .

Unless we are working in a set of local coordinates, ξ is interpreted as the point in TM ,

and x is merely a label for π(ξ) used so that we can avoid having to write π(ξ) when we

wish to refer to the base point. Thus the notation (x, ξ) ∈ TM is actually an abuse that

means ξ ∈ TM and x = π(ξ). This makes the notation in the next paragraph consistent

with that of the previous paragraph. When we work in coordinates we may also write (x, ξ)

for a 2n-tuple where x refers to the n coordinates on the base manifold, and ξ refers to the

fiber coordinates.

Given any tensor field f ∈ τ1
1 (M) consider the following equation for U ∈ β1

1(ΩRM \

T∂M) where H is differentiation with respect to the geodesic flow (see [18]), ∂−ΩRM is the

space of inward pointing unit vectors on ∂M , and E is the identity.

HU(ξ) = [(Pξf)(x)]U(ξ) on ΩRM \ T∂M, U |∂−ΩRM = E. (1.9)

U can be thought of as the “fundamental matrix” for (1.6). In fact problems (1.6) and (1.9)

are related as follows.

η(γξ(t)) = U(γ̇ξ(t)) I
γξ
0,t η0. (1.10)

Here Iγξ0,t is parallel translation along γξ. In the context of (1.9), the inverse problem is

to determine f from the metric g and U |∂+ΩRM (where ∂+ΩRM is the space of outward

pointing unit vectors). We will call U |∂+ΩRM the polarization data corresponding to f

(recall the use of this term in the statement of Theorem 1). The main problem in which we
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will be interested is that of establishing uniqueness for this nonlinear inverse problem, or

equivalently showing that the map f 7→ U |∂+ΩRM is injective. The main results are given

in Theorem 1.

Before proceeding further we prove one small lemma which gives a few properties of U .

Lemma 1 If U is the solution of (1.9) for some f ∈ τ1
1 (M), then for every v ∈ ΩRM \T∂M

U(v) : Tπ(v)M → Tπ(v)M is invertible and

U(v)|span(v) = Id and U(v) : span(v)⊥ → span(v)⊥. (1.11)

Furthermore, if we assume that f is of the form (1.8) where ε is real valued and χ is

Hermitian (which is the physical case), then U is unitary.

Proof: Suppose v = γ̇ξ(t), which is always true for some ξ ∈ ∂−ΩRM and t ∈ R, and let

{e1(s), ... , en(s)} be a parallel set of vector fields along γξ which are orthonormal for every

s, and such that en(s) = γ̇ξ(s) for every s. It is always possible to find such a set of vector

fields by taking a frame at the point γξ(t), and then using parallel translation along γξ. If η

is a solution of (1.6) and η(s) = ηi(s) ei(s), then the differential equation in (1.6) becomes

the system

∂ηi

∂s
(s) =

n−1∑
j=1

f ij(γ(s))ηj(s) for i = 1, ... , n− 1

and
∂ηn

∂s
(s) = 0.

Therefore ηn is constant, and so ηn(s) = (η0)n, and in light of (1.10) and the uniqueness of

solutions to initial value problems the first part of the lemma is proven.

To prove the second statement, assume that f has the form (1.8) with ε real valued and

χ Hermitian. Then we can easily see that f is skew-Hermitian. Therefore

H(U∗U) = U∗[Pξf ]∗U + U∗[Pξf ]U = −U∗[Pξf ]U + U∗[Pξf ]U = 0,

and so U∗U = E everywhere.

�

The last statement of this lemma is actually of little interest in the present work since

all of the results found here apply to general f ∈ τ1
1 (M).
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1.3 Non-uniqueness in the three dimensional case

In dimension n = 3 there is a natural non-uniqueness to the inverse problem which we will

now describe. This is a reformulated and slightly expanded version of what can be found in

[15]. We first of all make the additional assumption that (M, g) is oriented in which case we

may define the Hodge star operator ∗ : ΛkT ∗M → Λ3−kT ∗M from k forms to 3 − k forms

on M (see for example [16]), and also the adjoint of the exterior derivative δ = ∗d∗ where

d is the exterior derivative. Loosely speaking, the non-uniqueness now results from the fact

that, as we will see below, for any “coexact” tensor field, f ≈ δh, the polarization data of

f is entirely determined by the values of the potential h at the boundary. More precisely,

we have the following theorem.

Theorem 2 If a CNT manifold M3 is orientable and h1, h2 ∈ C∞(M) are such that

h1|∂M = h2|∂M , then the polarization data for fi = (δ(hi dvg))
# (i = 1, 2) are the same.

The # indicates that the first index of δ(hdvg) has been raised, and dvg is the Riemannian

volume form.

Remark 1: The orientability hypothesis here arises because of the need to globally define

δ. However, it is possible to find a similar non-uniqueness result in the case where M is

not orientable by applying this theorem on a three dimensional orientable submanifold of

M with boundary.

Proof: Let γ be any unit speed geodesic in M starting at x ∈ ∂M with length l. As in the

proof of Lemma 1, we can choose a set of vector fields {∂x1 , ∂x2 , ∂x3} that is a parallel

orthonormal frame along the entire length of γ. These vector fields may not actually come

from a single coordinate system, but using cylindrical coordinates along γ we can see that

they can be chosen to be coordinate vectors at least locally. If hi is as in the statement

of the theorem for i = 1 or 2, then we can calculate fi = (δ(hi dvg))
# at points on γ as

follows. Letting h = h1 or h2 we have

δ(hdvg) = ∗d(h) = ∗(∂x1h dx1 + ∂x2h dx
2 + ∂x3h dx

3)

= ∂x1h dx
2 ∧ dx3 − ∂x2h dx1 ∧ dx3 + ∂x3h dx

1 ∧ dx2.
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Thus at points on γ

[Pγ̇((δ(hdvg))
#)] =

∂x3h

2
(∂x1 ⊗ dx2 − ∂x2 ⊗ dx1).

Note that here and in the remainder of this work we use the convention that dxi ∧ dxj =

(dxi ⊗ dxj − dxj ⊗ dxi)/2. Now take any η0 ∈ TxM as an initial vector. We must solve the

following system of equations along γ

∂η

∂t
=
∂x3h

2
(∂x1 ⊗ dx2 − ∂x2 ⊗ dx1) η , η(0) = η0.

It is not hard to see that the solution to this system is given with respect to the frame

{∂x1 , ∂x2 , ∂x3} by

η(t) =


cos((h(γ(t))− h(x))/2) η1

0 + sin((h(γ(t))− h(x))/2) η2
0

cos((h(γ(t))− h(x))/2)η2
0 − sin((h(γ(t))− h(x))/2) η1

0

η3
0

 .

Finally, let γ(l) = y, and note that x, y ∈ ∂M . Then we have

η(l) =


cos((h(y)− h(x))/2) η1

0 + sin((h(y)− h(x))/2) η2
0

cos((h(y)− h(x))/2)η2
0 − sin((h(y)− h(x))/2) η1

0

η3
0

 .

Now we can see that since h1|∂M = h2|∂M , in fact the polarization data for f1 and f2 as

defined in the statement of the theorem are the same.

�

In view of the previous theorem we make the following definition. A tensor field f ∈

τ1
1 (M) will be called coexact if f = (δ(hdvg))

# for some h ∈ C∞(M). We now consider

how to determine a subspace of τ1
1 (M) that is complementary to the space of coexact tensor

fields.

First we define the tangential component of f ∈ τ1
1 (M) to be the section of the vector

bundle i∗(T 1
1M) over ∂M given by tf = Pν(f), and the normal component of f to be (with

a small abuse of notation) nf = f − tf . Recall that i : ∂M → M is the inclusion map,

and ν is the outward pointing unit normal to ∂M . The tangential and normal parts of
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2-forms can also be defined in a similar way. Indeed, if h ∈ τ2(M) is a (0, 2)-tensor and ξ,

η ∈ i∗(TM), then th(ξ, η) = h(πν(ξ), πν(η)) and nh = h − th. With these definitions the

following formulas hold for f ∈ τ1
1 (M).

(tf)[ = tf [ and (nf)[ = nf [. (1.12)

Now consider the Helmholtz decomposition (see [16]) which says that any h ∈ Λ2(M)

can be uniquely written as the sum of a coexact form with zero normal part, and a closed

form. We can identify antisymmetric tensors in τ1
1 (M) with elements of Λ2(M) through the

metric, and so in fact for any f ∈ τ1
1 (M) we can decompose f as

f = fs + (α)] + (∗dβ)] (1.13)

where fs = (f + f t)/2 is the symmetric part of f , α ∈ Λ2(M) is closed, β ∈ C∞(M), and

∗dβ has zero normal component. This last property is equivalent to the property that β is

constant on the boundary. The decomposition is also unique up to possibly changing β by

a constant, and so if we add the requirement that β|∂M = 0, then the decomposition (1.13)

is unique. The transpose of f , f t, used to define fs is the transpose with respect to the

non-sesquilinear inner product corresponding to g. In coordinates this is given by

(f t)ji = gikf
k
s g

sj . (1.14)

Note that (∗dβ) = (δ∗β), and so according to theorem 2 we cannot expect to recover (∗dβ)]

from the polarization data. However, we expect to be able to find at least the normal part

of f at the boundary since this part does not depend on (∗dβ)#. Furthermore, we might

expect to be able to recover f fully when the coexact part of f , (∗dβ)], is zero. In light of

this, we now record the condition on f which will guarantee that ∗dβ is zero. To this end,

let Alt : τ2(M)→ Λ2(M) denote the projection onto the alternating tensor fields, which is

given in coordinates by

Alt(fij dxi ⊗ dxj) =
∑
j>i

(fij − fji) dxi ∧ dxj .

Now define dβ : τ1
1 (M)→ C∞(M) by

dβ(f) = ∗ d Alt(f [). (1.15)
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Since α is closed, from (1.13) we see that

∆g β = dβf. (1.16)

If we also require that β|∂M = 0, then ∗dβ will have normal part zero, and so β is given by

the solution of the Dirichlet problem corresponding to (1.16). By uniqueness of solutions

to the Dirichlet problem it is clear that ∗dβ = 0 if and only if dβf = 0.

1.4 Main identity

The proofs in this work are based upon an integral identity along the geodesics of (M, g).

The technique is inspired by the work of Stefanov and Uhlmann [22], and Uhlmann and

Wang [30] on the boundary rigidity problem. Our formula can also be obtained by integrat-

ing the identity used by Novikov and Sharafutdinov in [15] along geodesics. The identity

is obtained as follows. Let (M, g) be as above and f1, f2 ∈ τ1
1 (M). Let U1 and U2 be the

solutions to (1.9) corresponding to f1 and f2 respectively. Now fix any unit speed geodesic

γ between points x, y ∈ ∂M . In particular, assume that γ(0) = x, and γ(l) = y. Also,

let us define γ̇(t) = ξ(t) ∈ Tγ(t)M . Now the idea is to start with any polarization vector

η0 ∈ TxM , evolve this vector according to f1 along γ for some amount of time s, and then

evolve the resulting vector along γ for some amount of time according to f2.

Following the strategy outlined above we first note that by (1.10) when we evolve η0

according to f1 along γ for time s the resulting vector is

U1(ξ(s)) Iγ0,s η0 ∈ Tγ(s)M.

Now when we evolve this vector by f2 along the remainder of γ, once again using (1.10) we

obtain

U2(ξ(l)) Iγs,l U
−1
2 (ξ(s))U1(ξ(s)) Iγ0,s η0 ∈ TyM.

Now choose any t1 and t2 with 0 ≤ t1 ≤ t2 ≤ l, and let ζ ∈ TyM . Then by the fundamental

theorem of calculus〈
U2(ξ(l))

(
Iγt2,l U

−1
2 (ξ(t2))U1(ξ(t2)) Iγ0,t2 − I

γ
t1,l

U−1
2 (ξ(t1))U1(ξ(t1)) Iγ0,t1

)
η0, ζ

〉
g(y)

=

∫ t2

t1

∂

∂s

〈
U2(ξ(l)) Iγs,l U

−1
2 (ξ(s))U1(ξ(s)) Iγ0,s η0, ζ

〉
g(y)

ds.

(1.17)



14

Now we will evaluate the derivative on the right side of this equation. First we transpose

the first two operators to get

∂

∂s

〈
U2(ξ(l)) Iγs,l U

−1
2 (ξ(s)) U1(ξ(s)) Iγ0,sη0, ζ

〉
g(y)

=
∂

∂s

〈
U−1

2 (ξ(s))U1(ξ(s)) Iγ0,s η0, Iγl,s U
∗
2 (ξ(l)) ζ

〉
g(γ(s))

.

We simplify this by replacing ζ with (U∗2 )−1(ξ(l)) ζ, and then use the compatibility of the

metric g with the covariant derivative along with (1.9) to obtain

∂

∂s

〈
U−1

2 U1 Iγ0,s η0, Iγl,s ζ
〉
g(γ(s))

=
〈(
U−1

2 [Pξ(s)f1](γ(s)) U1 − U−1
2 [Pξ(s)f2](γ(s)) U1

)
Iγ0,s η0, Iγl,s ζ

〉
g(γ(s))

.

Simplifying this last expression and plugging it into (1.17) we obtain〈(
Iγt2,l U

−1
2 (ξ(t2))U1(ξ(t2)) Iγ0,t2 − I

γ
t1,l

U−1
2 (ξ(t1))U1(ξ(t1)) Iγ0,t1

)
η0, ζ

〉
g(y)

=

∫ t2

t1

〈
U−1

2

[
Pξ(s) (f1 − f2)

]
(γ(s))U1 Iγ0,s η0, Iγl,s ζ

〉
g(γ(s))

ds.

(1.18)

Note that the left hand side has changed since we replaced ζ by (U∗2 )−1(ξ(l)) ζ. Formula

(1.18) is the main identity for which we were searching. It’s utility becomes more apparent

if we consider the special case when t1 = 0 and t2 = l. In this case (1.18) is〈 (
U−1

2 (ξ(l)) U1(ξ(l))− E) Iγ0,l η0, ζ
〉
g(y)

=

∫ l

0

〈
U−1

2

[
Pξ(s) (f1 − f2)

]
(γ(s))U1 Iγ0,s η0, Iγl,s ζ

〉
g(γ(s))

ds

(1.19)

where E is the identity map. Since ξ(l) ∈ ∂+ΩM , when f1 and f2 have the same polarization

data the left hand side of (1.19) vanishes. Thus, when the polarization data are the same

we have

0 =

∫ l

0

〈
U−1

2 (ξ(s))
[
Pξ(s) (f1 − f2)

]
(γ(s))U1(ξ(s)) Iγ0,s η0, Iγl,s ζ

〉
g(γ(s))

ds. (1.20)

We would like to make the integral in (1.20) into a bilinear form on TxM , and so we replace

ζ by Iγ0,l ζ where now ζ ∈ TxM . This gives

0 =

∫ l

0

〈
U−1

2 (ξ(s))
[
Pξ(s) (f1 − f2)

]
(γ(s))U1(ξ(s)) Iγ0,s η0, Iγ0,s ζ

〉
g(γ(s))

ds. (1.21)
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This last formula shows that when the polarization data of f1 and f2 are equal, then

f = f1 − f2 is in the kernel of the X-ray transform defined by the right hand side of (1.21)

when U1 and U2 are fixed as weights. Since it will be useful later we also replace ζ by Iγ0,l ζ

in (1.18). Doing this we obtain〈(
Iγt2,0 U

−1
2 (ξ(t2))U1(ξ(t2)) Iγ0,t2 − I

γ
t1,0

U−1
2 (ξ(t1))U1(ξ(t1)) Iγ0,t1

)
η0, ζ

〉
g(x)

=

∫ t2

t1

〈
U−1

2

[
Pξ(s) (f1 − f2)

]
(γ(s))U1 Iγ0,s η0, Iγ0,s ζ

〉
g(γ(s))

ds

(1.22)

for any η0 and ζ ∈ TxM .

1.5 Outline of the method

Our first step towards the proof of the Theorem 1 will be to fix U1 and U2 as some specific

pair of semi-basic tensor fields, and then consider the linear transform given by the right

hand side of (1.21) acting on f = f1 − f2. This transform will be written as

IU1,U2 [f ].

See (2.1). In coordinates IU1,U2 [f ] is a sum of weighted X-ray transforms acting on the

components of f , and so in chapter 2 we study in detail such transforms acting only on

functions.

In particular, if Iw1 and Iw2 are two such transforms with weights given respectively by

w1 and w2, then we consider the normal operator Nw1,w2 = Iw1 ◦ Iw2 . We show that on a

simple manifold it is a pseudodifferential operator (ΨDO) of order −1, and also calculate

the full symbol of Nw1,w2 for arbitrary weights (see Theorem 6 and corollary 1).

In chapter 3 we return to analyzing IU1,U2 by using the results of chapter 2. As in the case

of the scalar X-ray transform, we may introduce a normal operator NU1,U2 = I∗U1,U2
◦ IU1,U2

and show that on a simple manifold NU1,U2 is a ΨDO of order −1. In fact, on a simple

manifold of dimension greater than 3 this operator is an elliptic ΨDO (see Theorem 9).

In that case we apply a left parametrix to NU1,U2 to show that it has finite dimensional

kernel, and prove a stability estimate, from L2 to H1, under the additional assumption

that it is injective (see Theorem 12). In dimension three we must add an additional ΨDO

corresponding to the requirement that dβ(f) = 0 in order to obtain an elliptic system
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(Theorem 10), and then apply a parametrix for this system to obtain the same types of

results as in the higher dimensional case (Theorem 13). Theorems 12 and 13 also include

a stability result for perturbations of U1, U2, and g about a given set of tensor fields for

which the corresponding normal operator is known to be injective.

In Theorem 15 we finally establish injectivity of IU1,U2 when U1, U2, and g are real-

analytic. The proof of this theorem uses analytic microlocal analysis, and essentially func-

tions by showing that for f in the kernel of IU1,U2 , the analytic wavefront set of f must

be empty. Of course in the three dimensional case we must also assume that dβ(f) = 0.

Combining this injectivity result with Theorems 12 and 13 shows that IU1,U2 is injective

with a stability estimate for any U1, U2, and g sufficiently close to any given real-analytic

tensor fields. This is what we mean by “generic uniqueness.”

Finally, in chapter 4 we examine again the nonlinear problem. To do this, we initially

show that when f1 and f2 are sufficiently close to a given real-analytic tensor field f , and g′

is a metric sufficiently close to a real-analytic metric g, then the corresponding semi-basic

tensor fields U ′1 and U ′2 given by f1 and f2 with respect to g′ are close to the field U given

by f with respect to g. Then U ′1, U ′2, and g′ lie in the generic set where the linear transform

IU ′1,U ′1 is injective. Combined with the identity (1.22), which relates the polarization data

of f1 and f2 to IU ′1,U ′2 [f1 − f2], this allows us to use the results for the linear problem to

analyze the nonlinear problem, and prove Theorem 1.
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Chapter 2

WEIGHTED X-RAY TRANSFORMS

In Chapter 3 we will be considering the linearization of the polarization tomography

problem obtained by fixing the weights in (1.21) as some specific pair of semi-basic tensor

fields U1 and U2 ∈ β1
1(ΩRM) which are both invertible maps on Tπ(ξ)M for every ξ ∈ ΩRM .

Replacing f1− f2 by f in (1.21), we see that for every ξ ∈ ∂−ΩRM , f is in the kernel of the

linear map (IU1,U2)ξ : τ1
1 (M)→ (B2)ξ(∂−ΩRM) defined by

(IU1,U2)ξ [f ](η, ζ) =

∫ l

0

〈
U−1

2 (γ̇ξ(s))
[
Pγ̇ξ(s) (f)

]
(γξ(s)) U1(γ̇ξ(s)) I

γξ
0,s η, I

γξ
0,s ζ

〉
g(γξ(s))

ds.

(2.1)

In Chapter 3 we will analyze this map directly in coordinates by considering how it acts

on each of the components of f separately. The action on each of these components is the

weighted X-ray transform of a function, and so we will now study in detail the weighted

X-ray transform for functions. The development given here largely follows methods used in

[23], [5], and [6], although I have tried to reformulate some of the arguments to give them a

more geometric flavor. This is also done in considerably more generality than is needed for

the problem of polarization tomography that we are considering. Indeed, except for section

2.3, in this chapter we will continue to assume only that M is a CNT manifold.

We shall refer to the space of maximally extended, directed, unit speed geodesics on M

as Γ. We emphasize that the curves are directed, and so two parametrizations of the same

point set in opposite directions are considered to be different elements of Γ. In the course

of our analysis we will have occasion to require a smooth manifold structure and measure

on Γ, which we will obtain by identifying Γ with the space of inward pointing unit vectors,

∂−ΩRM , as follows.

Since M is a CNT manifold, every γ ∈ Γ must begin on the boundary ∂M , and, since the

boundary is strictly convex, the initial tangent vector must be inward pointing. Thus we can

define a bijective map F : ∂−ΩRM → Γ. For (x, v) ∈ ∂−ΩRM we will write F (x, v) = γx,v,
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and more generally for any ξ ∈ TRM we will write γξ for the maximally extended geodesic

with initial conditions γ̇ξ(0) = ξ. We will also make use of the four different “exponential”

maps defined as follows:

exp : F ⊂ TRM →M exp(ξ) ≡ γξ(1)

expx : Fx = F ∩ TR
xM →M expx ≡ exp

∣∣
Fx

Exp : F \ {0} → TRM Exp(ξ) ≡ γ̇ξ(1)
|γ̇ξ(1)|g

Expx : Fx \ {0} → TRM Expx = Exp
∣∣
Fx .

We will identify Γ with ∂−ΩRM through the map F , and in fact will refer to Γ and ∂−ΩRM

interchangeably. In particular, we may define a smooth structure on Γ by declaring that

F is a diffeomorphism, and we may pull back any form or measure on ∂−ΩRM by F−1 to

obtain a form or measure on Γ. With such a measure we may then define L2(Γ), and make

use of the inner product 〈·, ·〉L2(Γ).

In what follows, whenever N is a manifold with boundary we will use the notation

C∞c (N) to refer to those smooth functions with support compactly contained in N int =

N \ ∂N . The same notation will also be used in other function spaces (e.g. we will refer

to L2
c(N)). Let w ∈ C∞(TRM). Then for any f ∈ C∞c (M) we define the weigthed x-ray

transform of f , which is a function on Γ, as

Iw[f ](γ) =

∫ l

0
w(γ̇(s)) f(γ(s)) ds. (2.2)

Here γ ∈ Γ has length l. We have the following theorem.

Theorem 3 The map Iw : C∞c (M)→ C∞c (Γ) is continuous.

Remark 2: The topologies on C∞c (M) and C∞c (Γ) are defined by fixing a set of local

coordinates charts and a partition of unity. When I say below that the derivatives of a

function can be bounded, I mean that there is a single uniform bound for each derivative

that applies within the support of each element of the partition of unity in the corresponding

coordinate chart.

Proof: For any (x, v) ∈ ∂−ΩRM , let l(x, v) be the positive endpoint of the domain of the

maximally extended geodesic γx,v (when v is a unit vector this is the length). The first step

in the proof is to show that l is a smooth function on ∂−ΩRM , which is identified with Γ.
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To accomplish this, let ρ ∈ C∞(M) be a defining function for ∂M (ie. a function such that

∂M = {ρ = 0}, and dρ|∂M 6= 0). Then consider the equation

ρ(expx(lv)) = 0. (2.3)

By convexity of the boundary, γ̇x,v(l(x, v)) is transverse to ∂M for every (x, v) ∈ ∂−ΩRM ,

and so
d

dl

∣∣∣∣
l(x,v)

ρ(expx(lv)) = dρ(γ̇x,v(l(x, v))) 6= 0

since dρ is the conormal to ∂M . Therefore, by the implicit function theorem (2.3) shows

that l is a smooth function of (x, v) ∈ ∂−ΩRM .

Next, by the basic theory of ODEs (see for example [28] or [4]), γx,v(s) and γ̇x,v(s)

are smooth functions of (x, v) and s. Thus there is no problem differentiating the integral

in (2.2) which defines Iw[f ], and we see that it is a smooth function of (x, v) ∈ ∂−ΩRM .

Further, in any particular system of coordinates we can perform this differentiation and

bound derivatives of Iw[f ] in terms of derivatives of f and w, and derivatives of l at points

(x, v) such that γx,v intersects the support of f . Thus in order to complete the proof we

must show that the support of Iw[f ] is compact, and that on the set of (x, v) where γx,v

intersects any given compact set K bM int the derivatives of l(x, v) can be bounded.

From (2.3) it is possible to bound the derivatives of l(x, v) on any subset of ∂−ΩRM

where the quantity dρ(γ̇x,v(l(x, v))) is bounded away from zero. On the other hand, looking

in local coordinates and using the convexity of the boundary it is clear that a subset of

∂−ΩRM is compact if and only if dρ(γ̇x,v(l(x, v))) is uniformly bounded away from zero

on that set. Finally, if we fix a compact subset K b M int where the support of f lies,

then K must be at a positive distance from ∂M and from this we can show, using local

coordinates once again, that on the set of (x, v) ∈ ∂−ΩRM such that γx,v passes through

K, dρ(γ̇x,v(l(x, v))) must be bounded away from zero. Therefore the support of Iw[f ] is

compact, and the map is continuous as claimed.

�

Next we would like to define an adjoint of Iw, but in order to do this we need an L2

structure on Γ. There is a way to define such a structure by taking a “natural” measure on
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∂−ΩRM which we will now describe.

2.1 Volume form on ∂−ΩRM

Locally ∂−ΩRM is a product of an open neighborhood in ∂M , and the open n−1 dimensional

unit ball. We will use this fact to define an orientation form on ∂−ΩRM , and then show

that this form behaves well in relation to the volume form on TM induced by the metric

g. This orientation form will be our volume form on ∂−ΩRM , and thus provide us with our

“natural” measure on ∂−ΩRM .

Let (x1, ... , xn) be a set of boundary normal coordinates for ∂M defined on a set U ⊂M

so that on the domain of the coordinates ∂M = {xn = 0}, and the inward pointing unit

normal to ∂M is given by ∂/∂xn. Let (x1, ... , xn, v1, ... , vn) denote the corresponding

natural coordinates on TRU . Then we may parametrize ∂−ΩRM ∩ TRU by the set

{(x, v) ∈ TR∂M : vivjgij(x) < 1}

via the map

φ−1(x1, ... , xn−1, v1, ... , vn−1) =

√√√√1−
n−1∑
i,j=1

vivjgij
∂

∂xn
+

n−1∑
i=1

vi
∂

∂xi

∣∣∣∣∣∣
(x1, ... ,xn−1,0)

.

This expresses ∂−ΩRM locally as a product of an open neighborhood in ∂M , and an open

n − 1 dimensional ball. The inverse of this map, φ, provides a local coordinate system on

∂−ΩRM ∩ TRU . In these coordinates we define locally a 2n− 2 form by

dV∂−ΩRM = det(g) dx1 ∧ ... ∧ dxn−1 ∧ dv1 ∧ ... ∧ dvn−1

Since (x1, ... , xn−1, xn) are boundary normal coordinates, dV∂−ΩRM actually does not de-

pend on the choice of coordinates and is thus invariantly defined on all of ∂−ΩRM . There-

fore dV∂−ΩRM is an orientation form for ∂−ΩRM . It is this form that we will use to define

our measure and L2 structure on Γ (which we identify with ∂−ΩRM). Indeed, for f and

h ∈ C∞c (∂−ΩRM) we set

〈f, h〉L2(∂−ΩRM) =

∫
∂−ΩRM

f(x, v)h(x, v)
∣∣dV∂−ΩRM (x, v)

∣∣ .
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Here
∣∣dV∂−ΩRM (x, v)

∣∣ is the density defined from dV∂−ΩRM . The completion of C∞c (∂−ΩRM)

with respect to the norm coming from this inner product is L2(∂−ΩRM).

With the assistance of dV∂−ΩRM , we are now able to define the adjoint I∗w of the transform

Iw. Indeed for h ∈ C∞c (M) and f ∈ C∞c (∂−ΩRM) we set

〈I∗w[f ], h〉L2(M) = 〈f, Iw[h]〉L2(∂−ΩRM).

By Theorem 3 this defines a continuous map I∗w : D′(∂−ΩRM) → D′(M). In the next few

sections we will be concerned with so called normal operators. If w1 and w2 ∈ C∞(TM)

are two, potentially different, weight functions, then the normal operator with respect to

w1 and w2, Nw1,w2 , is defined by

Nw1,w2 = I∗w1
◦ Iw2 . (2.4)

At present we only know that Nw1,w2 : C∞c (M)→ D′(M), but below in section 2.3 we will

derive an integral formula for Nw1,w2 which shows that the operator has better regularity

properties. We will also do the same for I∗w in section 2.2. Furthermore, we will show that

with the additional assumption that M is a simple manifold, Nw1,w2 is a Pseudo-Differential

Operator (ΨDO).

As a first step towards deriving the integral formulae for Nw1,w2 and I∗w mentioned

above, we will now show that dV∂−ΩRM behaves well with respect to the 2n-form on TRM

obtained by pulling back the natural 2n-form on (T ∗)RM by the musical isomorphism

[ : TRM → (T ∗)RM corresponding to the metric g. The natural 2n-form on (T ∗)RM is

defined in natural coordinates (x1, ... , xn, ξ1, ... , ξn) by

dx1 ∧ ... ∧ dxn ∧ dξ1 ∧ ... ∧ dξn = (−1)floor(n/2)ω
∧n

n!
. (2.5)

Here ω is the canonical symplectic form on (T ∗)R(M). If we work in a set of local coordinates

(x1, ... , xn) on M , then in the corresponding natural coordinates (x1, ... , xn, v1, ... , vn) for

TRM a calculation shows that the so obtained 2n-form is given by

dV = det(g) dx1 ∧ ... ∧ dxn ∧ dv1 ∧ ...dvn. (2.6)

We will show that TRM \ ({0} ∪ T∂M) is given, loosely speaking, as a product of ∂−ΩRM

with another manifold, and that dV is given by the product of dV∂−ΩRM with a form on the

other manifold. To do this we must first introduce some notations and definitions.
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Let m : R×∂−ΩRM → TRM be defined by m(t, (x, v)) = (x, tv), and let FR = m−1(F).

Recall that F is the domain of the exponential map. Define pΩ : FR → ΩRM by

pΩ(t, (x, v)) = γ̇x,v(t).

Observe that pΩ is the flow of the geodesic vector field on TM restricted to ΩRM beginning

at points in ∂−ΩRM , and so is smooth up to the boundary of FR. Further, since ∂−ΩRM

is transverse to the geodesic vector field, pΩ is a local diffeomorphism. From this and the

non-trapping assumption we see that pΩ is a diffeomorphism onto its image which is all of

ΩRM \ T∂M .

Next we introduce two related maps p± : R+×FR → TRM \({0} ∪ T∂M) which provide

the “product structure” for TRM \ ({0}∪T∂M) mentioned above. These maps are defined

respectively by

p±(s, (t, (x, v))) = ±s γ̇x,v(t).

Since both p± are injective and (p±)∗
∂
∂s is transverse to ΩM , p± are both diffeomorphisms

onto their images. Therefore, if (x1, ... , xn−1, v1, ... , vn−1) are one of the sets of local coor-

dinates for ∂−ΩRM used to define dV∂−ΩRM above, then the maps

(x1, ... , xn−1, t, v1, ... , vn−1, s) 7→ p±(s, (t, (x1, ... , xn−1, v1, ... , vn−1)

are the inverses of two different coordinate maps on some subsets of TRM \ ({0} ∪ T∂M).

We will now calculate dV in these coordinates. Indeed, we will calculate dV first in these

coordinates at points where t = 0, which correspond to the points in ∂±T
RM respectively.

Starting from (2.6) we have

dV = (±1)ndet(g) d(γ1
x,v(t)) ∧ ... ∧ d(γnx,v(t)) ∧ d(s γ̇1

x,v(t)) ∧ ...d(s γ̇nx,v(t)) (2.7)

where

(x, v) =

x1, ... , xn−1, 0, v1, ... , vn−1,

√√√√1−
n−1∑
i,j=1

vivjgij

 .

When we evaluate at t = 0, after some simplification (2.7) becomes
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dV = (±1)ndet(g) dx1 ∧ ... ∧ dxn−1 ∧

(√
1−

n−1∑
i,j=1

vivjgij dt

)

∧ (v1ds+ s dv1) ∧ ... ∧

(√1−
n−1∑
i,j=1

vivjgij

)
ds− s

n−1∑
i,j=1

vigij dvj√
1−

n−1∑
i,j=1

vivjgij


= (±1)nsn−1det(g) dx1 ∧ ... ∧ dxn−1 ∧ dt ∧ dv1 ... ∧ dvn−1 ∧ ds.

Now, from (2.5) we see that dV can be written in terms of the symplectic form [∗ω on

TRM . Since the geodesic flow is the Hamiltonian flow for H(x, v) = 1
2gijv

ivj relative to

this symplectic form, by Liouville’s theorem dV is invariant under the geodesic flow (see

[28]). In each of the coordinate systems (x1, ... , xn−1, t, v1, ... , vn−1, s), flowing by time t̃

is simply given by

(x1, ... , xn−1, t, v1, ... , vn−1, s) 7→ (x1, ... , xn−1, t± st̃, v1, ... , vn−1, s),

and so we see that

dV = (±1)nsn−1 (det(g)|(x1, ... ,xn−1,0) dx1 ∧ ... ∧ dxn−1 ∧ dt ∧ dv1 ... ∧ dvn−1 ∧ ds (2.8)

everywhere that the coordinates are defined (not just when t = 0). At this point we note

that the two coordinate systems, corresponding to p+ and p−, have the same orientation

exactly when n is even, and that the one corresponding to p+ is always positively oriented

(this explains the (±1)n in (2.8)).

By identifying dV∂−ΩRM with its pullback by the projection map

(s, (t, (x, v))) 7→ (x, v)

from R+ ×FR to ∂−ΩRM , we see from (2.8) that

p∗±(dV ) = (∓1)nsn−1 ds ∧ dt ∧ dV∂−ΩRM (2.9)

at least on the domain of the coordinates used in (2.8). Since TRM \ ({0} ∪ T∂M) can be

covered by such coordinate patches this formula actually holds on all of R+ ×FR.

There is also a “natural” orientation form on ΩRM which is obtained by considering

ΩRM as the boundary of the closed unit ball bundle over M . Indeed we define an orientation
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form on ΩRM by

dVΩRM =
(
i(p+)∗

∂
∂s

(dV )
∣∣∣
ΩRM

where i(p+)∗
∂
∂s

denotes interior multiplication by ∂
∂s . Using (2.9) and the relationship be-

tween pΩ and p+ this becomes

p∗Ω(dVΩRM ) = (−1)n dt ∧ dV∂−ΩRM (2.10)

where now we identify dV∂−ΩRM with the form on FR obtained from pull-back by the obvious

projection. Rewriting (2.9) and (2.10) in terms of the corresponding densities we have

p∗±(|dV |) = sn−1
∣∣ds ∧ dt ∧ dV∂−ΩRM

∣∣ (2.11)

and

p∗ω(|dVΩR |) =
∣∣dt ∧ dV∂−ΩRM

∣∣ . (2.12)

2.2 Integral formula for I∗w

In section 4.3 we will need one result concerning the continuity of I∗w, and in order to

establish this we will derive an integral formula for this adjoint operator. The method here

is almost exactly the same as the method used in the next section to derive a formula for

Nw1,w2 , and so this also serves as a warm-up to that slightly more difficult problem.

Let f ∈ C∞c (∂−ΩRM) and h ∈ C∞c (M). Then from the definition of I∗w we have

〈I∗w[f ], h〉L2(M) = 〈f, Iw[h]〉L2(∂−ΩRM)

=

∫
∂−ΩRM

∫ l(x,v)

0
f(x, v)w(γ̇x,v(t))h(γx,v(t)) dt

∣∣dV∂−ΩRM (x, v)
∣∣

=

∫
ΩRM

f(π∂−ΩRM (p−1
Ω (ξ)))w(ξ)h(π(ξ)) |dVΩRM (ξ)|

where π∂−ΩRM : FR → ∂−ΩRM is the projection mapping. The last equality in the previous

calculation follows from (2.12). The equivalent equality for general functions defined on

ΩRM is called Santaló’s formula (see [19]). Suppose now that we have local coordinates

x = (x1, ... , xn) defined on a set U ⊂ M where an orthonormal frame {e1, ... , en} is also

defined. Let (x, ξ) = (x1, ... , xn, ξ1, ... , ξn) be the corresponding coordinates on TU , and
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note that (p+)∗
∂
∂s = ξi ∂

∂ξi
is the radial vector field at points on ΩRM . Thus the portion of

the previous integral in U is given in coordinates by∫
U
h(x)

(∫
Sn−1

w(x, ξ) f(π∂−ΩRM (p−1
Ω (x, ξ)) dHSn−1(ξ)

)√
det(g) dx.

Therefore

I∗w[f ](x) =

∫
ΩR
xM

w(ξ) f(π∂−ΩRM (p−1
Ω (ξ))

∣∣∣dVΩR
xM

(ξ)
∣∣∣ . (2.13)

We can use this formula to prove the following theorem.

Theorem 4 I∗w maps C∞c (∂−ΩRM) continuously to C∞(M).

Proof: Let f ∈ C∞c (∂−ΩRM) have support contained within a given compact set K ′ b

∂−ΩRM . From (2.13) it is immediately clear that ‖I∗w[f ]‖C0(M) ≤ C‖f‖C0(∂−ΩRM). Deriva-

tives of ‖I∗w[f ]‖ may be similarly estimated from (2.13) as we show in the next paragraph.

Let U ⊂ M be the domain of some coordinates (x1, ... , xn). Also assume that we

have an orthonormal frame {e1, ... , en} for TU , and that (x1, ... , xn, ξ1, ... , ξn) are the

corresponding coordinates for TU . In order to take derivatives of f we also introduce a

partition of unity on K ′ consisting of functions {ψj}lj=1 which all lie in C∞c (∂−ΩRM), and

such that the support of each ψj is contained within the domain of a single coordinate chart

on ∂−ΩRM . Using the coordinates (x, ξ) = (x1, ... , xn, ξ1, ... , ξn) on TU , (2.13) becomes

I∗w[f ](x) =

l∑
j=1

∫
Sn−1

w(x, ξ)ψj(π∂−ΩRM (p−1
Ω (x, ξ))) f(π∂−ΩRM (p−1

Ω (x, ξ))) dHSn−1(ξ).

(2.14)

From this formula we may estimate derivatives of I∗w[f ] in these coordinates in terms of

derivatives of f in various coordinate charts, derivatives of the functions ψj , derivatives of

w, and derivatives of p−1
Ω . Since all of the ψj are zero except on a compact set we only need

bounds on the derivatives of p−1
Ω on a compact subset of ∂−ΩRM , which certainly exist since

p−1
Ω is a diffeomorphism. This completes the proof.

�

Of course it is an immediate corollary of this result that Iw extends to a continuous operator

from E ′(M) to D′(∂−ΩRM). Later in Theorem 7 we will also use (2.13) to show that

I∗w : H1
c (∂−ΩRM)→ H1

loc(M) continuously.
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2.3 Integral form of the normal operator

We will now find an integral formula for the normal operator Nw1,w2 = I∗w1
◦ Iw2 introduced

above. Let f and h ∈ C∞c (M). From the definition of I∗w1
we have

〈Nw1,w2 [f ], h〉L2(M) =〈Iw2 [f ], Iw1 [h]〉L2(∂−ΩRM)

=

∫
∂−ΩRM

(∫ l(x,v)

0
w2(γ̇x,v(s)) f(γx,v(s)) ds

)
×(∫ l(x,v)

0
w1(γ̇x,v(t))h(γx,v(t)) dt

)∣∣dV∂−ΩRM (x, v)
∣∣

=

∫
∂−ΩRM

∫ l(x,v)

0

∫ l(x,v)

0
w2(γ̇x,v(s))w1(γ̇x,v(t)) f(γx,v(s))×

h(γx,v(t)) ds dt
∣∣dV∂−ΩRM (x, v)

∣∣ .
We next split this integral into two parts and make the change of variables s 7→ −s in one

of the parts to obtain

〈Nw1,w2 [f ], h〉L2(M) =

∫
∂−ΩRM

∫ l(x,v)

0

∫ t

0
w2(γ̇γ̇x,v(t)(−s))w1(γ̇x,v(t)) f(γγ̇x,v(t)(−s))×

h(γx,v(t)) ds dt
∣∣dV∂−ΩRM (x, v)

∣∣
+

∫
∂−ΩRM

∫ l(x,v)

0

∫ l(x,v)−t

0
w2(γ̇γ̇x,v(t)(s))w1(γ̇x,v(t)) f(γγ̇x,v(t)(s))×

h(γx,v(t)) ds dt
∣∣dV∂−ΩRM (x, v)

∣∣ .
Recall that F ⊂ TRM is the domain of the exponential map, and for each x ∈ M , Fx =

F ∩ TR
xM . Using (2.11) we see that each of these two parts is an integral over F \ {0} in

the coordinates corresponding to the maps p− and p+ respectively. Thus we have

〈Nw1,w2 [f ], h〉L2(M) =

∫
F\{0}

w2(Exp(ξ))w1(ξ/|ξ|g) f(exp(ξ))h(π(ξ))
|dV (ξ)|
|ξ|n−1

g

+

∫
F\{0}

w2(−Exp(ξ))w1(−ξ/|ξ|g) f(exp(ξ))h(π(ξ))
|dV (ξ)|
|ξ|n−1

g
.

(2.15)

In any set of natural coordinates (x1, ... , xn, v1, ... , vn) for TRM , we have that dV is

given by (2.6). Thus, if U is the domain of this coordinate chart, then the portion of the
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integrals from (2.15) contained in π−1(U) is given by∫
π(U)

h(x)

(∫
Fx\{0}

w2(Expx(v))w1(v/|v|g)f(expx(v))
√

det(g)
dv

|v|n−1
g

)√
det(g) dx

+

∫
π(U)

h(x)

(∫
Fx\{0}

w2(−Expx(v))w1(−v/|v|g)f(expx(v))
√

det(g)
dv

|v|n−1
g

)√
det(g) dx.

(2.16)

From this we see that

Nw1,w2 [f ](x) =

∫
Fx\{0}

w2(Expx(v))w1(v/|v|g)f(expx(v))
√

det(g)
dv

|v|n−1
g

+

∫
Fx\{0}

w2(−Expx(v))w1(−v/|v|g)f(expx(v))
√

det(g)
dv

|v|n−1
g

.

(2.17)

For ease of notation we combine these integrals into one by setting

Ax(v) = w2(Expx(v))w1(v/|v|g) + w2(−Expx(v))w1(−v/|v|g)

so that (2.17) becomes

Nw1,w2 [f ](x) =

∫
Fx\{0}

Ax(v) f(expx(v))
√

det(g)
dv

|v|n−1
g

. (2.18)

Now let (t, ω) ∈ R× ΩRM , and note that Ax(tω) can be written as

Ax(tω) = w2(γ̇x,ω(t))w1(ω) + w2(−γ̇x,ω(t))w1(−ω)

which is a smooth function of (x, t , ω) ∈ M × R × ΩRM even if we extend the domain

to include {t = 0}. If we take t > 0 and ω as polar coordinates on Fx \ {0}, then (2.18)

becomes

Nw1,w2 [f ](x) =

∫
ΩR
xM

∫ l(x,ω)

0
Ax(tω) f(expx(tω)) dt dω (2.19)

where dω is the natural measure on ΩxM . If we assume that f ∈ C∞c (M), then we can

extend the integration in (2.19) to

Nw1,w2 [f ](x) =

∫
ΩR
xM

∫ ∞
0

Ax(tω) f(expx(tω)) dt dω. (2.20)

Since the integrand in (2.20) is compactly supported and is a smooth function of all variables

we can use this formula to establish the following theorem by differentiating under the

integral.
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Theorem 5 The map Nw1,w2 : C∞c (M)→ C∞(M) is continuous.

Of course this result also follows from Theorems 3 and 4.

2.4 N on simple manifolds

The purpose of this section is to prove that when the manifold M is simple, the operator

Nw1,w2 is a ΨDO, and to record a few simple corollaries of this result. To make the notation

simpler and streamline the presentation we will simply write N for some operator of the

form (2.20). As part of the proof we will also calculate the symbol of such operators N ,

which will in turn give us the symbol of Nw1,w2 for any particular choice of the weights w1

and w2.

We first recall the definition of a simple manifold.

Definition 3 A Riemannian manifold (M, g) with boundary is called simple if the following

two conditions are met.

1. The boundary of M is convex with respect to g.

2. For every x ∈M , expx is a diffeomorphism.

If there is only one metric g defined on M and (M, g) is simple, we will say only that M

is simple. Also, when we vary the metric g on a given manifold M , we will say that g is a

simple metric when (M, g) is simple.

By taking the exponential map based at a point in the interior of M , and then trans-

ferring the domain of this map to a closed ball we can see that any simple manifold is

diffeomorphic to a closed ball, and thus there is in particular a global coordinate system.

For the remainder of this section we will assume that we have such a set of global coordi-

nates (x1, ... , xn), and that their range B ⊂ Rn is a closed ball. In the case when M is

simple we may take advantage of the inverse exponential map exp−1
x to express (2.19) as

an integral operator on C∞c (M) in these global coordinates. Indeed, for each x ∈ M let

(Fr)x ⊂ R × ΩR
xM denote the maximal domain of the map (t, ω) 7→ γx(tω), and consider
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the map Fx : (Fr)x → R× Sn−1 defined by

Fx(t, ω) =

(
sign(t)|expx(tω)− x|, sign(t)

expx(tω)− x
|expx(tω)− x|

)
= (ρ, θ) (2.21)

where the algebraic operations on the right are being performed in the global coordinates.

This formula only applies when t 6= 0, however as we will see below it extends to a smooth

map on all of (Fr)x by continuity. Roughly speaking, Fx takes polar coordinates (t, ω) ∈

R× ΩR
xM with respect to the exponential map at x to polar coordinates (ρ, θ) ∈ R× Sn−1

in the global coordinate system centered at x. Note that

expx(tω)− x = t

∫ 1

0
γ̇x,ω(rt)dr.

By the simplicity assumption this quantity is only zero when t = 0, and the integral on the

right is not zero when t = 0. From this we can see that

θ(t, ω) =

∫ 1

0
γ̇x,ω(rt) dr∣∣∣∣∫ 1

0
γ̇x,ω(rt) dr

∣∣∣∣ and ρ(t, ω) = t

∣∣∣∣∫ 1

0
γ̇x,ω(rt) dr

∣∣∣∣ (2.22)

are both smooth functions of x, t, and ω. Further, we have that

(t, ω) =

(
sign(ρ)

∣∣exp−1
x (ρ θ + x)

∣∣
g
, sign(ρ)

exp−1
x (ρ θ + x)∣∣exp−1
x (ρ θ + x)

∣∣
g

)
= F−1

x (ρ, θ)

wherever the functions on the right are defined. From this we can see that Fx is a diffeo-

morphism away from {t = 0}. If we note that Fx(0, ω) = (0, γ̇x,ω(0)), ∂ρ
∂t (0, ω) = |γ̇x,ω(0)|,

and that ∂ρ
∂ω (0, ω) = 0 (with respect to any choice of coordinates for ω on ΩR

x ), then we can

see that by the inverse function theorem Fx is a local diffeomorphism near {t = 0}, and

so Fx is a diffeomorphism onto its range. Also, from the arguments above and the facts

that expx and exp−1
x depend smoothly on x, we can see that the maps Fx and F−1

x depend

smoothly on the parameter x. Now set

A′(x, ρ, θ) = Ax(t(ρ θ)ω(ρ θ))

∣∣∣∣ ∂F−1
x

∂(ρ, θ)

∣∣∣∣ , (2.23)

which by the above arguments is a smooth function on its domain, which includes {t = 0},

and is even in (ρ, θ) (ie. A′(x,−ρ,−θ) = A′(x, ρ, θ)). Since A′ is smooth up to the boundary
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of its domain, it can be extended to a function in C∞c (Rn × R× Sn−1) that is still even in

(ρ, θ). We can now use Fx to change coordinates in (2.20) to obtain

N [f ](x) =

∫
Sn−1

∫ ∞
0

A′(x, ρ, θ)f(x+ ρ θ) dρdθ. (2.24)

Since we have extended the integral kernel A′ to a function on all of Rn in these coordinates,

we can use equation (2.24) to define an operator N : C∞c (Rn) → C∞(Rn). Following [5],

we will now show that any operator of the form (2.24) is a ΨDO of order −1. Indeed, we

have the following theorem.

Theorem 6 Any operator defined on C∞c (Rn) of the form (2.24) with A′ ∈ C∞c (Rn × R×

Sn−1) is a ΨDO of order −1. Further, if A′ is an even function of (ρ, θ) and for ξ ∈ Rn we

define fξ(ω
′) = 〈ω′, ξ〉 on Sn−1, then the symbol σN of the operator N has the asymptotic

expansion

σN (x, ξ) ∼
∞∑
k=0

|ξ|−1−k π

ikk!

〈
f∗ξ
|ξ|
δk,

∂kA′

(∂ρ)k
(x, 0, ·)

〉
. (2.25)

Remark 3: The functions making up the asymptotic expansion in (2.25) are not smooth

near {|ξ| = 0}, but they can each be modified on a compact set to put the kth term in

S−1−k(Rn × Rn).

Remark 4: We can use this result to calculate the symbol of N even in the case that A′ is

not even since we may replace A′ by the even part of A′ in (2.24) without changing N [f ].

Proof: LetN be an operator of the form (2.24) with A′ ∈ C∞c (Rn×R×Sn−1). Then in (2.24)

we can change from the polar coordinates centered at x back to rectangular coordinates

y = x+ ρ θ to get

N [f ](x) =

∫
Rn
A′(x, |y − x|, (y − x)/|y − x|) f(y)

dy

|y − x|n−1
.

Thus N has a Schwarz kernel that is compactly supported and smooth except along the

diagonal where it has an integrable singularity. Therefore, N [f ] can be rewritten as

N [f ](x) =
1

(2π)n

∫
ei〈x,ξ〉σN (x, ξ) f̂(ξ) dξ

where

σN (x, ξ) = e−i〈x,ξ〉N [ei〈·,ξ〉](x) =

∫
Sn−1

∫ ∞
0

ei〈ρ θ,ξ〉A′(x, ρ, θ) dρ dθ (2.26)
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is the symbol of N . Since A′ has compact support there is no problem differentiating under

the integral in (2.26), and so we see that∣∣∣∣∣
(
∂

∂x

)α( ∂

∂ξ

)β
σN (x, ξ)

∣∣∣∣∣ =

∣∣∣∣∫
Sn−1

∫ ∞
0

(iρ)|β|(θ)βei〈ρ θ,ξ〉
(
∂

∂x

)α
A′(x, ρ, θ) dρdθ

∣∣∣∣ .
If ξ 6= 0, we can make the change of variables r = ρ|ξ| to get∣∣∣∣∣
(
∂

∂x

)α( ∂

∂ξ

)β
σN (x, ξ)

∣∣∣∣∣ = |ξ|−1−|β|
∣∣∣∣∫

Sn−1

∫ ∞
0

(ir)|β|(θ)βe
i〈r θ, ξ|ξ| 〉

(
∂

∂x

)α
A′(x,

r

|ξ|
, θ) dr dθ

∣∣∣∣
≤ Cα,β |ξ|−1−β.

Therefore σN ∈ S−1(Rn × Rn), and so N is a ΨDO of order −1 as claimed.

We now assume that A′ is even in (ρ, θ) and complete the proof by showing that the

asymptotic expansion (2.25) holds. To accomplish this we first expand A′ in a Taylor series

around ρ = 0 as follows

A′(x, ρ, θ) =
m∑
k=0

ρk

k!

∂kA′

(∂ρ)k
(x, 0, θ) + ρm+1Rm+1(x, ρ, θ).

By the assumption that A′ is even in (ρ, θ), for each k the function ∂kA′/(∂ρ)k(x, 0, θ) has

parity in θ corresponding to the parity of k. To find the asymptotic expansion for σN

we split up the integral in (2.26) into a sum of terms, which must now be interpreted as

tempered distributions, each corresponding to one of the terms in the Taylor series. Note

that each of these terms is (2π)ne−i〈x,ξ〉 times the inverse Fourier transform of the term in

the Taylor series frozen at x. We will analyze these integrals individually. The general term

is ∫
Sn−1

∫ ∞
0

r′k

k!

∂kA′

(∂r′)k
(x, 0, ω′) ei〈r

′ω′,ξ〉 dr′ dω′

which, for each x, can be written as the following limit in the sense of distributions

lim
ε→0+

∫
Sn−1

∫ ∞
0

r′k

k!

∂kA′

(∂r′)k
(x, 0, ω′) ei〈r

′ω′,ξ〉−εr′2 dr′ dω′.

Using the symmetry of A′ in ω′ described above this can be manipulated by changing

variables (r′, ω′) 7→ (−r′,−ω′) in half of the integral to obtain

lim
ε→0+

1

2

∫
Sn−1

∫ ∞
−∞

r′k

k!

∂kA′

(∂r′)k
(x, 0, ω′) ei〈r

′ω′,ξ〉−εr′2 dr′ dω′.
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Performing the integral in r′ now gives

lim
ε→0+

√
π

2ikk!

∫
Sn−1

∂kA′

(∂r′)k
(x, 0, ω′)

 ∂k

∂sk
e
−s2
4ε

√
ε

∣∣∣∣∣∣
s=〈ω′,ξ〉

dω′.

In the sense of distributions

lim
ε→0+

e
−s2
4ε

√
ε

= 2
√
π δ

and so by the continuity of the derivative and pull-back operations on distributions the limit

of the last integral becomes

π

ikk!

〈
f∗ξ δ

k,
∂kA′

(∂r′)k
(x, 0, ·)

〉
= |ξ|−1−k π

ikk!

〈
f∗ξ
|ξ|
δk,

∂kA′

(∂r′)k
(x, 0, ·)

〉
where we have used properties of the pull-back and the delta function to show the last

equality.

To complete the proof we must show that the contribution to σN coming from the re-

mainder rm+1R(x, r, ω) in the Taylor series expansion satisfies the proper estimates. Indeed,

by the above argument and the linearity of the inverse Fourier transform, we can see that

the following tempered distribution

R̃m+1(x, ξ) = F−1
y

{
|y|m−n+2Rm+1(x, |y|, y

|y|
)

}
(ξ) (2.27)

is a smooth function of ξ away from {ξ = 0}. By [11, Proposition 18.1.4] to complete the

proof it is sufficient to show that

|R̃m+1(x, ξ)| ≤ C|ξ|−1−m (2.28)

for some constant C, and |ξ| sufficiently large. To accomplish this we will split the argument

of the Fourier transform in (2.27) into two pieces. Let φ ∈ C∞c (Rn) be a bump function that

is equal to 1 in the neighborhood Bl(0) of the origin. Then φ(y)|y|m−n+2Rm+1(x, |y|, y|y|)

is compactly supported and integrable in y. Thus we may apply precisely the same ar-

gument that we used on A′ in the first paragraph of this proof to show that the es-

timate (2.28) holds for F−1
y {φ(y)|y|m−n+2Rm+1(x, |y|, y|y|)}. Now let us consider (1 −

φ(y))|y|m−n+2Rm+1(x, |y|, y|y|) which is smooth although not integrable in y. By the for-

mula for the remainder in the Taylor series, and the fact that A′ is compactly supported we
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can see that this function is homogeneous of order m − n + 1 for |y| sufficiently large. We

consider the inverse Fourier transform as an oscillatory integral∫
Rn
ei〈y,ξ〉

(
(1− φ(y)) |y|m−n+2Rm+1(x, |y|, y

|y|
)

)
dy.

Here we have ignored the factor of (2π)n to simplify the notation. Since the function in

parentheses is homogeneous of degree m − n + 1 when |y| is suffiently large, if k is large

enough this distribution is represented by the following function away from ξ = 0

R(x, ξ) =

∫
Rn

ei〈y,ξ〉

|ξ|2k
(−∆y)

k

[
(1− φ(y)) |y|m−n+2Rm+1(x, |y|, y

|y|
)

]
dy.

If we assume that |ξ| = 1 and take any λ > 1, then by changing variables to y′ = λy the

previous formula gives

|R(x, λξ)| = λ−2k−n

∣∣∣∣∣
∫
Rn
ei〈y

′,ξ〉 (−∆y)
k

(
(1− φ(y) |y|m−n+2Rm+1(x, |y|, y

|y|
)

∣∣∣∣
y=y′/λ

dy′

∣∣∣∣∣ .
The differentiated function in this integral is homogeneous of degree m− n+ 1− 2k for |y|

sufficiently large, and is thus bounded by C|y|m−n+1−2k. Therefore

|R(x, λξ)| ≤ λ−2k−n
∫
Rn\Bl(0)

C|y′|m−n+1−2kλ−m+n−1+2kdy′ ≤ Cλ−1−m

where the constants C change at each step. This completes the proof.

�

If N is an operator as in Theorem 6, then its principal symbol is given by the first term in

the asymptotic series (2.25), which is

σN ,p(x, ξ) = |ξ|−1 π

∫
ω′∈Sn−1∩ξ⊥

A′(x, 0, ω′) dHω′ .

Here ξ⊥ ⊂ TR
π(ξ)R

n is the set of vectors annihilated by the covector ξ and dHω′ is the natural

(Hausdorff) measure on the set Sn−1∩ξ⊥. Now we return to the case of the normal operators

Nw1,w2 defined by (2.4). In this case A′ is given by (2.23), and so

A′(x, 0, ω′) = w2(ω(0, ω′))w1(ω(0, ω′)) + w2(−ω(0, ω′))w1(−ω(0, ω′))
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Therefore

σNw1,w2 ,p
(x, ξ) = |ξ|−1

g 2π

∫
ΩR
xM∩ξ⊥

w2(ω)w1(ω) dω. (2.29)

Applying Theorem 6 to our case and using (2.29) we have the following corollary.

Corollary 1 If M is a simple manifold, w1 and w2 ∈ C∞(TM) are weight functions, and

Nw1,w2 is the normal operator defined by (2.4), then Nw1,w2 is a ΨDO of order −1 with

principal symbol σNw1,w2 ,p
∈ C∞((T ∗)RM \ {0}) given by (2.29).

From the expression (2.29) for σNw1,w2 ,p
it is possible to find conditions on w1 and w2 that

are sufficient to imply that Nw1,w2 is elliptic. For example, if w1 and w2 are both real and

≥ 0, then for Nw1,w2 to be elliptic it is sufficient to require that for every ξ ∈ (T ∗)RM \ {0}

there exists an ω ∈ ΩR
xM ∩ ξ⊥ such that w1(ω), w2(ω) 6= 0. If w1 = w2, then Nw1,w2 is

elliptic if for every ξ ∈ (T ∗)RM \ {0} there exists an ω ∈ ΩR
xM ∩ ξ⊥ such that w1(ω) 6= 0.

It is also useful to note that Theorem 6 implies that Nw1,w2 extends to a continuous

operator from E ′(M) to D′(M), and that for any s ∈ R, Nw1,w2 : Hs
c (M) → Hs+1

loc (M) is

continuous (see [29]). Here Hs
c (M) refers to the subspace of Hs(M) consisting of distri-

butions with compact support. A sequence converges to zero in Hs
c (M) if all its elements

have support within a given compact set, and they converge to zero in the Hs(M) norm.

The space Hs
loc(M) is the set of distributions on M int that are in Hs(K) for every compact

K bM int. The topology of Hs
loc(M) is that of Hs convergence on compact sets. By taking

w = w1 = w2 in Corollary 1, we have the following result concerning the continuity of Iw.

Corollary 2 If M is a simple manifold, and w ∈ C∞(TM), then Iw is a continuous

operator from L2
c(M) to L2

c(∂−ΩRM).

Proof: If f ∈ C∞c (M) has support contained in a given compact set K b M int, then

Iw[f ] has support within a corresponding compact subset K ′ b ∂−ΩRM . Thus, applying

Corollary 1 with w = w1 = w2 and using the continuity properties of ΨDOs we have

‖Iw[f ]‖2L2(∂−ΩRM) = ‖Iw[f ]‖2L2(K′) = 〈N [f ], f〉L2(K′) ≤ C‖f‖
2
L2(M).

Thus Iw is a continuous operator on L2
c(M) by approximation.

�
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We now apply corollary 2 to prove a continuity result for I∗w.

Theorem 7 I∗w maps H1
c (∂−ΩRM) to H1

loc(M) continuously.

Proof: Suppose that f ∈ C∞c (∂−ΩRM) has support contained within a given compact set

K ′ b ∂−ΩRM , and suppose that h ∈ L2
c(M) with ‖h‖L2(M) = 1 has support contained

within a compact set K bM int. Then by corollary 2

〈h, I∗w[f ]〉L2(M) = 〈Iw[h], f〉L2(∂−ΩRM) ≤ C‖h‖L2(M)‖f‖L2(∂−ΩRM) = C‖f‖L2(∂−ΩRM)

for some constant C > 0 possibly depending on K. This shows that I∗w : L2(∂−ΩRM) →

L2
loc(M) is continuous.

The remainder of the proof is very similar to the proof of Theorem 4, but now we use

the fact that we have already established the L2 continuity in order to bootstrap up to

H1 continuity. In parallel to the proof of Theorem 4, let U b M be the domain of some

coordinates (x1, ... , xn) and assume that we have an orthonormal frame {E1, ... , En} for

TU . Suppose that (x1, ... , xn, ξ1, ... , ξn) are the corresponding coordinates for TU , and

also introduce a cut-off function φ ∈ C∞c (U). To prove the continuity property claimed it

is now sufficient to show that for any f and h as defined in the previous paragraph

〈h, φ ∂

∂xi
I∗w[f ]〉L2(M) ≤ C‖f‖H1(∂−ΩRM), (2.30)

since we may apply a partition of unity on K by functions like φ with support contained

in the domains of coordinate charts to estimate the full H1(K) norm of I∗w[f ] by using

(2.30) in each chart. Still following the proof of Theorem 4 we introduce a partition of

unity on K ′ consisting of functions {ψj}lj=1 which all lie in C∞c (∂−ΩRM), and such that the

support of each ψj is contained within the domain of a single coordinate chart. For each

j, suppose these coordinates are given by (y1
j , ... , y

2n−2
j ). Using the coordinates (x, ξ) =

(x1, ... , xn, ξ1, ... , ξn) on TU , (2.13) becomes

I∗w[f ](x) =
l∑

j=1

∫
Sn−1

w(x, ξ)ψj(π∂−ΩRM (p−1
Ω (x, ξ))) f(π∂−ΩRM (p−1

Ω (x, ξ)) dHSn−1(ξ). (2.31)

Now we may calculate ∂
∂xi
I∗w[f ](x) by differentiating under the integral in (2.31). Doing
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this we obtain

φ
∂

∂xi
I∗w[f ](x) =

l∑
j=1

φ

(∫
Sn−1

∂w

∂xi
(x, ξ)ψj(π∂−ΩRM (p−1

Ω (x, ξ))) f(π∂−ΩRM (p−1
Ω (x, ξ)))

+w(x, ξ)
∂

∂xi
(p−1

Ω (x, ξ))k
∂ψj

∂ykj
(π∂−ΩRM (p−1

Ω (x, ξ))) f(π∂−ΩRM (p−1
Ω (x, ξ)))

+ w(x, ξ)
∂

∂xi
(p−1

Ω (x, ξ))k ψj(π∂−ΩRM (p−1
Ω (x, ξ)))

· ∂f
∂ykj

(π∂−ΩRM (p−1
Ω (x, ξ))) dHSn−1(ξ)

)
.

From this equation we see that φ ∂
∂xi
I∗w[f ](x) is given as a sum of terms I∗wij [f ](x) and

I∗
wkij

[ ∂f
∂ykj

](x) where the wij and wkij are an indexed set of weights, and ∂f
∂ykj

are derivatives of

f in local coordinates that are defined on the required respective domains. These weights

are all in C∞c (ΩM) and depend on φ as well as the choice of partition {ψ}lj=1, but not on

either f or h. Therefore (2.30) holds by applying the same argument that established the

L2 continuity of I∗w to each of these terms. Now the constant C may depend on both K

and K ′. This completes the proof.

�

Remark 5: A similar argument to that found in the proof of Theorem 7 could also be used

to show that I∗w : Hk
c (∂−ΩRM) → Hk

loc(M) is continuous for any non-negative integer k.

However, we will not need the result for k > 1, and so have not included that case in the

theorem.
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Chapter 3

THE LINEARIZED PROBLEM

We now return to the linearization of the polarization problem described at the be-

ginning of the previous chapter. This linearized problem is the inversion of the transform

IU1,U2 defined by (2.1) which takes f ∈ τ1
1 (M) to a (possibly rough) section of the vector

bundle B2(∂−ΩRM) defined in Chapter 1. For each ξ ∈ ∂−ΩRM and η, ζ ∈ Tπ(ξ)M , the

value of IU1,U2 [f ](η, ζ) is given by (2.1). We will assume that M is a simple manifold (see

definition 3), and also assume that we have a set of global coordinates (x1, ... , xn) for M ,

which provide natural global coordinates on TM as well. If we simply write out (2.1) with

respect to these coordinates, taking R(γ̇x,v(s))ab = g(γx,v(s))dj (Iγx,v0,s )jb (U−1
2 )(γ̇x,v(s))

d
a and

Q(γ̇x,v(s))
m
k = (U1)(γ̇x,v(s))

m
p (Iγx,v0,s )pk, we have

((IU1,U2)[f ])(x, v)kb =

∫ l

0
R(γ̇x,v(s))ab [Pγ̇x,v(s) f ](γx,v(s))

a
mQ(γ̇x,v(s))

m
k ds. (3.1)

To fully analyze this operator in coordinates we also need the expansion

[Pv f ]am =

(
δar −

va vr
|v|2g

)
f ru

(
δum −

vu vm
|v|2g

)
. (3.2)

Using (3.2) we can expand the integrand in (3.1) in terms of the components f ru. From

this, we can see that ((IU1,U2)[f ])(ξ)kb is a sum of weighted X-ray transforms of each of

these components. Therefore, if f has support compactly contained in the interior of M ,

then we may apply Theorem 3 to conclude that each of the components of IU1,U2 [f ] are in

C∞c (∂−ΩM). This reasoning gives the following theorem.

Theorem 8 The map IU1,U2 : (τ1
1 )c(M)→ (β2)c(∂−ΩM) is continuous.

Much of the remainder of our analysis of this transform, IU1,U2 , will proceed in a very

similar manner. We will look at the individual components of IU1,U2 in coordinates as

individual X-ray transforms and apply the results of Chapter 2.
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In section 3.1 we define and analyze the normal operator NU1,U2 in a manner analogous

to the treatment of Nw1,w2 in Chapter 2. Having done this we apply the results to the linear

problem in section 3.2. Finally, to complete our study of the linear problem in section 3.3

we apply analytic microlocal methods to prove generic injectivity.

3.1 The operators I∗U1,U2
and NU1,U2

In order to define NU1,U2 we first introduce some new norms and spaces. Both T 1
1M and

B2(∂−ΩRM) are vector bundles with inner products on each fiber induced by the metric g.

These are defined with respect to any given frame as

〈f, h〉(T 1
1 )xM = f ru grα(x) guε(x)h

α
ε and 〈F,H〉(B2)(x,v)(∂−ΩRM) = Fkb g

kκ(x) gbν(x)Hκν .

Using these we may introduce the corresponding L2 inner products and spaces for the

sections of each vector bundle (see for example [16]). These inner products are given by

〈f, h〉L2τ11 (M) =

∫
M
〈f, h〉(T 1

1 )xM dvg (3.3)

and

〈F,H〉L2β2(∂−ΩRM) =

∫
∂−ΩRM

〈F,H〉(B2)ξ(∂−ΩRM)dV∂−ΩRM . (3.4)

We now define the transpose I∗U1,U2
in an analogous manner to the definition of I∗w in

Chapter 2. Indeed, for F ∈ β2(∂−ΩRM) and h ∈ τ1
1 (M) we define I∗U1,U2

[F ] by

〈I∗U1,U2
[F ], h〉L2τ11 (M) = 〈F, IU1,U2 [h]〉L2β2(∂−ΩRM).

Similarly we define the normal operator NU1,U2 by

NU1,U2 = I∗U1,U2
◦ IU1,U2 . (3.5)

The important properties of this operator are contained in the next two theorems. As we

might expect from section 1.3, there is a difference between the 3 dimensional case, and the

case of more than 3 dimensions. We will first deal with the case of greater than 3 dimensions

since it is simpler, and most of the analysis there actually applies to the 3 dimensional case

as well.
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Theorem 9 If M is a simple manifold, then the operator NU1,U2 defined by (3.5) is a ΨDO

of order −1 on the sections of the vector bundle T 1
1M . Furthermore, if the dimension of M

is greater than 3, then NU1,U2 is elliptic.

Proof: The first step is derive an integral formula for NU1,U2 similar to the one found in

section 2.3 for Nw1,w2 . Indeed, as in that section we have according to (3.4)

〈NU1,U2 [f ], h〉L2τ11 (M) = 〈IU1,U2 [f ], IU1,U2 [h]〉L2β2(∂−ΩRM)

=

(∫
∂−ΩRM

|dV∂−ΩRM (x, v)| g(x)bb
′
g(x)kk

′×(∫ l(x,v)

0
R(γ̇x,v(s))ab [Pγ̇x,v(s) f ](γx,v(s))

a
mQ(γ̇x,v(s))

m
k ds

)
×(∫ l(x,v)

0
R(γ̇x,v(t))a′b′ [Pγ̇x,v(t) h](γx,v(t))a

′
m′ Q(γ̇x,v(t))m

′
k′ dt

))

=

(∫
∂−ΩRM

|dV∂−ΩRM (x, v)|×(∫ l(x,v)

0
(I
γγ̇x,v(s)
0,−s )b

′
b (U−1

2 )(γ̇x,v(s))
b
a [Pγ̇x,v(s) f ](γx,v(s))

a
m×

(U1)(γx,v(s))
m
p (I

γγ̇x,v(s)
0,−s )k

′
k g(γx,v(s))

kp ds

)
×(∫ l(x,v)

0
R(γ̇x,v(t))a′b′ [Pγ̇x,v(t) h](γx,v(t))a

′
m′ Q(γ̇x,v(t))m

′
k′ dt

))
.

In this last inequality we have used the following property of parallel translation in relation

to the metric

g(x)bb
′
(Iγx,v0,s )jb = (Iγx,vs,0 )b

′
o (Iγx,v0,s )oρ g(x)ρb (Iγx,v0,s )jb = (Iγx,vs,0 )b

′
b g(γx,v(s))

bj .

We could also use (3.2) to fully expand the above integrands in coordinates, but will not

because the notation already seems excessive. With such a full expansion we would have a

sum of the form∫
∂−ΩRM

(∫ l(x,v)

0
w2(γ̇x,v(s))

uk′b′
r f(γx,v(s))

r
u ds

)
×(∫ l(x,v)

0
w1(γ̇x,v(t))εαk′b′ h(γx,v(t))αε dt

)
|dV∂−ΩRM (x, v)|.
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For any (x, v) ∈ ΩM the weights w1(x, v)εαk′b′ and w2(x, v)uk
′b′

r are given by

w1(x, v)εαk′b′ = g(x)d′j′ (I
γx,v
−l(x,−v),0)j

′

b′ (U
−1
2 )(x, v)d

′
a′ [Px,v]

a′ε
m′α (U1)(x, v)m

′
p′ (Iγx,v−l(x,−v),0)p

′

k′

(3.6)

and

w2(x, v)uk
′b′

r = (Iγx,v0,−l(x,−v))
b′
b (U−1

2 )(x, v)ba [Px,v]
au
mr (U1)(x, v)mp (Iγx,v0,−l(x,−v))

k′
k g(x)kp. (3.7)

The components of [Px,v]
a′ε
m′α can be calculated from (3.2), although as we will see below

this is unnecessary for our purposes. If we apply the steps from section 2.3 to each of these

terms separately then the equivalent of (2.16) in this case is (note that since we have global

coordinates π(U) = M)

∫
M
h(x)αε

(∫
Fx\{0}

w2(Expx(v))uk
′b′

r w1(v/|v|g)εαk′b′

× f(expx(v))ru
√

det(g)
dv

|v|n−1
g

)√
det(g) dx

+

∫
M
h(x)αε

(∫
Fx\{0}

w2(−Expx(v))uk
′b′

r w1(−v/|v|g)εαk′b′

× f(expx(v))ru
√

det(g)
dv

|v|n−1
g

)√
det(g) dx.

Considering now (3.3), we can see that

NU1,U2 [f ](x)αε = g(x)αα
′
g(x)εε′

(∫
Fx\{0}

w2(Expx(v))uk
′b′

r w1(v/|v|g)ε
′
α′k′b′

× f(expx(v))ru
√

det(g)
dv

|v|n−1
g

+

∫
Fx\{0}

w2(−Expx(v))uk
′b′

r w1(−v/|v|g)ε
′
α′k′b′

× f(expx(v))ru
√

det(g)
dv

|v|n−1
g

)
.

(3.8)

By continuing to analyze each of the terms in this sum separately, the remaining results in

Chapter 2 show that this is a system of ΨDOs of order −1, and therefore a ΨDO on the

sections of the vector bundle T 1
1 (M). Furthermore, the principal symbol for this system is
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given, according to (2.29), by

σNU1,U2
,p(x, ξ)

uα
rε = |ξ|−1

g g(x)αα
′
g(x)εε′ 2π

∫
ΩR
xM∩ξ⊥

w2(ω)uk
′b′

r w1(ω)ε
′
α′k′b′ dω. (3.9)

Recall that ξ⊥ is the set of vectors annihilated by the covector ξ. The principal symbol

σNU1,U2
,p(x, ξ) is a linear map from (T 1

1 )x(M) to (T 1
1 )x(M) for each (x, ξ) ∈ (T ∗)RM \ {0}.

We will now prove that NU1,U2 is elliptic by showing that σNU1,U2
,p(x, ξ) is injective at

every point (x, ξ) ∈ (T ∗)RM \ {0}. Indeed, suppose that f ∈ (T 1
1 )xM is not zero. We must

show that this implies that σNU1,U1
,p(x, ξ)[f ] is not zero. By (3.9) we have

〈σNU1,U1
,p(x, ξ)[f ], f〉(T 1

1 )xM =
2π

|ξ|g

∫
ΩR
xM∩ξ⊥

w2(ω)uk
′b′

r w1(ω)εαk′b′ f
r
u f

α
ε dω.

Applying (3.6), and (3.7) we can rewrite the integrand in this formula invariantly as

‖U−1
2 (ω) ◦ [Pωf ] ◦ U1(ω)‖2(T 1

1 )xM
. (3.10)

Since this quantity is always non-negative, to show that σNU1,U1
,p(x, ξ)[f ] is not zero it is

sufficient to prove that U−1
2 (ω)◦ [Pωf ]◦U1(ω) is not zero at some point ω ∈ ΩR

xM ∩ ξ⊥. We

note here that all of the steps in the proof until now apply equally well in dimension 3. It is

the next step that requires dimension greater than 3. Since f is not zero, there exists some

v ∈ TxM such that f(v) 6= 0. When the dimension is greater than 3, it is always possible

to find a vector ωv ∈ ΩR
xM ∩ ξ⊥ that is simultaneously perpendicular to v and f(v). Given

such an ωv we have

〈U−1
2 (ωv) ◦ [Pωvf ] ◦ U1(ωv)(U

−1
1 (ωv)v), U∗2 (ωv)f(v)〉g(x) = ‖f(v)‖2g(x) > 0.

Therefore U−1
2 (ωv) ◦ [Pωvf ] ◦ U1(ωv) 6= 0, and so NU1,U2 is elliptic.

�

We now turn to the case of dimension 3. For the statement of the theorem in this case we

use the operator dβ defined by (1.15), and take Λ2 to be a ΨDO on M which is a parametrix

for the positive Laplace-Beltrami operator −∆g.

Theorem 10 If M is simple and the dimension of M is 3, then the system of ΨDOs

(NU1,U2 ,Λ
2 dβ)T from sections of T 1

1 (M) to sections of T 1
1 (M)

⊕
Λ0(M) is elliptic. Fur-

thermore, this remains true if Λ2 dβ is replaced with the same operator with respect to any

other metric g′ that is sufficiently close to g.
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Proof: We will first calculate the operator dβ : τ1
1 (M) → Λ0(M) in coordinates and then

determine its principal symbol. Taking any f ∈ τ1
1 (M) we have

dβ(f ji dxi ⊗ ∂
∂xj

) = ∗d

(∑
i<j

(gik f
k
j − gjk fki ) dxi ∧ dxj

)
= 1√

det(g)

(
∂(g1k f

k
2 )

∂x3
− ∂(g2k f

k
1 )

∂x3
− ∂(g1k f

k
3 )

∂x2
+

∂(g3k f
k
1 )

∂x2

+
∂(g2k f

k
3 )

∂x1
− ∂(g3k f

k
2 )

∂x1

)
From this we can see that the principal symbol σdβ ,p(x, ξ) is given by

σdβ ,p(x, ξ)[f ] =
i√

det(g)
(ξ1(g2k f

k
3 − g3k f

k
2 )− ξ2(g1k f

k
3 − g3k f

k
1 ) + ξ3(g1k f

k
2 − g2k f

k
1 )).

Since composition of ΨDOs corresponds to multiplication at the level of principal symbols

and the principal symbol of Λ2 is |ξ|−2
g , this implies that the principal symbol σΛ2 dβ ,p of

Λ2 dβ is given by

σΛ2 dβ ,p(x, ξ)[f ] =
i

|ξ|−2
g

√
det(g)

(ξ1(g2k f
k
3 −g3k f

k
2 )−ξ2(g1k f

k
3 −g3k f

k
1 )+ξ3(g1k f

k
2 −g2k f

k
1 )).

(3.11)

To complete the proof we must show that for any (x, ξ) ∈ (T ∗)RM \ {0}, the map

(σNU1,U2
,p(x, ξ), σΛ2 dβ ,p(x, ξ))

T : (T 1
1 )xM → (T 1

1 )xM
⊕

Λ0(M) (3.12)

is injective.

Indeed, let us suppose that f ∈ (T 1
1 )xM is such that (σNU1,U2

,p, σΛ2 dβ ,p)
T [f ] = 0. We

must show that this implies f = 0. Most of the proof of Theorem 9 still applies to this

case. In fact, following through that proof we see that it is sufficient to show that if f 6= 0

and σΛ2 dβ (x, ξ)[f ] = 0, then for any (x, ξ) ∈ (T ∗)RM there exists ω ∈ ΩR
xM ∩ ξ⊥ such that

U−1
2 (ω) ◦ [Pωf ] ◦ U1(ω) is not zero. Indeed, suppose that f satisfies these hypotheses and

split f into symmetric and anti-symmetric parts by writing

f = fs + fa

where fs = (f + f t)/2 and fa = (f − f t)/2. Recall that f t is the transpose of f given by

(1.14). Since f 6= 0, one of fs or fa must be non-zero, and so we break the proof into two

cases.
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Case 1: fs is not zero. In this case there must be a real vector v ∈ TxM such that

〈fs(v), v〉g(x) 6= 0. Take ωv ∈ ΩR
xM ∩ ξ⊥ such that ωv is perpendicular to v. Then since v is

real we have

〈U−1
2 (ωv) ◦ [Pωvf ] ◦ U1(ωv)(U

−1
1 (ωv)v), U∗2 (ωv)v〉g(x) = 〈f(v), v〉g(x) = 〈fs(v), v〉g(x) 6= 0.

Therefore U−1
2 (ωv) ◦ [Pωvf ] ◦ U1(ωv) 6= 0, and the proof is complete in this case.

Case 2: fs is zero, but fa is not zero. Since this entire calculation takes place in a single

fiber over M , we assume that we are working with respect to an orthonormal frame and so

gij = δij . By assumption f is represented with respect to this frame by an anti-symmetric

matrix

f =


0 f1

2 f1
3

−f1
2 0 f2

3

−f1
3 −f2

3 0

 .

If we also write v = (v1, v2, v3)T in this frame, then it is easy to check that

f(v) =


v1

v2

v3

×

f2

3

−f1
3

f1
2

 (3.13)

where × denotes the Euclidean cross product. Also, in this orthonormal coordinate frame

(3.11) becomes

σΛ2 dβ ,p(x, ξ)[f ] =
2i

|ξ|−2
(ξ1f

2
3 − ξ2f

1
3 + ξ3f

1
2 ).

Therefore, if we take ω = (f2
3 ,−f1

3 , f
1
2 )T /|(f2

3 ,−f1
3 , f

1
2 )|, then σΛ2 dβ (x, ξ)[f ] = 0 implies

that ω · ξ = 0 and so ω ∈ ΩR
x ∩ ξ⊥. Finally, if we take v to be nonzero and perpendicular

to both ω and ξ] (this is ξ with the index raised), then by (3.13) f(v) must be nonzero,

parallel to ξ], and perpendicular to ω (see figure (3.1)). Therefore

〈U−1
2 (ω) ◦ [Pωf ] ◦ U1(ω)(U−1

1 (ω)v), U∗2 (ω) ξ]〉g(x) 6= 0.

This shows that the map (3.12) is injective which completes the proof except for the final

statement. To prove the last statement of the theorem we simply note that if we replace

Λ2 dβ by the same operator with respect to a different metric g′, then the principal symbol
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Figure 3.1: By the condition that σΛ2 dβ ,p[f ] = 0, when ω is chosen as indicated ω and

ξ] are perpendicular. Then if v is perpendicular to both ω and ξ], by (3.13) f(v) will be
perpendicular to both ω and v, and therefore necessarily parallel to ξ].

of this new operator is given by (3.11) with g replaced by g′. Therefore, if ‖g − g′‖S2M is

sufficiently small, then (3.12) is still injective when the replacement is made. This completes

the proof of Theorem 10.

�

Remark 6: In the proofs of both Theorem 9 and Theorem 10 the final step was to prove the

algebraic fact that for f non-zero, and in the case of Theorem 10 satisfying the additional

identity σΛ2 dβ ,p(x, ξ)[f ] = 0, the semi-basic tensor field U−1
2 (ω) [Pωf ]U1(ω) cannot vanish

for all ω ∈ ΩR
xM ∩ ξ⊥. This fact will also be useful later in the proof of lemma 6

The remainder of this section is dedicated to the proof of two results that will be required

later. First we have the following lemma.

Lemma 2 In dimension 3, the ΨDO NU1,U1 ◦ (] ◦ ∗d) from Λ0(M) to sections of T 1
1 (M) is

of order −1. Here ] raises the first index.

Remark 7: Note that ] ◦ ∗d is a ΨDO of order 1 while NU1,U2 is of order −1, and so we

would naively expect NU1,U2 ◦ (] ◦ ∗d) to be of order 0.

Proof: By the calculus of ΨDOs, it is sufficient to show that for every (x, ξ) ∈ (T ∗)RM \{0},

σNU1,U2
,p(x, ξ) ◦ σ]◦∗d,p(x, ξ) = 0. Based on (3.10), it is sufficient to show that for any non-
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zero complex number β̃ and any ω ∈ ΩR
xM ∩ ξ⊥

Pω[σ]◦∗d,p(x, ξ) β̃] = 0.

Let us now proceed to calculate σ]◦∗d,p. Assume that we have an oriented coordinate

system (x1, x2, x3) whose coordinate vectors are orthonormal at the point x, (x, ξ) = dx1,

and ω = ∂
∂x2

. Then if β ∈ Λ0(M), in these coordinates we have

] ◦ ∗d(β) =
∂β

∂x1
∂x2 ∧ dx3 − ∂β

∂x2
∂x1 ∧ dx3 +

∂β

∂x3
∂x1 ∧ dx2.

Therefore, if β̃ = β(x) then

σ]◦∗d,p(x, ξ) β̃ = i β̃ ∂x2 ∧ dx3.

Similar to (3.13), if v ∈ TxM is represented as the vector (v1, v2, v3)T in these coordinates,

then

σ]◦∗d,p(x, ξ) β̃(v) = i β̃


v1

v2

v3

×


1

0

0

 =


0

v3

−v2


where × refers to the Euclidean cross product. This implies (recall that ω = ∂

∂x2
)

Pω[σ]◦∗d,p(x, ξ) β̃](v) = i β̃ πω


0

v3

0

 = 0.

This completes the proof of the lemma.

�

We also require in section 4.3 a continuity result for I∗U1,U2
which we will now prove. This

theorem is not necessary to prove local uniqueness for the nonlinear problem, but is required

for local stability. Note that for this result we do not require M to be simple.

Theorem 11 The operator I∗U1,U2
is continuous from H1

c β2(∂−ΩRM) to H1
locτ

1
1M .

Proof: The proof involves working in coordinates and showing that each coordinate of

I∗U1,U2
[F ] is given by a sum of x-ray transforms I∗w for some set of weights w applied to
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the coordinates of F . To do this, let F ∈ (β2)c ∂−ΩRM with support contained in a given

compact set K ′ b ∂−ΩRM and take any h ∈ (τ1
1 )cM

int with support contained within a set

K b M . Let {φj′} ⊂ C∞c (∂−ΩRM) and {ψj} ⊂ C∞c (M int) be finite partitions of unity on

K ′ and K respectively such that each of the cut-off functions has support contained within

a coordinate chart. Then

I∗U1,U2
[F ]
∣∣
K

=
∑
j,j′

ψj I
∗
U1,U2

[φj′ F ],

and so it is sufficient to show that for each pair of j and j′, (I∗U1,U2
)jj′ = ψmj ◦ I∗U1,U2

◦ φmj′ :

H1
c β2∂−ΩRM → H1

c τ
1
1M is continuous. Here ψmj denotes multiplication by ψj , and similarly

for φmj′ .

Next we derive a formula for the components of (I∗U1,U2
)jj′ [F ] in the local coordinates.

Proceeding in a manner similar to the proof of Theorem 9 we have

〈(I∗U1,U2
)jj′ [F ], h〉L2τ11 (M) = 〈φj′ F, IU1,U2 [ψjh]〉L2β2(∂−ΩRM)

=

∫
∂−ΩRM

∫ l(x,v)

0
φj′ ψj F (x, v)bk (I

γγ̇x,v(t)
0,−t )bb′ (U

−1
2 )(γ̇x,v(t))b

′
a′×

[Pγ̇x,v(t) h](γx,v(t))
a′
m′ (U1)(γ̇x,v(t))m

′
p′ (I

γγ̇x,v(t)
0,−t )kk′×

g(γx,v(t))
k′p′ dt dV∂−ΩRM (x, v)

=
∑
b,k,α,ε

〈φj′ Fbk, Iwbkεα
[ψj h

α
ε ]〉L2(∂−ΩM)

=
∑
b,k,α,ε

〈I∗wbkεα
[φj′ Fbk], ψj h

α
ε 〉L2(M)

where

wbkεα (ξ) = (Iγξ0,−l(−ξ))
b
b′ (U

−1
2 )(ξ)b

′
a′ (Pξ)

a′ε
m′α (U1)(ξ)m

′
p′ (Iγξ0,−l(−ξ))

k
k′ g(π(ξ))k

′p′ .

From this calculation we see that in local coordinates

(I∗U1,U2
)jj′ [F ]αε =

∑
b,k,α′,ε′

g(x)αα
′
g(x)εε′ ψ

m
j (x) I∗

wbkε
′

α′
[φmj′ Fbk].

Therefore by Theorem 7 ‖(I∗U1,U2
)jj′ [F ]αε ‖H1(M) ≤ C‖F‖H1β2(∂−ΩRM) for a constant C > 0,

which in turn implies the result.

�
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In the next section we will apply Theorems 9 and 10 to the problem of inverting the trans-

form IU1,U2 .

3.2 Stability estimate for the linear problem

We now consider explicitly the linear problem of inverting the transform IU1,U2 defined by

(2.1). In the case of dimension greater than 3 the results of this section together with the

next will show that IU1,U2 is injective for a generic set of metrics g, and weights U1 and U2.

The precise meaning of “generic” in this context will be explained below, but in particular

we may say that the result holds for a set of metrics and weights which is open and dense

in the respective C4 topologies.

The case of dimension 3 is, as we may expect based on Theorem 2, more complicated.

In this case we can show that the same results hold as in the higher dimensional case if we

restrict to the space of tensor fields f ∈ τ1
1 (M) such that dβ(f) = 0. Recall that dβ is defined

in (1.15). For convenience we introduce the notation L2
βτ

1
1 (M) for the space of tensor fields

such that dβ(f) = 0, which is a closed subspace of L2
βτ

1
1 (M). It may be tempting to think

that the elements of L2τ1
1 (M) which can be written as (∗d(β))# are in the kernel of IU1,U2 ,

however this is not true. In fact they are only in this kernel according to Theorem 2 if U1

and U2 have a specific form. Lemma 2 shows that these elements are in some sense in the

kernel of NU1,U2 to leading order.

In order to formulate our results, we must introduce a few new objects. We will first of

all take a new manifold with boundary M1 such that M bM int
1 . This is always possible by

taking a collar neighborhood of ∂M that is diffeomorphic to ∂M × [0, ε), and then taking

M1 to be M ∪ (∂M × [−ε, 0)) where the charts for M1 across ∂M are defined in the obvious

way. Furthermore, since g is smooth up to ∂M , g can be extended smoothly to a metric

on M1 that agrees with g on M . If we assume that M is a simple manifold, then we may

assume that with the extended metric M1 is also a simple manifold. In what follows we will

assume that we have such an M1. Note that this extension is necessitated by the fact that

we wish to consider IU1,U2 and NU1,U2 acting on functions that are nonzero up to ∂M , but

general ΨDOs over M only act on elements of E ′(M).

Now if U1 and U2 ∈ β1
1(M1), then we may apply all of the previous results on either M
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or M1. Thus we may have normal operators NM
U1,U2

and NM1
U1,U2

. However, note that by the

integral formula for NU1,U2 , if supp(f) ⊂M then NM
U1,U2

[f ] = NM1
U1,U2

[f ]
∣∣∣
M

. Thus, if we only

considerNU1,U2 acting on L2τ1
1 (M), and we identify L2τ1

1 (M) with the subspace of L2
cτ

1
1 (M1)

of tensor fields having support contained in M , then there is no need to distinguish between

NM
U1,U2

and NM1
U1,U2

. Considering these comments together with the continuity properties of

ΨDOs, we see that NU1,U2 : L2τ1
1 (M) → H1

locτ
1
1 (M1), and composing with the restriction

map we obtain that NU1,U2 : L2τ1
1 (M) → H1τ1

1 (M) is continuous. From this we have the

following corollary whose proof is formally the same as Corollary 2.

Corollary 3 If M is a simple manifold, then IU1,U2 can be extended to a continuous oper-

ator from L2τ1
1 (M) to L2β2(∂−ΩRM).

For the remainder of this chapter we will be studying the inversion of IU1,U2 on the

space L2τ1
1 (M). The main result in the higher dimensional case is the next theorem. In the

statement and proof we use the annulus (Ωb
a)

RM1 = {(x, v) ∈ TRM1 | a < ‖v‖g < b} where

0 < a < b. For this proof and the proof of Theorem 13 we use methods developed in [6] and

[24].

Theorem 12 If U1 and U2 ∈ β1
1(TRM1 \{0}) are everywhere invertible and M1 is a simple

manifold of dimension greater than 3, then the kernel of IU1,U2 acting on L2τ1
1 (M) is at

most finite dimensional and contains only elements of τ1
1 (M) that are zero to infinite order

on ∂M (ie. the elements of the kernel are all smooth and vanish to infinite order on ∂M).

Furthermore, if IU1,U2 is injective, then there is a stability estimate

‖f‖L2τ11 (M) ≤ C‖NU1,U2 [f ]‖H1τ11 (M1). (3.14)

The constant C in (3.14) can be chosen so that there exists ε > 0 such that the estimate

(3.14) remains valid if U1, U2, and g are replaced by U ′1, U ′2 ∈ C3β1
1(TRM1 \ {0}), and g′ ∈

C4S2M1 with ‖U1−U ′1‖C3β1
1((Ωba)RM1) < ε, ‖U2−U ′2‖C3β1

1((Ωba)RM1) < ε, and ‖g−g′‖C4S2M1
< ε

assuming that the unit sphere bundles with respect to both g and g′ are contained in (Ωb
a)

RM1.

Remark 8: We require bounds on U1 − U ′1 and U2 − U ′2 in β1
1((Ωb

a)
RM1) rather than just

β1
1(ΩRM1) since when we vary the metric g to g′, the set ΩRM1 changes, and we want
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to compare the operators corresponding to these different metrics. Indeed, note that the

operator NU1,U2 depends on the metric g, even though that dependence is not explicitly

indicated by the notation as is the dependence on U1 and U2. The conclusions of Theorem 12

show that the set of (U1, U2, g) for which NU1,U2 is injective is open with respect to the C4

norm on the product space β1
1((Ωb

a)
RM1)× β1

1((Ωb
a)

RM1)× S2M1.

Proof: For this proof we will require an intermediate manifold M1/2 such that M bM int
1/2 b

M int
1 . For example, if M1 is constructed as described above, then M1/2 can be taken to be

M∪(∂M×[−ε/2, 0). Now, take a cut-off function φ ∈ C∞c (M1) such that φ = 1 on M1/2. By

Theorem 9 the ΨDO NU1,U2 is elliptic of order −1, and therefore there exists a parametrix

A for NU1,U2 which is a ΨDO of order 1. This means that, if we denote multiplication by φ

as φm, for any f ∈ L2τ1
1 (M) we have

A ◦ (φm ◦ NU1,U2 ◦ φm)[f ] = f +K[f ] on M int
1/2 (3.15)

where K : E ′τ1
1 (M1) → τ1

1 (M1) is a properly supported smoothing operator. The addition

of the cut-off functions in this formula is required for the composition of the two ΨDOs to

be well-defined. Rearranging this last formula slightly, using the continuity properties of A

and K, and using the fact that φf = f , we obtain the estimate

‖f‖L2τ11 (M) = ‖f‖L2τ11 (M1) ≤ C(‖NU1,U1 [f ]‖H1τ11 (M1) + ‖f‖H−sτ11 (M1)) (3.16)

for any s > 0. For f ∈ L2τ1
1 (M) ∩ ker(NU1,U2) this estimate becomes

‖f‖L2τ11 (M1) ≤ C‖f‖H−sτ11 (M1).

Since the inclusion map L2τ1
1 (M1) ↪→ H−sτ1

1 (M1) is compact when s > 0 this shows

that the identity map restricted to f ∈ L2τ1
1 (M) ∩ ker(NU1,U2) must be compact and so

L2τ1
1 (M)∩ ker(NU1,U2) must be finite dimensional. From the definition of NU1,U2 it is clear

that L2τ1
1 (M)∩ker(NU1,U2) = L2τ1

1 (M)∩ker(IU1,U2), and so as claimed the kernel of IU1,U2

acting on L2τ1
1 (M) is finite dimensional. Further, if f ∈ L2τ1

1 (M) ∩ ker(NU1,U2), then by

(3.15) f = −K[f ] on M int
1/2, and in particular f ∈ τ1

1 (M1/2). Since f = 0 on M1/2 \M , this

proves result that if IU1,U2 [f ] = 0, then f vanishes to infinite order on ∂M .

The stability estimate (3.14) follows from (3.16) and the following lemma which is similar

to [27, Prop. V.3.1]. See also [23, Lemma 2]. A proof is included for completeness.
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Lemma 3 If X, Y , and Z are all Banach spaces, A : X → Y is a continuous and injective

linear operator, K : X → Z is a compact linear operator, and we have the estimate

‖x‖X ≤ C(‖Ax‖Y + ‖Kx‖Z) ∀x ∈ X, (3.17)

then in fact we have

‖x‖X ≤ C̃‖Ax‖Y ∀x ∈ X.

Proof of Lemma 3: Suppose that the conclusion were not true and so we could find a

sequence {xn}∞n=1 ⊂ X with ‖xn‖X = 1 for all n, and such that ‖Axn‖Y → 0 as n → ∞.

By compactness of K, there exists a subsequence {xnk}∞k=1 so that {Kxnk}∞k=1 converges as

k →∞ and is therefore Cauchy. Thus using (3.17) and the fact ‖Axnk‖Y → 0 we see that

{xnk}∞k=1 is Cauchy. Thus {xnk} converges to some x ∈ X. The continuity and injectivity

of A show that x = 0, but this is a contradiction of the original assumption that ‖xn‖X = 1

for all n.

�

Now take X = L2τ1
1 (M), Y = H1τ1

1 (M1), Z = H−sτ1
1 (M1), A = NU1,U2 , and K the

inclusion map from L2τ1
1 (M) to H−sτ1

1 (M1). Then (3.16) gives (3.17), and so if IU1,U2 , and

therefore NU1,U2 , is injective (3.14) is proved.

The proof of the final statement of the theorem relies on Theorem 14 which is stated

at the end of this section. This theorem is used in the proof of both Theorem 12 and

Theorem 13, and so we delay its statement. In the present case, if U ′1, U ′2, and g′ satisfy

the hypotheses of this theorem for any ε > 0 sufficiently small, then Theorem 14 gives

‖NU1,U2 −NU ′1,U ′2‖L2τ11 (M)→H1τ11 (M1) ≤ C ′ε

for some new constant C ′. If ε is taken to be less than 1/(2CC ′) where C is the constant

from (3.14) then we have

‖f‖L2τ11 (M) ≤ C‖NU1,U2 [f ]‖H1τ11 (M1)

≤ C‖NU ′1,U ′2 [f ]‖H1τ11 (M1) + C‖(NU1,U2 −NU ′1,U ′2)[f ]‖H1τ11 (M1)

≤ C‖NU ′1,U ′2 [f ]‖H1τ11 (M1) + 1
2‖f‖L2τ11 (M).
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Therefore

‖f‖L2τ11 (M) ≤ 2C‖NU ′1,U ′2 [f ]‖H1τ11 (M1)

and so the proof is complete.

�

The next theorem is the analog of Theorem 12 in the three dimensional case. Before its

statement we introduce one more definition

Definition 4 For f ∈ H1τ1
1 (M), we say that f satisfies the tangential boundary condition

if the tangential part of the antisymmetric part of f vanishes on ∂M .

Recall that the antisymmetric part of f is fa = (f − f t)/2. In the notation of section 1.3,

f satisfies the tangential boundary condition if and only if tfa = 0.

Theorem 13 If U1 and U2 ∈ β1
1(TRM1 \{0}) are everywhere invertible and M1 is a simple

manifold of dimension 3, then the kernel of IU1,U2 acting on L2
βτ

1
1 (M) is at most finite

dimensional and consists entirely of functions that are smooth on M int. If we additionally

assume that f ∈ C3
βτ

1
1 (M) is in the kernel of IU1,U2 and satisfies the tangential boundary

condition, then in fact f is smooth up to the boundary of M and vanishes to infinite order

there. Furthermore, if IU1,U2 is injective on any closed subspace L ⊂ L2
βτ

1
1 (M) then there is

a stability estimate

‖f‖L2τ11 (M) ≤ C‖NU1,U2 [f ]‖H1τ11 (M1) (3.18)

which holds for any f ∈ L. Furthermore, the constant C in (3.18) can be chosen so that

there exists ε > 0 such that the estimate (3.18) remains valid if U1, U2, and g are replaced

by U ′1, U ′2 ∈ C3β1
1(TRM1 \ {0}), and g′ ∈ C4S2M1 with ‖U1 − U ′1‖C3β1

1((Ωba)RM1) < ε,

‖U2 − U ′2‖C3β1
1((Ωba)RM1) < ε, and ‖g − g′‖C4S2M1

< ε assuming that the unit sphere bundles

of both g and g′ are contained in (Ωb
a)

RM .

Proof: Take M1/2 and φ to be defined as in the proof of Theorem 12. By Theorem 10 the

system of ΨDOs (NU1,U2 ,Λ
2 dβ)T is elliptic, and so there exists a parametrix for this system

which we will denote by (A,B) where A is a ΨDO from sections of T 1
1 (M1) to T 1

1 (M1), and
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B is a ΨDO from sections of Λ0(M1) to sections of T 1
1 (M1). For any f ∈ L2τ1

1 (M1), the

analog of (3.15) in this case is

(A ◦ φm ◦ NU1,U2 ◦ φm)[f ] + (B ◦ φm ◦ Λ2 dβ ◦ φm)[f ] = f +K[f ] on M int
1/2 (3.19)

where as before K : E ′τ1
1 (M1)→ τ1

1 (M1) is a properly supported smoothing operator.

Now let us suppose that f ∈ L2
βτ

1
1 (M). Unfortunately this does not mean that f ∈

L2
βτ

1
1 (M1) since derivatives of f extended as zero to M1 will in general be singular on

∂M . To overcome this problem we use the decomposition (1.13) on M1. Indeed, take

β ∈ H1
0 Λ0(M1) to be the solution of the Dirichlet problem

∆gβ = dβf β|∂M1
= 0. (3.20)

We will denote the operator which takes dβf to the function β ∈ H1
0 (M1) by ∆−1

g , and so

with this notation β = ∆−1
g dβ f . Now define fβ = f − (∗dβ)#, and so dβf

β = 0 on M int
1 .

Note also that β is harmonic on M int and M1 \M since dβf = 0 on both of those sets, but

that β may be singular on ∂M .

Next we apply (3.19) to fβ. This yields

(A◦φm◦NU1,U2 ◦φm)[fβ]+(B◦φm◦Λ2◦∗)[(dφ)∧Alt(fβ)[] = fβ+K[fβ] on M int
1/2. (3.21)

Note that the second term on the right hand side of (3.21) is a properly supported ΨDO of

order −1 applied to fβ, and so we may rewrite (3.21) as

(A ◦ φm ◦ NU1,U2 ◦ φm)[fβ] = fβ +K1[fβ] on M int
1/2. (3.22)

where K1 = K− (φm ◦B ◦ φm ◦Λ2 ◦ ∗(dφ)∧ ◦Alt ◦ [) is a properly supported ΨDO of order

−1.

Now recall that Λ2 is a parametrix for −∆g on M1, and therefore (∆−1
g + Λ2) ◦ dβ = K̃ :

E ′τ1
1 (M1)→ Λ0(M1) is a smoothing operator. Using this fact we may write

fβ = f − (∗d K̃ [f ])# + (∗d(Λ2 ◦ dβ)[f ])#.

Plugging this into (3.22), using lemma 2, and making use of the fact that [φm, ∗d] is a ΨDO

of order 0, we have

(A ◦ φm ◦ NU1,U2 ◦ φm)[f ] = fβ +K2[f ] on M int
1/2 (3.23)
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where K2 is a new operator with the same properties as K1.

From the last equation we have the following estimate which is similar to (3.16)

‖fβ‖L2τ11 (M1) ≤ C(‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)). (3.24)

If we were able to replace fβ by f on the left hand side of this estimate, then the remainder

of the proof would follow as in the proof of Theorem 12. We will now proceed to show that

it is possible to make this replacement. To start note that since f = 0 on M int
1/2 \M , from

(3.23) we have

(∗dβ)# = −(A ◦ φm ◦ NU1,U2 ◦ φm)[f ] +K2[f ] on M int
1/2 \M. (3.25)

We will use this fact along with the definition of β, (3.20), to estimate ‖β‖H1(M). Directly

from (3.25), we have the estimate

‖dβ‖L2τ1(M1/2\M int) = ‖(∗dβ)#‖L2τ11 (M1/2\M int) ≤ C
(
‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)

)
.

(3.26)

Next we derive a Poincaré type inequality for β in order to estimate its norm in H1(M1/2 \

M int). From the way we have defined M1/2, M1/2 \M int is diffeomorphic to ∂M × [0, ε/2]

and (x, t) ∈ ∂M × [0, ε/2] provide boundary normal coordinates on M1/2 \M int. Using the

covector field tdt defined in these coordinates on M1/2 \M int together with Stokes’ theorem

we have

‖β‖2
L2(M1/2\M int)

=

∫
M1/2\M int

|β|2 dvg

= −
∫
M1/2\M int

d(|β|2) ∧ ∗(t dt) +

∫
∂(M1/2\M int)

|β|2 ∗ (tdt)

= −
∫
M1/2\M int

2 Re(β dβ) ∧ ∗(t dt) +
ε

2

∫
∂M1/2

|β|2 dvg̃

≤ C
(
‖β‖L2(M1/2\M) ‖dβ‖L2τ1(M1/2\M) + ‖β‖2L2(∂M1/2)

)
≤ C

(
1

2C ‖β‖
2
L2(M1/2\M) + C

2 ‖dβ‖
2
L2τ1(M1/2\M) + ‖β‖2L2(∂M1/2)

)
.

Now, using the operators defined above we have that β = K̃[f ] − (Λ ◦ dβ)[f ]. If we take a

function ψ ∈ C∞c (M1/2) that is equal to 1 on M , and ψ̃ ∈ C∞c (M1 \ supp(ψ)) that is equal

to 1 on a neighborhood of ∂M1/2, then on some neighborhood of ∂M1/2 we will have

β = (ψ̃m ◦ K̃ ◦ ψm − ψ̃m ◦ Λ2 ◦ dβ ◦ ψm)[f ].
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The operator involved in the previous equation now has a properly supported C∞ kernel,

and so maps H−1τ1
1 (M1)→ H1(M1) continuously. Combining this with the trace theorem

we have

‖β‖L2(∂M1/2) ≤ C ‖f‖H−1(M1).

Together with the calculation from above this shows that

‖β‖H1(M int
1/2
\M) ≤ C

(
‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)

)
.

Once more by the trace theorem

‖β‖H1/2(∂M) ≤ C
(
‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)

)
.

Since β satisfies ∆gβ = dβf = 0 on M int, standard estimates prove that

‖β‖H1(M) ≤ C ‖β‖H1/2(∂M) ≤ C
(
‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)

)
. (3.27)

Finally, since f = fβ + (∗dβ)# from (3.24) and (3.27) we obtain

‖f‖L2τ11 (M) ≤ C
(
‖fβ‖L2τ11 (M) + ‖β‖H1(M)

)
≤ C

(
‖NU1,U2 [f ]‖H1τ11 (M1) + ‖f‖H−1τ11 (M1)

)
.

The fact that the kernel of IU1,U2 acting on L2
βτ

1
1 (M) is finite dimensional now follows as in

the proof of Theorem 12. Also, by the pseudolocal property of ΨDOs, (3.21) implies that

f = (∗dβ)# modulo a smooth function on the interior of M . Since β is harmonic on M int

it is smooth there, and so this implies that f is smooth on M int.

Now assume that f ∈ C3
βτ

1
1 (M) is in the kernel of IU1,U2 and satisfies the tangential

boundary condition with respect to g′. Then assuming g′ is sufficiently close to g so that

lemma 4 applies we get that f ∈ C1τ1
1 (M1). Since dβ(f) = 0 on M and M1 \M , this implies

that dβ(f) = 0 on all of M1. From this we see that fβ = f , and so from (3.21) we conclude

that f ∈ τ1
1 (M1), which finally implies that f must vanish to infinite order on ∂M .

If L is a closed subspace of L2
βτ

1
1 (M), then the stability estimate (3.18) follows just as

in the proof of (3.14) by applying lemma 3 with X = L, and then using Theorem 14. This

completes the proof of Theorem 13.

�
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Note that both the tangential boundary condition and the operator dβ actually depend

on the metric g. Thus when we perturb the metric to g′, the estimate (3.18) still holds only

for f ∈ L, which is not defined by g′, but rather by the reference metric g. We would like to

establish an estimate like (3.18) that holds for f in a subspace defined from the perturbed

metric.

The following technical lemma was required in the proof of Theorem 13. The proof is

similar to the proof in [9] that the full jet of the symmetric and normal parts of f ∈ τ1
1 (M)

may be recovered at the boundary from the polarization data.

Lemma 4 Suppose that (M, g), U1, and U2 are as in Theorem 13. If f ∈ C3τ1
1 (M) is

in the kernel of IU1,U2, dβ(f) = 0, and f satisfies the tangential boundary condition, then

f ∈ C1τ1
1 (M1). This result still holds if g is only in C4S2M1. Furthermore, there is an

ε > 0 such that if g′ is another metric with ‖g − g′‖S2M < ε, then the result is still true if

dβ(f) = 0 and f satisfies the tangential boundary condition with respect to g′.

Proof: Since f is identically zero on M1 \M , it is sufficient to show that all components of f

and all derivatives of those components are zero on ∂M . Let us pick a point x0 ∈ ∂M and

attempt to show that f vanishes to first order at this point. As in [9] we will use normal

coordinates with respect to g, (x′, x3) = (x1, x2, x3), centered at x0 such that the inward

pointing normal to ∂M with respect to g, −νg, is given by ∂
∂x3

. By the convexity of ∂M , in

these coordinates the boundary of M is given by the graph of a function φ(x′) = x3 where

φ(0) = 0, Dφ(0) = 0, and D2φ(0) > 0.

Now choose any vectors η and ζ ∈ TR
x0M such that either η and ζ are parallel, or one

of η or ζ is parallel to ∂
∂x3

. In either of these cases it is possible to choose a third vector

ξ ∈ TR
x0(∂M) such that ξ is perpendicular to both η and ζ. We also define η′ = U−1

1 (ξ) η,

and ζ ′ = (U∗2 )(ξ) ζ. For τ ∈ (0, δ) for some small δ > 0, let us consider the straight line γτ

connecting x0 = 0 to the point c(τ) = (τ ξ, φ(τξ)) (see figure 3.2). Here we are identifying

the vector ξ = ξ1 ∂
∂x1

+ ξ2 ∂
∂x2

with the 2-tuple (ξ1, ξ2). Since we work in normal coordinates

centered at x0, this line is a geodesic. Thus IU1,U2 [f ](γτ )(η′, ζ ′) = 0 for all τ ∈ (0, δ), and so

∂

∂τ

(
IU1,U2 [f ](γτ )(η′, ζ ′)

)
= 0.
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x'

x
n

c(τ)

τξ

Φ(τξ)

Φ(x')

γ τ

x0

Figure 3.2: Boundary diagram

Writing out this formula in detail we have

d

dτ

(∫ t(τ)

0

〈
U−1

2 (γ̇τ (s))
[
Pγ̇τ (s) (f)

]
(γτ (s)) U1(γ̇τ (s)) Iγτ0,s η

′, Iγτ0,s ζ
′
〉
g(γτ (s))

ds

)
= 0

where t(τ) = τ

√
|ξ|2 +

(
φ(τξ)
τ

)2
is the length of γτ . By the fundamental theorem of calculus

t′(τ)
〈
U−1

2 (γ̇τ (t(τ)))
[
Pγ̇τ (t(τ)) (f)

]
(c(τ)) U1(γ̇τ (t(τ))) Iγτ0,t(τ) η

′, Iγτ0,t(τ) ζ
′
〉
g(c(τ))

+

∫ t(τ)

0

d

dτ

〈
U−1

2 (γ̇τ (s))
[
Pγ̇τ (s) (f)

]
(γτ (s)) U1(γ̇τ (s)) Iγτ0,s η

′, Iγτ0,s ζ
′
〉
g(γτ (s))

ds = 0.

(3.28)

Since the derivatives of the integrand are uniformly bounded on M , taking the limit as

τ → 0+ this last formula becomes

0 =
〈
U−1

2 (ξ) [Pξ (f)] (x0) U1(ξ) U−1
1 (ξ) η, U∗2 (ξ) ζ

〉
g(x0)

= 〈[Pξ (f)] (x0) η, ζ〉g(x0) = 〈f(x0) η, ζ〉g(x0) .
(3.29)

This identity holds whenever η and ζ ∈ TR
x0M are parallel, or when ζ is parallel to the outer

unit normal vector νg = − ∂
∂x3

.

Now suppose that f satisfies the tangential boundary condition with respect to another

metric g′. We can now rewrite the previous identity in terms of g′ as follows.

0 =
〈
f(x0) η, ]g′ ◦ [g(ζ)

〉
g′(x0)

=
〈
f(x0) η, ]g′ ◦ [g(ζ)− ζ

〉
g′(x0)

+ 〈f(x0) η, ζ〉g′(x0) . (3.30)
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Therefore 〈
f(x0) η, ζ − ]g′ ◦ [g(ζ)

〉
g′(x0)

= 〈f(x0) η, ζ〉g′(x0) . (3.31)

Since the only imaginary part of (3.31) (and (3.30)) comes from f(x0), we can replace the

sesquilinear inner products with the real inner product, and then (3.31) splits into two

identities for the real and imaginary parts of f(x0). Thus it is sufficient to assume that

f(x0) is real, and then the same argument applies to the real and imaginary parts of f .

We will first prove that the symmetric part fs of f(x0) with respect to g′ is zero. From

(3.31) we have

‖f s‖ = sup
η∈(Ω′)Rx0M

(
〈f(x0) η, η〉g′(x0)

)
≤ ‖f s‖ ‖Id− ]g′ ◦ [g‖. (3.32)

The norms in the above equation are all the operator norm from TR
x0M with the metric

g′ to itself, and the space (Ω′)Rx0M is the real unit sphere over x0 with respect to g′. In

coordinates we have

(
Id− ]g′ ◦ [g

)i
j

= δij − (g′)ikgkj = (g′)ik
(
(g′)kj − gkj

)
.

Therefore ‖Id− ]g′ ◦ [g‖ in (3.32) is bounded by C‖g − g′‖S2M for some constant C which

can be chosen uniformly for any x0 ∈ ∂M . Therefore, if ‖g − g′‖S2M is sufficiently small,

‖Id− ]g′ ◦ [g‖ < 1, and so (3.32) implies that fs = 0.

Now we prove that f(x0) is zero. To do this, we first note that when νg and νg′ are

respectively the outer unit normal vectors with respect to g and g′, then ]g′ ◦ [g(νg) is a

multiple of νg′ . Thus from (3.30) we have

0 = 〈f(x0)η, νg′〉g′(x0) (3.33)

for any η ∈ TR
x0M . Since we have already shown that f(x0) is antisymmetric with respect

to g′, (3.33) also implies that

0 = 〈f(x0)νg′ , η〉g′(x0) (3.34)

also for any η ∈ TR
x0M . Now for arbitrary ζ ∈ TR

x0M we may decompose ζ and η as

ζ = aνg′ + ζT and η = bνg′ + ηT
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where ζT and ηT ∈ TR
x0∂M . Thus, using both (3.33) and (3.34) we obtain

〈f(x0)η, ζ〉g′(x0) = 〈f(x0)(bνg′ + ηT ), aνg′ + ζT 〉g′(x0) = 〈f(x0)ηT , ζT 〉g′(x0).

Finally, since f satisfies the tangential boundary condition with respect to g′, this last

equality shows that f(x0) = 0. Repeating the same argument for every x0 ∈ ∂M proves

that f vanishes on ∂M . Therefore f ∈ C0τ1
1 (M1).

What remains is to show that the normal derivatives of f pointing towards the interior

of M also vanish on ∂M . To do this we return to (3.28). Note that since we have proved

that f vanishes on ∂M , the first term in (3.28) vanishes. Now we continue to take two

additional derivatives with respect to τ of (3.28). Omitting the details of the computation,

which can be found in [9], we obtain using the facts that f ∈ C3τ1
1 (M) and g ∈ C4S2M1

0 =

(
d

dτ

)2 ∫ t(τ)

0

d

dτ

〈
U−1

2 (γ̇τ (s))
[
Pγ̇τ (s) (f)

]
(γτ (s)) U1(γ̇τ (s)) Iγτ0,s η

′, Iγτ0,s ζ
′
〉
g(γτ (s))

ds

= t′(τ) ρ′(τ)

〈
U−1

2 (γ̇τ (t(τ)))

[
Pγ̇τ (t(τ))

(
∂f

∂x3

)]
(c(τ))U1(γ̇τ (t(τ))) η′, ζ ′

〉
g(c(τ))

+O(τ)

where O(τ) is a function that goes to zero when τ → 0+ and ρ(τ) = φ(τξ)/τ . Taking the

limit as τ → 0+ in the above formula then gives

0 = (ξt ·D2φ(0) · ξ)
〈
U−1

2 (ξ)

[
Pξ

(
∂f

∂x3

)]
(0)U1(ξ) η′, ζ ′

〉
g(x0)

= (ξt ·D2φ(0) · ξ)
〈
∂f

∂x3
η, ζ

〉
g(x0)

.

Just as above this holds exactly when either η and ζ are parallel, or when one of η or ζ is

parallel to νg. Since D2φ(0) > 0, the first of these two cases implies that the symmetric part

of ∂f
∂x3

(x0) with respect to g must vanish. The second of these cases implies that the normal

part of the antisymmetric part of ∂f
∂x3

(x0) with respect to g must vanish. Therefore the only

components of ∂f
∂x3

(x0) which may not be zero are
∂f12
∂x3

(x0) and
∂f21
∂x3

(x0) = −∂f12
∂x3

(x0). On

the other hand, using this and the fact already established that f(x0) = 0, the condition

dβ(f) = 0 with respect to g′ becomes

(g′11 + g′22)
∂f1

2

∂x3
(x0) = 0.

Therefore ∂f
∂x3

(x0) = 0. This completes the proof of the lemma.
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�

To end the section we will prove a stability result used in the proofs of Theorem 12 and

Theorem 13.

Theorem 14 Let M , M1, U1, U2, and g be all as in either Theorem 12 or Theorem 13.

If U ′1, U ′2 ∈ C3β1
1(TRM1 \ {0}), and g′ ∈ C4S2M with ‖U1 − U ′1‖C3β1

1((Ωba)RM1) < ε, ‖U2 −

U ′2‖C3β1
1((Ωba)RM1) < ε, ‖g − g′‖C4S2M < ε for ε sufficiently small, and the unit spheres with

respect to both g and g′ are both contained in (Ωb
a)

RM1, then (M, g′) is still a simple manifold

(in the sense that the exponential map is a C3 diffeomorphism at every point), and

‖NU1,U2 −NU ′1,U ′2‖L2τ11 (M)→H1τ11 (M1) ≤ C ′ε

for some constant C ′ which depends only on U1, U2, and g.

Proof: To prove this theorem we will carefully compare the kernels of the two operators

NU1,U2 and NU ′1,U ′2 in the global coordinates on M1. The same method is also applied in

[6] and [10] to similar problems. Let us assume that U1, U2, and g are as in the statement,

and that ‖U1 − U ′1‖C3β1
1((Ωba)RM1) < ε, ‖U2 − U ′2‖C3β1

1((Ωba)RM1) < ε, and ‖g − g′‖C4S2M < ε

for some ε > 0.

We begin by considering the two maps Fx and F ′x defined by (2.21) corresponding to g

and g′ respectively. Here and through out this proof unprimed functions, operators, and

sets correspond to g, while primed functions, operators and sets correspond to g′. By

possibly extending g and g′ continuously in the C4 norm beyond M1, we may assume that

Fx and F ′x are both defined on the same domain. As a first step we would like to estimate

‖Fx(r, ω)− F ′x(r, ω)‖C3
x,r,ω

. To accomplish this we use the following result whose proof may

be found in [4].

Lemma 5 Let x and x̃ solve the ODE systems

x′ = G(t, x), x̃′ = G̃(t, x̃),

where G, G̃ are continuous functions from [0, T ]× U to a Banach space B, where U ⊂ B is

open. Let G be Lipschitz w.r.t. x with a Lipschitz constant k > 0. Assume that

‖G(t, x)− G̃(t, x)‖ ≤ δ, ∀t ∈ [0, T ], ∀x ∈ U,



60

and that x(t), x̃(t) stay in U for 0 ≤ t ≤ T . Then for 0 ≤ t ≤ T

‖x(t)− x̃(t)‖ ≤ ekt‖x(0)− x̃(0)‖+
δ

k

(
ekt − 1

)
.

We first apply this lemma to the exponential map by recalling that the geodesics γx,ω(t)

and γ′x,ω(t) satisfy respectively the initial value problems
γ̇x,ω(t)j = g(γx,ω(t))jk ξx,ω(t)k

ξ̇x,ω(t)k = −1
2
∂gij

∂xk
(γx,ω(t)) ξx,ω(t)i ξx,ω(t)j

γx,ω(0)j = xj , ξx,ω(0)k = g(x)kj ω
j ,

and


γ̇′x,ω(t)j = g′(γ′x,ω(t))jk ξ′x,ω(t)k

ξ̇′x,ω(t)k = −1
2
∂g′ij

∂xk
(γ′x,ω(t)) ξ′x,ω(t)i ξ

′
x,ω(t)j

γ′x,ω(0)j = xj , ξ′x,ω(0)k = g′(x)kj ω
j .

By differentiating these systems with respect to the initial conditions we may obtain similar

systems for the derivatives of γx,ω(t) and γ′x,ω(t). Applying lemma 5 to these systems and

using the fact that ‖g − g′‖C4S2(M) < ε we obtain

‖γx,ω(t)− γ′x,ω(t)‖C3
x,t,ω

+ ‖γ̇x,ω(t)− γ̇′x,ω(t)‖C3
x,t,ω

< Cε (3.35)

for some constant C > 0 depending only on g and M1. This estimate shows that if ε is

taken small enough then (M1, g
′) is still simple (ie. the exponential maps at every point are

C3 diffeomorphisms). Using the expressions from (2.22) for Fx(t, ω) and F ′x(t, ω) in terms

of γx,ω(t) and γ′x,ω(t) together with the estimate (3.35) gives

‖Fx(t, ω)− F ′x(t, ω)‖C3
x,t,ω

< Cε (3.36)

for a new constant C > 0 which still only depends on g and M1.

Next we will use (3.36) to estimate ‖F−1
x (ρ, θ) − (F ′)−1

x (ρ, θ)‖C3
x,θ,ρ

. As in (2.21), we

denote the variables in the range of Fx and F ′x as (ρ, θ). Now, note that (F−1
x ◦ F ′x − Id) =

(F−1
x ◦ F ′x − F−1

x ◦ Fx), and so, working in some appropriate set of local coordinates for

ω ∈ Sn−1, we have

(F−1
x ◦ F ′x − Id)(t, ω) =

(∫ 1

0
DF−1

x (sF ′x(t, ω) + (1− s)Fx(t, ω)) ds

)
· (F ′x(t, ω)− Fx(t, ω)).

Taking derivatives of this last equation we see that ‖F−1
x ◦F ′x− Id‖C3

x,t,ω
can be bounded in

terms of (3.36), and ‖DF−1
x ‖C3

x,ρ,θ
. By (3.36), ‖F ′x‖C3

x,t,ω
and ‖(DF ′x)−1‖C2

x,ρ,θ
are uniformly
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bounded if ε is sufficiently small. Thus, if we precompose F−1
x ◦ F̃x − Id with F̃−1

x we see

that

‖F−1
x (ρ, θ)− F̃−1

x (ρ, θ)‖C3
x,ρ,θ

< Cε (3.37)

for a new constant C > 0.

With estimate (3.37) in hand, we will now apply the same analysis used in Chapter 2

on the x-ray transform to derive a formula for the kernels of NU1,U2 and N ′U1,U2
. Beginning

from (3.8), first define

Ax(v)uαrν =gαα
′
(x) gνν′(x)(w2(Expx(v))uk

′b′
r w1(v/|v|g)

ν′

α′k′b′

+ w2(−Expx(v))uk
′b′

r w1(−v/|v|g)
ν′

α′k′b′),
(3.38)

and let A′x(v) be defined in the same way with g replaced by g′, w1 replaced by w′1, and

w2 replaced by w′2. Let f ∈ τ1
1 (M) be extended as zero to M1. Following (3.8), with this

notation we have for x ∈M int
1

NU1,U2 [f ](x)αν =

∫
Fx\{0}

Ax(v)uαrν f(expx(v))ru
√

det(g)
dv

|v|n−1
g

.

Switching to polar coordinates (t, ω) on FxM1 \ {0} as in (2.19) gives

NU1,U2 [f ](x)αν =

∫
ΩR
x

∫ l(x,θ)

0
Ax(tθ)uαrν f(expx(tθ))ru dtdω. (3.39)

A similar formula also holds for NU ′1,U ′2 [f ]. Next we introduce a cut-off function χ ∈

C∞c (M int
1 ) that equals 1 on M . Since f vanishes on M1 \M , we may multiply the inte-

grand in (3.39) by χ(expx(tω)) and this does not change NU1,U2 [f ](x)αν . Finally, we change

variables by the map F−1
x in (3.39) to get (in parallel with (2.24))

NU1,U2 [f ](x)αν =

∫
Sn−1

∫ ∞
0

χ(x+ρθ)Ax((F−1
x )t(ρ, θ) (F−1

x )ω(ρ, θ))uαrν f(x+ρθ)ru

∣∣∣∣ ∂F−1
x

∂(ρ, θ)

∣∣∣∣ dρdθ.

(3.40)

Motivated by (3.40), and still following the analysis of the x-ray transform from Chapter 2,

let us now define

Ã(x, ρ, θ)uαrν = χ(x+ ρθ)Ax((F−1
x )t(ρ, θ) (F−1

x )ω(ρ, θ))uαrν

∣∣∣∣ ∂F−1
x

∂(ρ, θ)

∣∣∣∣ . (3.41)

As in Chapter 2 we observe that each of the functions Ã(x, ρ, θ)uαrν may be extended a

function in C∞c (Rn × R × Sn−1) that is even with respect to (ρ, θ). With these extended
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functions we have

NU1,U2 [f ](x)αν =

∫
Sn−1

∫ ∞
0

Ã(x, ρ, θ)uαrν f(x+ ρθ)ru dρdθ. (3.42)

Next we take the linear approximation to Ã(x, ρ, θ)uαrν near ρ = 0

Ã(x, ρ, θ)uαrν = Ã(x, 0, ω)uαrν + ρR(x, ρ, θ)uαrν ,

and plug this into (3.42). At the same time we also change the integration from polar to

Cartesian coordinates (y = x+ ρθ) to get

NU1,U2 [f ](x)αν =

∫
Rn
Ã

(
x, 0,

y − x
|y − x|

)uα
rν

f(y)ru
dy

|y − x|n−1

+

∫
Rn
R

(
x, |y − x|, y − x

|y − x|

)uα
rν

f(y)ru
dy

|y − x|n−2
.

(3.43)

As before, we also have a similar formula for NU ′1,U ′2 [f ].

Using (3.43), we now compare NU1,U2 and NU ′1,U ′2 . Indeed, we have(
NU1,U2 −NU ′1,U ′2

)
[f ](x)αν =∫

Rn

(
Ã

(
x, 0,

y − x
|y − x|

)uα
rν

− Ã′
(
x, 0,

y − x
|y − x|

)uα
rν

)
f ru(y)

dy

|y − x|n−1

+

∫
Rn

(
R

(
x, |y − x|, y − x

|y − x|

)uα
rν

−R′
(
x, |y − x|, y − x

|y − x|

)uα
rν

)
f(y)ru

dy

|y − x|n−2
.

(3.44)

For the moment assume that∥∥∥Ã (x, 0, ω)uαrν − Ã
′ (x, 0, ω)uαrν

∥∥∥
C1(Rnx×S

n−1
ω )

< Cε (3.45)

and ∥∥R (x, r, ω)uαrν −R
′ (x, r, ω)uαrν

∥∥
C1(Rnx×Rρ×S

n−1
ω )

< Cε (3.46)

where C > 0 is some new constant. Since |y−x|n−1 and |y−x|n−2 are integrable singularities

in each variable individually, we may apply [28, Proposition A.5.1] together with the above

estimates and (3.44) to conclude that∥∥∥NU1,U2 −NU ′1,U ′2
∥∥∥
L2τ11 (M)→L2τ11 (M1)

< Cε.
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It remains to estimate the L2 norms of the derivatives of the components of (NU1,U2 −

NU ′1,U ′2)[f ]. Indeed, we may simply differentiate with respect to x under the second integral

in (3.44), and after doing this we have a new integral operator applied to f whose kernel

is still integrable in each of the variables. Furthermore, these integrals can be uniformly

bounded using (3.46), and so the desired estimates follow once again from [28, Proposition

A.5.1]. Estimating the derivatives of the first integral in (3.44) poses a problem since when

we differentiate that kernel with respect to x the result is no longer integrable. However,

since Ã(x, 0, ω) and Ã′(x, 0, ω) are even with respect to ω, we may still apply the Calderón-

Zygmund Theorem to estimate the singular integral which results from differentiating the

kernel, and by [14, Theorem XI.11.1] this is the derivative of the integral. This argument

combined with (3.45) shows that the derivatives of the components of the first integral are

bounded by Cε‖f‖L2τ11 (M) in L2(M1), and so this completes the proof assuming (3.45) and

(3.46).

All that remains now is to prove the estimates (3.45) and (3.46). Since

R(x, ρ, θ)uαrν =

∫ 1

0

∂Ã

∂ρ
(x, ρs, ω)uαrν ds,

to prove (3.46) it is sufficient to show that∥∥∥Ã(x, ρ, θ)uαrν − Ã′(x, ρ, θ)uαrν
∥∥∥
C2(Rnx×Rρ×S

n−1
θ )

< Cε. (3.47)

Recall that Ã and Ã′ are defined by (3.41), and note that

Ax
(
(F−1

x )t(ρ, θ) (F−1
x )ω(ρ, θ)

)uα
rν
−A′x

(
(F−1

x )′t(ρ, θ) (F−1
x )′ω(ρ, θ)

)uα
rν

=(
Ax
(
(F−1

x )t(ρ, θ) (F−1
x )ω(ρ, θ)

)uα
rν
−Ax

(
(F−1

x )′t(ρ, θ) (F−1
x )′ω(ρ, θ)

)uα
rν

)
+
(
Ax
(
(F−1

x )′t(ρ, θ) (F−1
x )′ω(ρ, θ)

)uα
rν
−A′x

(
(F−1

x )′t(ρ, θ) (F−1
x )′ω(ρ, θ)

)uα
rν

)
.

Therefore, using also (3.37) and the fact that all derivatives of Ax(tω) are bounded (by

(3.49) below), we see that in order to prove (3.47) it is sufficient to show that

‖Ax(tω)uαrν −A′x(tω)uαrν ‖C2
x,t,ω

. (3.48)

Returning to the definition (3.38) of Ax(tω) and A′x(tω) we see that

Ax(tω)uαrν = g(x)αα
′
g(x)νν′(

w2(γ̇x,ω(t))uk
′b′

r w1((x, ω))
ν′

α′k′b′ + w2(−γ̇x,ω(t))uk
′b′

r w1((x,−ω))
ν′

α′k′b′

)
.

(3.49)
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Using the definitions of w1 and w2, which are respectively (3.6) and (3.7), we can write out

a more explicit version of (3.49). This is

Ax(tω)uαrν = g(x)αα
′
g(x)νν′ g(x)d′j′ g(γx,ω(t))kp

(
Iγx,ωt,0

)j′
b

(
Iγx,ωt,0

)p′
k

( (
U−1

2 (x, ω)
)d′
a′(

U−1
2 (γ̇x,ω(t))

)b
a

[Px,ω]a
′ν′
m′α′ [Pγ̇x,ω(t)]

au
mr (U1(x, ω))m

′

p′

(
U1(γ̇x,ω(t))

)m
p
−
(
U−1

2 (x,−ω)
)d′
a′(

U−1
2 (−γ̇x,ω(t))

)b
a

[Px,−ω]a
′ν′
m′α [P−γ̇x,ω(t)]

au
mr (U1(x,−ω))m

′

p′

(
U1(−γ̇x,ω(t))

)m
p

)
.

A corresponding formula holds for A′x(tω), and we wish to estimate the difference of the

two. To do this, it is sufficient to estimate the differences of the corresponding terms in

the two formulas for Ax(tω) and A′x(tω). If we note that the projections can be written

in terms of g and g′, we see that all of these differences are bounded in the C2 norm by

Cε by a combination of the hypotheses and (3.35), except for the difference in the parallel

translation terms. To bound this last difference we note that for any vector ηb,
(
Iγx,ω0,t

)j′
b
ηb

satisfies the system of ODEs(
∂ Iγx,ω0,t

∂t

)j′
b

ηb = Γ(γx,ω(t))j
′

kl γ̇x,ω(t)k
(
Iγx,ω0,t

)l
b
ηb and

(
Iγx,ω0,0

)j′
b
ηb = ηb

where Γj
′

kl are the Christoffel symbols of the metric g. The same formula holds for the parallel

translation with respect to the g′ metric when the Christoffel symbols and geodesics are those

of the g′ metric. Therefore, by lemma 5, (3.35), the hypothesis that ‖g − g′‖C4S2M1
< ε,

and the definition of the Christoffel symbols,∥∥∥∥((Iγx,ω0,t

)j′
b
−
(
I ′γ
′
x,ω

0,t

)j′
b

)
ηb
∥∥∥∥
C3
x,t,ω

< Cε. (3.50)

Since this holds for any vector ηb, and Iγx,ω0,t =
(
Iγx,ωt,0

)−1
, this implies the needed estimate

on the difference of the parallel translation factors, and so completes the proof.

�

3.3 Generic injectivity for the linear problem

The results of the previous section establish that the set of U1, U2, and g for which IU1,U2 is

injective is open in the C4 topology when the dimension is greater than 3. In dimension 3
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the same is true if IU1,U2 is restricted to L2
βτ

1
1 (M). We would like to first know that this set

is also nonempty, but in fact we will do much better than that in this section. We will show

that IU1,U2 is injective for any real analytic U1, U2, and g. Indeed, we have the following

theorem.

Theorem 15 Suppose that (M, g) is a real analytic simple manifold, and U1 and U2 are

real analytic. If the dimension of M is greater than 3, then IU1,U2 is injective. If M has

dimension 3, then IU1,U2 is injective on the subspace of C3
βτ

1
1 (M) consisting of fields that

satisfy the tangential boundary condition.

Our proof will use analytic microlocal analysis, and as a primary reference on this topic

we use [21]. A different approach to analytic microlocal analysis is also given in [29]. Since

we are using analytic methods, for this section we must assume that M is a real analytic

manifold (ie. that the transition maps are all real analytic). Our notation for the analytic

wave front set of f ∈ D′τ1
1 (M) will be WFa(f). The main step in the proof of Theorem 15

is the proof of the following lemma.

Lemma 6 Suppose that (M, g), U1, and U2 are as in Theorem 15, and ξ0 ∈ T ∗M int\{0}. In

dimension greater than 3 let f ∈ L2
cτ

1
1 (M), and in dimension 3 assume that f ∈ (L2

β)cτ
1
1 (M).

If there is an open subset V ⊂ ΩRM such that V ∩ ξ⊥0 6= ∅, and on the set of unit speed

geodesics whose tangent vectors pass through V IU1,U2 [f ] is zero, then ξ0 6∈WFa(f).

Remark 9: This result is actually more general than required for the proof of Theorem 15.

Using this lemma we could show injectivity for the map IU1,U2 composed with restriction

to a smaller set than all of ∂−ΩRM .

Remark 10: The method of proof used here was developed in [6] and [25], and is also used

in [10].

Proof: Let ξ0 and V be as in the statement of the theorem. Now take any v′ ∈ V ∩ ξ⊥0 .

Then by the hypothesis there exists a v ∈ ∂−ΩRM such that the tangent vector of γv passes

through v′, and for every w in a neighborhood of v, IU1,U2 [f ](γw) = 0. For the majority

of the proof we will work in a set of coordinates in a neighborhood of γv which we will

now introduce. Indeed, let us take a set of analytic coordinates (w1, ... , wn−1) on ΩR
π(v)M
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centered at v whose domain is contained in the set of w for which IU1,U2 [f ](γw) = 0. Then by

the simplicity assumption (w1, ... , wn−1, t) provide analytic coordinates on a neighborhood

of U of γv in M via the map

(w1, ... , wn−1, t) 7→ exp(t(w1, ... , wn−1)).

By translating in the t coordinate we can also make π(ξ0) = 0 in this coordinate system,

and by rotating if necessary we may assume that ξ0 = dwn−1. For some ε > 0, t1, and

t2 ∈ R the set

U ′ = {(w1, ... , wn−1, t) : |(w1, ... , wn−1)| < ε and t1 < t < t2}

is contained in the range of the coordinates, and the points (w, t) = (w1, ... , wn−1, tj) for

j = 1 or 2 both lie in a small neighborhood of ∂M which does not intersect the support of

f . We will identify the set U ′ ⊂ Rn with the image of U ′ under the inverse coordinate map.

Also, from now on we will denote these coordinates by U ′ 3 x = (x′, xn) = (w, t).

Next we introduce a family of analytic coordinate systems, each providing coordinates

on a subset of U ′. Indeed, if we take any θ′ = (θ1, ... , θn−1) ∈ Rn−1 sufficiently small then

the map

(x′, t) 7→ exp

(
t

(
θ′j

∂

∂xj
+

∂

∂xn

∣∣∣∣
(x′,0)

)
(3.51)

is the inverse of a coordinate map on a subset of U ′, is defined on {|x′| < 3ε/4, t1 ≤ t ≤

t2}, and in the corresponding coordinates the points (x′, tj) for j = 1 or 2 lie in a small

neighborhood of ∂M that does not intersect the support of f . Furthermore, since V ⊂ ΩRM

is open, if θ′ is in a possibly smaller neighborhood of 0 then for any |x′| < 3ε/4

IU1,U2 [f ]

(
γ(
θ′j ∂

∂xj
+ ∂
∂xn

∣∣∣
(x′,0)

)
= 0. (3.52)

Here and in the remainder of this proof for any θ ∈ TRM \ {0}, γθ denotes the unit speed

geodesic with initial tangent vector parallel to θ. For convenience we will also use the

notation θ =
(
θ′j ∂

∂xj
+ ∂

∂xn

∣∣
(x′,0)

below.

Now we introduce a sequence of cutoff functions χN ∈ C∞c (Rn−1) with support in

B3ε/4(0), equal to 1 on a neighborhood of x′ = 0, and satisfying the estimates

|∂αx′ χN (x′)| ≤ (C N)|α| for all multi-indices α with |α| ≤ N (3.53)
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for some constant C > 0. It is possible to construct such a sequence of functions, see [29].

By (3.52), for every ξ ∈ Cn and h > 0, we have for θ′ in a small neighborhood of 0

e
i
h

((x′,1)·ξ)χN (x′) IU1,U2 [f ](γθ) = 0.

Choosing some basis for Tπ(v)M , we can express the integrals defining the components

IU1,U2 [f ](γθ)kb with respect to the coordinates (x′, xn) and the chosen basis, and write out

as in (3.1) the formula

0 = e
i
h

((x′,1)·ξ)χN (x′)

∫ t2

t1

R(γ̇θ(t))ab [Pγ̇θ(t) f ](γθ(t))
a
mQ(γ̇θ(t))

m
k dt.

Now we integrate this formula with respect to x′ to obtain for each k and b

0 =

∫
B3ε/4(0)

∫ t2

t1

e
i
h

((x′,1)·ξ)χN (x′)R(γ̇θ(t))ab [Pγ̇θ(t) f ](γθ(t))
a
mQ(γ̇θ(t))

m
k dtdx′. (3.54)

As described in the previous paragraph, for each θ′ (x′, t) provides an analytic coordinate

system on a subset of U ′, and furthermore the support of the integrand in (3.54) is contained

in domain of these coordinates. Therefore we may make an analytic coordinate change in

(3.54), which depends on θ′ in an analytic manner, to obtain

0 =

∫
U ′
e
i
h

((x̃′(x,θ′),1)·ξ) χN (x̃′(x, θ′))R(v(x, θ′))ab [Pv(x,θ′) f ](x)amQ(v(x, θ′))mk J(x, θ′) dx

(3.55)

where x̃′(x, θ′) is an analytic function of x and θ′ which satisfies

x̃′((x′, 0), θ′) = x′ and
∂x̃′

∂xn
((x′, 0), θ′) = −θ′. (3.56)

v(x, θ′) is also an analytic function of x and θ′ which satisfies

v((x′, 0), θ′) = θ,

and J(x, θ′) is the Jacobian of the change of variables which is a positive analytic function.

The identity (3.54) holds for any θ′ sufficiently small and all ξ ∈ Cn. We will now choose θ′

as a function of ξ in a specific way to find a new identity which holds for any ξ in a small

complex neighborhood of (0, ... , 1, 0) = en−1, and in which θ′ has been eliminated.
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Indeed, define

θ′(ξ) =

ξ1, ... , ξn−2, −
ξn +

n−2∑
k=1

ξ2
k

ξn−1

 . (3.57)

We will identify ξ0 with en−1 since ξ0 = dxn−1. The vector valued function θ′(ξ) is well-

defined and analytic in a neighborhood of ξ0, and satisfies

θ′(ξ0) = 0, (θ′(ξ), 1) · ξ = 0 for all ξ.

Let us write ψ(x, ξ) = ((x̃′(x, θ′(ξ)), 1) · ξ) and χ̃N (x, ξ) = χN (x̃′(x, θ′(ξ))), and then plug

θ′(ξ) into (3.55) to obtain

0 =

∫
U ′
e
i
h
ψ(x,ξ) χ̃N (x, ξ)R(ṽ(x, ξ))ab [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ) dx (3.58)

for all ξ in a complex neighborhood of ξ0. Since χ̃N (x, ξ) is a composition of χN with

an analytic function for each N , χ̃N still satisfies an inequality like (3.53) where now the

derivatives are taken with respect to x and ξ.

A simple calculation shows that in Euclidean case, where the geodesics are all straight

lines, ψ(x, ξ) = x · ξ is the usual phase function, and we can further observe that by (3.56),

even in our present more general case the function ψ(x, ξ) satisfies ψx(0, ξ) = ξ, and so

ψxξ(0, ξ) = Id. (3.59)

Again by (3.56) we can also see that

ψξξ(0, ξ) = 0. (3.60)

To apply the analytic microlocal theory, we must study the critical points of this phase

function ψ with respect to ξ. Following [6] we now continue to establish a technical lemma

about the gradient of ψ with respect to ξ that will be required for this study.

Lemma 7 There exists a δ > 0 such that

ψξ(x, ξ) 6= ψξ(y, ξ)

whenever x = (x′, xn) 6= y, |x′| < δ, |y| < δ, and |ξ − ξ0| < δ where ξ may be complex.
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The proof of essentially the same lemma can be found in [6], although the phase function

there is slightly different. Nonetheless, I include the proof here for completeness.

Proof of lemma: First note that x̃′(x, θ′) is defined implicitly by

x = exp

(
t

(
θ′j

∂

∂xj
+

∂

∂xn

∣∣∣∣
(x̃′,0)

)
.

Differentiating this equation with respect to θ′j and evaluating at θ′(ξ0) = 0 we obtain

∂
(

exp
(
xn
(
θ′j ∂

∂xj
+ ∂

∂xn

∣∣
(x′,0)

))
∂θ′j

∣∣∣∣∣∣
′

θ′=0

= − ∂x̃
′

∂θ′j
(x, 0) (3.61)

where the prime on the left hand side indicates that we are only taking the first n−1 compo-

nents. By the simplicity assumption the exponential map is everywhere a diffeomorphism,

and so the vectors given by the left hand side of (3.61) must be linearly independent, and

therefore they must form a basis for Rn−1.

Keeping this in mind, let us first assume that y = (y′, 0), x = (y′, xn), and ξ = ξ0 = en−1.

With such a y, ψξ(y, ξ0) = (y′, 1). On the other hand

∂ψ

∂ξk
(x, ξ0) =

∂x̃′n−1

∂θ′j
(x, 0)

∂θ′j

∂ξk
(ξ0) + (x̃′(x, 0), 1)k.

Calculating the derivatives of θ′(ξ) from (3.57) and noting that x̃′(x, 0) = y′, this last

equation may be rewritten as

ψξ(x, ξ0) =

(
∂x̃′n−1

∂θ′1
(x, 0), ... ,

∂x̃′n−1

∂θ′n−2
(x, 0), 0, −∂x̃

′n−1

∂θ′n−1
(x, 0)

)
+ (y′, 1).

Thus if ψξ(x, ξ0) = ψξ(y, ξ0), then ∂x̃′n−1

∂θ′j
(x, 0) = 0 for j = 1 to n − 1. However this is

impossible since as shown in the previous paragraph the vectors ∂x̃′

∂θ′j
(x, 0) must form a basis

for Rn−1 and thus they cannot all have a zero (n− 1)st component.

Now, since ψxξ(0, ξ) = Id, the map x 7→ ψξ(x, ξ) is a local diffeomorphism near x = 0,

and so there is a δ > 0 such that if |x|, |y| < δ and x 6= y, then ψξ(x, ξ) 6= ψξ(y, ξ). On

the other hand, suppose x = (0, xn) for |xn| > δ . Then by what has already been shown,

ψξ(x, ξ0) 6= ψξ(0, ξ0), and so by continuity this is still true when |x′| < δ, |y| < δ, and

|ξ − ξ0| < δ for some possibly smaller δ > 0. Repeating this argument for a finite number

of values of xn and taking the smallest constants thus obtained, the proof of the lemma is

complete.
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�

Now suppose that ε was originally chosen to be less than δ from the previous lemma,

and so the lemma actually holds for any x ∈ U ′.

Take an ε′ > 0 such that ε′ < ε/2, and let χ be the characteristic function of the complex

ball of radius ε′ centered at 0. Then for any real vector η ∈ Bε/2(ξ0), multiply (3.58) by

χ(ξ − η) e
i
h

( i
2

(ξ−η)2−ψ(y,η)), and integrate the result over ξ ∈ Rn to obtain

0 =

∫
Bε′ (η)

∫
U ′
e
i
h

Ψ(x,y,ξ,η) χ̃N (x, ξ)R(ṽ(x, ξ))ab [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ) dx dξ.

(3.62)

Here and in the remainder of the proof we are assuming that |y| < ε/2 and so lemma 7

applies. The phase function Ψ(x, y, ξ, η) is given by

Ψ(x, y, ξ, η) = ψ(x, ξ)− ψ(y, ξ) +
i

2
(ξ − η)2. (3.63)

Let us now analyze the critical points of ξ 7→ Ψ(x, y, ξ, η). Taking the gradient of Ψ with

respect to ξ we have

Ψξ(x, y, ξ, η) = ψξ(x, ξ)− ψξ(y, ξ) + i (ξ − η). (3.64)

From this we can observe that when x = y, Ψ has a unique critical point at ξc(x, x, η) = η.

Using (3.60) we have

Ψξξ(0, 0, ξ, η) = i Id,

and therefore, by the implicit function theorem, Ψ still has a unique (necessarily complex

when x 6= y) critical point ξc(x, y, η) for x and y in a sufficiently small neighborhood of

0. Also, the function ξc(x, y, η) is analytic in all of its variables, and from (3.64) we may

calculate

(ξc)x(x, y, η)|x=y = i ψxξ(x, η). (3.65)

Let us take C > 2 sufficiently large so that when |y| < ε/C and |x− y| < ε/C, the function

ξc(x, y, η) is still defined. Finally, note that by lemma 7, on the set |x−y| ≥ ε/C Ψ(x, y, ξ, η)

has no real critical point with respect to ξ.
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Now we will split the integration in (3.62) with respect to x into two pieces. We will

first consider the piece where |x− y| ≥ ε/C:

I|x−y|≥ε/C =

∫
Bε′ (η)

∫
U ′\{|x−y|<ε/C}

e
i
h

Ψ(x,y,ξ,η) χ̃N (x, ξ)R(ṽ(x, ξ))ab

× [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ) dx dξ.

(3.66)

As mentioned above, ξ 7→ Ψ(x, y, ξ, η) has no real critical point on this set, and so Ψξ(x, y, ξ, η)

must be bounded below on this domain of integration. Thus we may use the standard in-

tegration by parts trick to bound this portion of the integral. Indeed, we have

Lξe
i
h

Ψ(x,y,ξ,η) =
hΨξ · ∂ξ
i|Ψξ|2

e
i
h

Ψ(x,y,ξ,η) = e
i
h

Ψ(x,y,ξ,η),

and so if we perform integration by parts with respect to ξ N times in (3.66) we get

I|x−y|≥ε/C =

∫
Bε′ (η)

∫
U ′\{|x−y|<ε/C}

e
i
h

Ψ(x,y,ξ,η) Ltξ

(
χ̃N (x, ξ)R(ṽ(x, ξ))ab

× [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ)
)

dx dξ +O(e−
C1
h )

for some constant C1 > 0. Here we have also used the fact that on the boundary of

integration in ξ, where |ξ − η| = ε′, e
i
h

Ψ(x,y,ξ,η) is exponentially decaying as h → 0+. Now

we use the fact that all functions of ξ in the integrand satisfy estimates of the form (3.53)

where the derivatives are taken with respect to ξ, and so

∣∣∣Ltξ (χ̃N (x, ξ)R(ṽ(x, ξ))ab [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ)
)∣∣∣ ≤ (C2N h)N

for some new constant C2 > 0. Therefore

|I|x−y|≥ε/C | ≤ C2(C2N h)N + e−
C1
h (3.67)

where C2 may now be larger.

Next we analyze the part of the integral from (3.62) where |x− y| < ε/C:

h1/2 I|x−y|<ε/C = h1/2

∫
Bε′ (0)

∫
{|x−y|<ε/C}

e
i
h

Ψ(x,y,ξ,η) χ̃N (x, ξ)R(ṽ(x, ξ))ab

× [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ) dx dξ.

(3.68)
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By taking C sufficiently large and ε′ sufficiently small we can ensure that on the domain of

integration in (3.68) χ̃N (x, ξ) = 1 for all N , and thus (3.68) actually becomes

h1/2 I|x−y|<ε/C = h1/2

∫
Bε′ (0)

∫
{|x−y|<ε/C}

e
i
h

Ψ(x,y,ξ,η)R(ṽ(x, ξ))ab

× [Pṽ(x,ξ) f ](x)amQ(ṽ(x, ξ))mk J̃(x, ξ) dx dξ.

(3.69)

Now we apply the complex method of stationary phase [21, Theorem 2.8], and remark 2.10

from [21] to the integration with respect to ξ in (3.69). This yields

h1/2I|x−y|<ε/C =

∫
{|x−y|<ε/C|}

e
i
h

Ψ(x,y,ξc(x,y,η),η)P̃ (x, y, η; h)makb

× f(x)am dx+O(e−
C3
h )

(3.70)

where C3 > 0 is another constant and we have combined all the factors in the integrand

into a single array of functions P̃ (x, y, η; h)makb which is obtained by the formula in remark

2.10 of [21]. In particular P̃ (x, y, η; h) is, in the language of [21], an indexed array of classic

analytic symbols of order 0. The array of principal symbols, or the zero order terms of the

formal asymptotic expansion of P̃ , is

σP̃ (x, y, η)makb = R(ṽ(x, ξc(x, y, η)))sb (Pṽ(x,ξc(x,y,η)))
ms
at Q(ṽ(x, ξc(x, y, η)))tk J̃(x, ξc(x, y, η)).

Furthermore

σP̃ (0, 0, ξ0)makb = R(v′)sb(Pv′)
ms
at Q(v′)tk. (3.71)

Now we put the estimates for the two parts of the integral back together. From (3.62)

h1/2(I|x−y|<ε/C + I|x−y|≥ε/C) = 0, and so using (3.67) and (3.70) we get∣∣∣∣∣
∫
{|x−y|<ε/C|}

e
i
h

Φ(x,y,η) P̃ (x, y, η; h)makb f(x)am dx

∣∣∣∣∣
≤ C2 h

1/2(C2N h)N +O(e−
C4
h )

(3.72)

for a new constant C4 > 0 where Φ(x, y, η) = Ψ(x, y, ξc(x, y, η), η). The integral in (3.72)

does not depend on N , and so we are free to choose it however we wish. In particular we

can choose N as a function of h by taking N = floor
(
(eC2 h)−1

)
, and then

(C2N h)N ≤ e−N = e e−N−1 ≤ e e−
1

eC2 h .
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Therefore the right hand side of (3.72) can actually be rewritten as O(e−
C5
h ). As a final

adjustment we make the change of variables

(x, y, η) 7→ (x, y, ζ) = (x, y, ψx(y, η))

in (3.72). This is a valid change of variables by the inverse function theorem and (3.59) for

x and y in a small enough neighborhood of 0. Therefore, after possibly taking C larger it

may be applied to (3.72). Now we check that this new phase function Φ(x, y, ζ) satisfies the

hypotheses required in the definition of the analytic wave front set given in [21]. Indeed

Φ(x, x, ζ) = 0 and Φx(x, x, ζ) = ψx(x, η) = ζ. (3.73)

To finish showing that Φ is an appropriate phase function we need to prove that

Im(Φ(x, y, ζ)) > C ′ |x− y|2. (3.74)

In order to show (3.74), we expand Φ(x, y, ζ) in the x variable about y = x. Doing this we

obtain, using also (3.65),

Φ(x, y, ζ) = ζ · (x− y) +
1

2
(x− y)t (ψxx(y, η) + i ψxξ(y, η) · ψξx(y, η)) (x− y) +O(|x− y|3).

From (3.59) we may therefore conclude that when y is restricted to a small enough neigh-

borhood of 0, and for |x−y| sufficiently small, (3.74) holds. Therefore after possibly making

C larger (3.74) holds on the domain of integration for (3.72).

If f(x)am and P̃ (x, y, η)makb were merely scalars then (3.72) would be sufficient to show

that (x0, ξ0) 6∈ WFa(f). However in this case we must consider a system of equations like

(3.72) which we obtain by varying v′. Indeed, since V is open and V ∩ ξ⊥0 6= ∅, we may

find a basis {vj}n−1
j=1 for ξ⊥0 contained entirely in V ∩ ξ⊥0 and repeat the above analysis with

v′ replaced by vj for each j. Furthermore, by choosing {vj}n−1
j=1 sufficiently close together

we can be sure that (vi + vj)/‖vi + vj‖ ∈ ξ⊥0 ∩ V for every i and j, and we add these

(n− 1)(n− 2)/2 extra vectors to {vj}n−1
j=1 to obtain a set of vectors {vj}n(n−1)/2

j=1 . Doing this

we have from (3.72) a system of equations∣∣∣∣∣
∫
{|x−y|<ε/C|}

e
i
h

Φj(x,y,η)P̃j(x, y, η; h)makb f(x)am dx

∣∣∣∣∣ = O(e−
Cj
h ) (3.75)
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where Φj(x, y, η) are all phase functions satisfying (3.73) and (3.74), and P̃j(x, y, η; h)makb are

classical analytic symbols of order 0 with principal symbols satisfying, according to (3.71),

σP̃j (0, 0, ξ0)makb = R(vj)sb(Pvj )
ms
at Q(vj)

t
k.

The reader should note that we are using the terminology of [21] here. Suppose that

f ∈ (T 1
1 )Cx0M satisfies σPj (0, 0, ξ0)makbf

a
m = 0 for every j. If we recall the definitions of R

and Q, and use the fact that U1 and U2 are invertible, we see that Pvjf = 0 for every j. We

will now show that in dimension at least 4 this implies that f = 0. Indeed, let us express

the components of f [ with respect to the basis {v1, ... , vn−1, ξ
]
0} as fij . Then we have for

all 1 ≤ j, k, l ≤ n− 1 the following equations

0 =
(
(Pvjf)

)[
(vk, vl) = fkl − 〈vj , vk〉g(x0)fjl − 〈vj , vl〉g(x0)fkj + 〈vj , vl〉g(x0)〈vj , vk〉g(x0)fjj ,

(3.76)

0 =
(
(Pvjf)

)[
(ξ]0, vl) = fnl − 〈vj , vl〉g(x0)fnj ,

0 =
(
(Pvjf)

)[
(vk, ξ

]
0) = fkn − 〈vj , vk〉g(x0)fjn,

and

0 =
(
(Pvjf)

)[
(ξ]0, ξ

]
0) = fnn.

The last three of these equations together with the fact that −1 < 〈vj , vl〉g(x0) < 1 imply

that fnj and fjn = 0 for all j. Thus it only remains to show that fkl = 0 for 1 ≤ k, l ≤ n−1.

From the conditions that Pvjf = 0 for j = n to n(n−1)/2, we obtain for all 1 ≤ k, l ≤ n−1

that

0 = 〈
(
(Pvk+vlf)

)[
vk, vl〉g(x0) =

1

4
〈f(vk − vl), vl − vk〉g(x0) =

1

4
(fkl + flk − fkk − fll). (3.77)

These equations together with (3.76) form a system of linear equations for the components

fjk of f [. We will now show that the only solution is fjk = 0 for all 1 ≤ j, k ≤ n− 1.

First we deal with the symmetric part of f [. Note that when we set k = l in (3.76), we

get

0 = fkk + 〈vj , vk〉2g(x0)fjj − 〈vj , vk〉g(x0)(fjk + fkj). (3.78)

By subtracting the corresponding equation with j and k switched we get

(1− 〈vj , vk〉2g(x0))fkk = (1− 〈vj , vk〉2g(x0))fjj ⇒ fjj = fkk
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since |〈vj , vk〉g(x0)| < 1. Thus all the diagonal entries of f are equal. Therefore (3.77) shows

that fjj = 1
2(fkl + flk) for any j, k, and l. Plugging this back into (3.78) then shows that

0 = (1 + 〈vj , vk〉2g(x0) − 2〈vj , vk〉g(x0))fjj = (1− 〈vj , vk〉g(x0))
2fjj ,

and since 〈vj , vk〉g(x0) < 1, this implies that the symmetric part of f is zero.

Now we show that the antisymmetric part of f = 0. Suppose that the i, j, and k in

(3.76) are all distinct (note that this portion of the proof fails in dimension 3 because in

that case there are only two vectors, v1 and v2, in the basis for ξ⊥0 ). Then we may cyclically

permute the three indices in (3.76) and subtract the resulting equations pairwise to obtain

(fkl − flk)− 〈vj , vk〉g(x0)(fjl − flj)− 〈vj , vl〉g(x0)(fkj − fjk) = 0,

−〈vj , vl〉g(x0)(fkl − flk) + 〈vl, vk〉g(x0)(fjl − flj) + (fkj − fjk) = 0,

〈vj , vk〉g(x0)(fkl − flk)− (fjl − flj)− 〈vl, vk〉g(x0)(fkj − fjk) = 0.

If we consider this as a system of equations for fkl − flk, fjl − flj , and fjk − fkj , and then

compute the determinant of the coefficient matrix we get

1− (〈vl, vk〉2g(x0) + 〈vj , vk〉2g(x0) + 〈vj , vl〉2g(x0)) + 2〈vj , vk〉g(x0)〈vj , vl〉g(x0)〈vl, vk〉g(x0).

The fact that vj , vk, and vl are linearly independent implies that this quantity is not zero.

Therefore the antisymmetric part of f is zero, and we have completed the proof that f = 0.

This shows that our system of equations (3.75) provides an elliptic system near (0, 0, ξ0) in

dimension greater than 3, in the sense that the principal symbol at (0, 0, ξ0) admits a left

inverse. In order to have an elliptic system in dimension 3, we must add another equation

corresponding to the condition that dβ(f) = 0. We will now proceed to introduce this extra

equation.

Let χ0 ∈ C∞c (U ′) be a smooth cut-off function that is equal to 1 on a neighborhood of

x0 = 0 ∈ U ′. Then, since dβ(f) = 0 we have

h e
i
h

Φ1(x,y,ζ) χ0(x) dβ(f)(x) = 0

where Φ1 is one of the phase functions from (3.75). By integrating this equality in the x

variable we obtain ∫
h e

i
h

Φ1(x,y,ζ) χ0(x) dβ(f)(x)dx = 0,
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and then integration by parts yields∫
e
i
h

Φ1(x,y,ζ)

(
i

χ0√
det(g)

[∂Φ1

∂x3
(g1kf

k
2 − g2kf

k
1 ) +

∂Φ1

∂x2
(g3kf

k
1 − g1kf

k
3 )

+
∂Φ1

∂x1
(g2kf

k
3 − g3kf

k
2 )
]

+ hD(x)ma f
a
m(x)

)
dx = 0

(3.79)

where D(x)ma is calculated from derivatives of χ0 and the metric g. We consolidate the

factors in the integrand into one classical analytic symbol and thus rewrite the previous

formula as ∫
e
i
h

Φ1(x,y,ζ)χ0(x)D̃(x, y, ζ;h)amf(x)ma dx = 0

where the array of principal symbols of D̃ at (0, 0, ξ0) is given by

σD̃(0, 0, ξ0)[f ] =
i√

det(g)

(
g2kf

k
1 − g1kf

k
2

)
(3.80)

where we are once again expressing the components of f and g with respect to the basis

{v1, v2, ξ
]
0}. To show that the addition of the extra equation creates an elliptic system

we must show that, for f ∈ (T 1
1 )Cx0 , σD̃(0, 0, ξ0)[f ] = 0 and Pvjf = 0 for each j as above

implies that f = 0. The argument to show that the symmetric part of f is zero still holds in

this case, so we only need to show that the antisymmetric part is zero. Using the previous

notation this means that we must show f21−f12 = 0, but by (3.80) this is exactly equivalent

to σD̃(0, 0, ξ0)[f ] = 0. Therefore the system provided by the extra equation in dimension 3

is elliptic in the same sense as before.

In order to finish the proof we now must generalize a result from [21] to the case of

systems of operators. This generalization has already been done in [25] and [10], and

applied to different systems of operators. I will repeat the arguments given there and apply

them in the present situation. We first combine the systems of operators derived so far in

the proof as ∫
|x−y|<C

e
i
h

Φj(x,β)A(x, β;h)amkbj f(x)ma dx = O(e−
C
h ) (3.81)

where C is a new constant, and following [21] we write β = (y, ζ). A(x, β;h)amkbj is an

array of classic analytic symbol of order 0 made up entirely of the symbols P̃j from (3.75)

in the case of dimension greater than 3. In dimension 3 the symbol D̃ from (3.79) is
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also added. The key feature of A(x, β;h)amkbj is that its principal symbol is injective as

a map from (T 1
1 )x0M to

(
(T2)π(v)M

)n−1
in the case of greater than 3 dimensions and to(

(T2)π(v)M
)n−1 × C in the case of three dimensions. Thus these maps have left inverses.

Now, following [21], [25], and [10] we define a system of ΨDO’s in the complex domain

Op(A)[f ](y)kbj =

∫∫
e
i
h(Φj(y,β)−Φj(x,β))A(x, β;h)amkbj f(x)ma dx dβ. (3.82)

These operators have different phase functions Φj , but using the trick of Kuranishi (see [21,

Remark 4.3]) we may make an appropriate series of changes of variables to change them

all to the same phase function Φ without changing the principal symbols. Therefore we

may construct a parametrix for Op(A) and use this parametrix to express Id e
i
h

Φ (where

Id : (T 1
1 )x0M → (T 1

1 )x0M is the identity map) as a superposition of the Aa
mkbj e

i
h

Φ modulo

an exponentially decreasing function. Following now the same argument as is given for

proposition 6.2 in [21], but with matrix valued symbols, we have∫
|x−y|<C

e
i
h

Φ(x,β)Id[f ](x) dx = O(e−C/h),

possibly with yet another new constant C, for every β = (y, ζ) in a neighborhood of (0, ξ0).

This proves that (x0, ξ0) is not in WFa(f).

�

Proof of Theorem 15 First we consider the case of dimension greater than 3. Assume that

the hypotheses are all satisfied and f ∈ L2τ1
1 (M) is in the kernel of IU1,U2 . Let M1 be as

in Theorem 12. Then, by Theorem 12, when we extend f as zero on M1 \M , the resulting

function is smooth on all of M1, and still in the kernel of IU1,U2 acting now on L2τ1
1 (M1).

Now by lemma 6 applied on M1 the analytic wavefront set of f is empty, and therefore f

is analytic. Since f vanishes on M1 \M this implies that f = 0, and therefore proves that

IU1,U2 is injective.

Now let us turn to the case of 3 dimensions. Once again assume that the hypotheses are

all met, and that f ∈ C3
βτ

1
1 (M) is in the kernel of IU1,U2 , and that f satisfies the tangential

boundary condition. Let M1 be as in Theorem 13. Then by Theorem 13 when we extend f

as zero on M1 \M , the resulting tensor field is smooth on all of M1, and satisfies dβ(f) = 0
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on M1. Therefore lemma 6 implies that the analytic wavefront set of f is empty, and just

as above this implies that f = 0. This completes the proof.

�
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Chapter 4

THE NONLINEAR PROBLEM

We will now return to the fully nonlinear problem of recovering a tensor field f ∈ τ1
1 (M)

from its polarization data (U |∂+ΩRM . Our main goal will be to establish so-called local

injectivity for generic metrics for the nonlinear map f 7→ (U |∂+ΩRM , and to accomplish this

we use the stability and injectivity results for the linear problem established in Chapter 3.

The precise meaning of this local injectivity will be stated later in Section 4.3. Our method

here mostly fits into a general approach to the linearization of nonlinear inverse problems

presented in [26].

In order to apply the results of Chapter 3 we must first deal with the issue of extending

the semi-basic tensor fields U1 and U2 given respectively by (1.9) for some f1 and f2 ∈ τ1
1 (M)

to the larger manifold M1. Note that U1 and U2 are only defined from (1.9) on ΩRM \T∂M ,

and so it is not clear that U1 and U2 can be extended to semi-basic fields on the larger

manifold ΩRM1. In fact it is not possible in general to make such an extension since the

derivatives of U1 and U2 may be unbounded near T∂M . We will avoid this issue by replacing

U1 and U2 with another pair of semi-basic tensor fields Ũ1 and Ũ2 ∈ β1
1(ΩRM1) such that

(1.21) still holds. These fields are obtained by solving (1.9) on a larger manifold. A second

related issue arises since we would like to establish uniqueness results for generic metrics

g′ obtained by perturbations near an analytic metric g. As noted in remark 8, when the

metric is changed the set ΩRM also changes, and so we actually need to consider U1 and

U2 ∈ β1
1(TRM1 \ {0}) as in Theorems 12 and 13. Section 4.1 deals with these issues of

extending U1 and U2.

In Section 4.2 we consider the recovery of a field f only at the boundary from its

polarization data. Finally in Section 4.3 we present and prove our main results concerning

local injectivity.
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4.1 Extending U1 and U2

Suppose that (M, g) is a simple manifold. Also suppose that we have an extension M1 of

M as described in Section 3.2 and let M2 be an extension of M1 accomplished in the same

way as the extension from M to M1. In particular we are assuming that (M2, g) is still a

simple manifold, and that M bM1 bM2. The metric g will be the reference around which

we will perturb in order to obtain results for “generic” metrics.

Now let f1 and f2 ∈ τ1
1 (M). By [17] it is possible to define a linear and continuous

extension mapping E : τ1
1 (M)→ (τ1

1 )c(M2) so that all tensor fields in the range of E have

support contained within a given compact set K such that M b K bM2. We replace (1.9)

with

HU(ξ) = [(Pξf)(x)]U(ξ) on TRM2 \ {{0} ∪ T∂M2}, U |∂−TRM2
= E. (4.1)

Here ∂−T
RM2 is the space of inward pointing tangent vectors not necessarily having unit

length. In this case (1.10) holds where η is still given by (1.6), but with ξ ∈ ∂−TRM2 rather

than just ∂−ΩRM .

Now define Ũ1 and Ũ2 ∈ β1
1(TRM2 \ {{0} ∪ T∂M2}) by solving (4.1) with f replaced

respectively by either E[f1] or E[f2] on M2. Certainly Ũ1 and Ũ2 restrict to smooth semi-

basic tensor fields in β1
1(TRM1 \ {0}), and thus we will be able to apply the results from

Chapter 3 to the operator IŨ1,Ũ2
.

The main task in this section is to prove that Ũ1 and Ũ2 have the properties given in

the following lemma. We first recall the definition of the annulus (Ωb
a)

RM1 = {(x, v) ∈

TRM1 | a < ‖v‖g < b} where 0 < a < b.

Lemma 8 The tensor fields Ũ1 and Ũ2 defined above posses the following properties.

• For every v ∈ TRM1\{0}, Ũ1(v), Ũ2(v) : Tπ(v)M1 → Tπ(v)M1 are invertible

and satisfy (1.11).
(4.2)

• If γ is any geodesic between points in ∂M1 of length l, and 0 ≤ t1 ≤ t2 ≤ l,

then (1.22) holds where M is replaced by M1.
(4.3)
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• For fixed f1 there exists an ε > 0 such that if ‖f1 − f2‖C3τ11 (M) < ε then

‖Ũ2 − Ũ1‖C3β1
1((Ωba)RM1) < C‖f1 − f2‖C3τ11 (M)

for some constant C > 0 which may depend on a, b, g, and f1, but does not

depend on f2.

(4.4)

Proof: The first two statements of the lemma, (4.2) and (4.3), are consequences of results

from Chapter 1 applied on the larger manifold M2. Indeed (4.2) follows from Lemma 1 and

(4.3) follows from the derivation of the main identity in section 1.4. Now we turn to the

proof of (4.4).

For any given ξ ∈ ∂−(Ωb
a)

RM2 and η0 ∈ Tπ(ξ)M2, let ηi(γξ(s), ξ) (i = 1 or 2) be the

solution of (1.6) on M2 corresponding to either f1 or f2. Using global coordinates on M2 we

also define ηi(s, ξ) to be the vector ηi(γξ(s), ξ) expressed with respect to the coordinates.

Then (1.6) becomes

∂ηji
∂s

(s, ξ) =
(

[(Pγ̇ξ(s)f)(γξ(s)]
j
k + Γ(γξ(s))

j
lk γ̇ξ(s)

l
)
ηki (s, ξ)

= Gi(s, ηi(s, ξ), ξ)
j

(4.5)

and

ηji (0, ξ) = ηj0.

Here the Γ(x)jlk are the Christoffel symbols of the metric g. Now, in order to estimate

Ui(x, v) for any (x, v) ∈ (Ωb
a)

RM1 we modify (1.10) to get

ηi

(
l(x,−v),

(
Iγx,v0,−l(x,−v)

)b
a
va
)j

= Ũi(x, v)jc

(
Iγx,v−l(x,−v),0

)c
d
ηd0 . (4.6)

Here l(x, v) gives the positive endpoint of the maximally extended geodesic γx,v in M2.

From this last equation we see that ‖Ũ1(x, v)− Ũ2(x, v)‖β1
1((Ωba)RM1) may be bounded if we

can bound the difference η1(s, ξ) − η2(s, ξ) for every ξ ∈ ∂−(Ωb
a)

RM2 and s ∈ R such that

γξ(s) ∈M1. To do this we use lemma 5 and the fact that

G1(s, η, ξ)j −G2(s, η, ξ)j = [(Pγξ(s)(f1 − f2)(γξ(s))]
j
k η

k.

If we assume a priori that f2 is close to f1, then η2(s, ξ) will be bounded, and so with

the hypotheses this implies that ‖η1(s, ξ)− η2(s, ξ)‖ < C‖f1 − f2‖Cτ11 (M) uniformly for the
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required values of s and ξ where C > 0 does not depend on f2. The norm on the left hand

side of this estimate could be any norm on Cn.

Next, differentiating (4.5) with respect to either ξ or s we may obtain ODEs satisfied

by the derivatives of the left hand side of (4.6). Using this we can apply the same analysis

as above to bound derivatives of Ũ1(x, v)− Ũ2(x, v), except we also require bounds on the

corresponding derivatives of f1 − f2. This proves the result.

�

The final part of lemma 8 shows how the solution of (4.1) behaves when f is perturbed,

but we also want to see this behavior under perturbations of the metric g. Thus, we now

suppose that g′ ∈ S2M2 is another metric on M2. If g′ is sufficiently close to g in C4S2M2,

then by Theorem 14 (M2, g
′) is still a simple manifold, and we will always assume that g′

is such a metric. Let f ∈ τ1
1 (M) be one of the two tensor fields from above (either f1 or

f2), and let Ũ also be the corresponding semi-basic tensor field defined from (4.1). If Ũ ′ is

defined from (4.1) with g replaced by g′, then we have the following lemma.

Lemma 9 For a fixed metric g, there is an ε > 0 such that whenever ‖g − g′‖C4S2M2
< ε,

for every A > 0 there is a constant C such that

‖Ũ − Ũ ′‖C3β1
1((Ωba)RM1) < C‖g − g′‖C4S2M2

for every f with ‖f‖C3τ11 (M) < A.

Proof: As in the proof of (4.4) above, this result follows essentially from lemma 5. Through-

out we will use primes to indicate objects corresponding to the metric g′, while unprimed

objects will be those corresponding to g. As above we use (4.6) to estimate the difference

Ũ − Ũ ′. Indeed, working in global coordinates and using (4.6) we have

η

(
l(x,−v),

(
Iγx,v0,−l(x,−v)

)b
a
va
)j
− η′

(
l′(x,−v),

(
I ′γ
′
x,v

0,−l′(x,−v)

)b
a
va
)j

+ Ũ ′(x, v)jc

(
I ′γ
′
x,v

−l′(x,−v),0 − I
γx,v
−l(x,−v),0

)c
d
ηd0

=
(
Ũ(x, v)− Ũ ′(x, v)

)j
c

(
Iγx,v−l(x,−v),0

)c
d
ηd0 .

(4.7)
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We will estimate each of the lines in (4.7) separately, but in order to do this we first need

an estimate of the difference l(x, v)− l′(x, v).

We now proceed to establish this estimate. We will use the fact from the proof of

Theorem 3 that both l and l′ can be defined implicitly by (2.3) (now of course ρ is a

defining function for ∂M2). Suppose now that for every s ∈ [0, 1] we define the metric gs by

gs = sg + (1− s)g′ (4.8)

so that g0 = g′ and g1 = g. When ε is small enough every gs will still be a simple metric

on M2. Now let exps denote the exponential map corresponding to each s, and let ls be the

corresponding positive function on (Ωb
a)

RM1 defined as in (2.3) by

ρ(expsx(lsv)) = 0 (4.9)

where ρ is a defining function for ∂M2. As in the proof of Theorem 3, by the implicit function

theorem, ls(x, v) is a smooth function of s, x, and v. Furthermore, we may calculate the

derivative of ls(x, v) with respect to s from (4.9). Indeed

∂ls

∂s
(x, v) = − 1

dρ
(
γ̇sx,v(l

s(x, v)v)
) dρ

(
∂(expsx)

∂s
(ls(x, v)v)

)
. (4.10)

By examining the ODE defining the exponential map, we can bound the second term on the

right hand side of (4.10) by C‖g − g′‖C1S2M2
for any (x, v) ∈ (Ωb

a)
RM1 where the constant

C does not g′. The first term on the right side of (4.10) can be also be bounded, using

also the simplicity assumption, uniformly for any (x, v) ∈ (Ωb
a)

RM1. Therefore since l1 = l

and l0 = l′, the mean value theorem shows that ‖l − l′‖C((Ωba)RM1) < C‖g − g′‖C1S2M2
.

Differentiating (4.10) we can similarly show that ‖l − l′‖C3((Ωba)RM1) < C‖g − g′‖C4S2M2
.

Now we return to estimating the left hand side of (4.7). By the argument used to

establish (3.50) at the end of the proof of Theorem 14, we already have that∥∥∥∥((Iγx,v0,t

)j
b
−
(
I ′γ
′
x,v

0,t

)j
b

)
ηb
∥∥∥∥
C3
x,t,v

< C‖g − g′‖C4S2M2

where the norm on the left is over (x, v) ∈ (Ωb
a)

RM1 and t in the domain of both γx,v and

γ′x.v. Since the determinants of the parallel translations are bounded below uniformly, and
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Iγx,vt,0 = (Iγx,v0,t )−1, we also obtain∥∥∥∥((Iγx,vt,0

)j
b
−
(
I ′γ
′
x,v

t,0

)j
b

)
ηb
∥∥∥∥
C3
x,t,v

< C‖g − g′‖C4S2M2
.

Additionally, using (4.5) and (4.6) as well as lemma 5, we have ‖Ũ ′(x, v)‖C3β1
1((Ωba)RM1) <

C‖f‖C3τ11 (M1) (by for example comparing (4.5) for f with (4.5) for the zero tensor field)

were C may depend on g and ε. Putting all this together and assuming that f satisfies an

a priori bound as given in the hypothesis, this establishes the desired bound on the second

line of (4.7).

Finally, we estimate the first line in (4.7) by using (4.5), and the previous results estab-

lished in this proof. Using (4.7) for every vector η0, we thus obtain that for (x, v) ∈ (Ωb
a)

RM1

‖
(
Ũ(x, v)− Ũ ′(x, v)

)j
c

(
Iγx,v−l(x,−v),0

)c
d
ηd0‖C3

x,v
< C‖g − g′‖C4S2M2

.

Since Iγx,v0,−l(x,−v) is uniformly bounded in C3
x,v for (x, v) ∈ (Ωb

a)
RM1, this proves the result.

�

As a warmup for the full inverse problem, in the next section we will examine the problem

of recovering a tensor field f on ∂M from its polarization data.

4.2 Recovery at the boundary

The problem of recovering f ∈ τ1
1 (M) on ∂M from its polarization data is considered in [9].

Some of the results in the present section follow from the main results found there, however

there are a few differences. First, we consider here only the case of a simple manifold, while

[9] applies to CNT manifolds. Second, [9] provides an explicit method for recovering the

full jet of f on ∂M from the polarization data, while here we only prove that this full jet is

uniquely determined from the polarization data, but do not give a recovery procedure. The

3 dimensional results are also slightly different. In particular we consider here the case when

f satisfies dβ(f) = 0 and the tangential boundary condition with respect to a perturbed

metric g′. This is necessary for our main result in section 4.3.
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Theorem 16 Let (M, g) be a simple manifold of dimension greater than 3, and let f1

and f2 ∈ τ1
1 (M) be smooth tensor fields with the same polarization data. Then f1 and f2

agree to infinite order on ∂M . In dimension 3, the same statement is true if we assume

that dβ(f1 − f2) = 0 on M , and that f1 − f2 satisfies the tangential boundary condition.

Furthermore, there is an ε > 0 such that whenever g′ ∈ S2M2 satisfies ‖g − g′‖S2M2 < ε, if

dβ(f1 − f2) = 0 and f1 − f2 satisfies the tangential boundary condition with respect to g′,

then f1 and f2 agree to first order on ∂M .

Proof: Let f1 and f2 be as in the statement of the theorem, and let Ũ1 and Ũ2 ∈ β1
1(TRM1 \

{0}) be the corresponding semi-basic tensor fields introduced in section 4.1. Now define

f ∈ L2τ1
1 (M1) by setting

f(x) =

 f1(x)− f2(x) if x ∈M

0 if x ∈M1 \M .
(4.11)

We will consider the x-ray transform IŨ1,Ũ2
[f ] on M1.

Let v ∈ ∂−ΩRM1, and let γv denote the geodesic in M1 with initial data γ̇(0) = v.

Suppose that γv has length l. If γv does not pass through the interior of M , then we easily

see from the definition of f that IŨ1,Ũ2
[f ](v) = 0. Thus, suppose that γv does pass through

the interior of M . Then since ∂M is convex and (M1, g) is simple there must be unique

times t1 and t2 with 0 ≤ t1 ≤ t2 ≤ l when γv enters and exits M respectively. Then by

(1.22), which holds according to (4.3), we have for any η0 and ζ ∈ Tπ(v)(M1)〈(
Iγvt2,0 Ũ

−1
2 (ξ(t2)) Ũ1(ξ(t2)) Iγv0,t2

− Iγvt1,0 Ũ
−1
2 (ξ(t1)) Ũ1(ξ(t1)) Iγv0,t1

)
η0, ζ

〉
g(y)

=

∫ t2

t1

〈
Ũ−1

2

[
Pξ(s) (f1 − f2)

]
(γv(s)) Ũ1 Iγv0,s η0, Iγv0,s ζ

〉
g(γv(s))

ds

=

∫ l

0

〈
Ũ−1

2

[
Pξ(s) (f1 − f2)

]
(γv(s)) Ũ1 Iγv0,s η0, Iγv0,s ζ

〉
g(γv(s))

ds

= IŨ1,Ũ2
[f ](v)(η0, ζ).

(4.12)

where, as in (1.22), ξ(s) = γ̇v(s). We will show that when f1 and f2 have the same

polarization data the first line of (4.12) is zero.

In order to do this, let us consider how Ui(ξ(s)) and Ũi(ξ(s)) are related for t1 ≤ s ≤ t2.

Here and in the rest of this paragraph i may be either 1 or 2. Recall that Ui is given by
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solving (1.9) onM , while Ũi is obtained by solving (4.1) onM2 with f replaced by E[f ]. Take

any η0 ∈ Tγv(t1)M and note that both Ui(ξ(s)) Iγvt1,s η0 and Ũi(ξ(s)) Iγv0,s I
γv
t1,0

Ũ−1
i (ξ(t1)) η0

solve (1.6) where the initial data is taken at t1 rather than 0. Therefore, by the uniqueness

of solutions to (1.6) we obtain that

Ui(ξ(s)) Iγvt1,s = Ũi(ξ(s)) Iγv0,s I
γv
t1,0

Ũ−1
i (ξ(t1)) (4.13)

for t1 ≤ s ≤ t2. If f1 and f2 have the same polarization data, then U1(ξ(t2)) = U2(ξ(t2)).

Using (4.13) this can be written in terms of Ũ1 and Ũ2 as

Ũ1(ξ(t2)) Iγvt1,t2 Ũ
−1
1 (ξ(t1)) = Ũ2(ξ(t2)) Iγvt1,t2 Ũ

−1
2 (ξ(t1)). (4.14)

Finally, using (4.14) to simplify the first line of (4.12) we obtain

0 =
〈
Iγvt2,0 Ũ

−1
2 (ξ(t2))

(
Ũ1(ξ(t2)) Iγvt1,t2 − Ũ1(ξ(t2)) Iγvt1,t2

)
Iγv0,t1

η0, ζ
〉
g(y)

=〈
Iγvt2,0 Ũ

−1
2 (ξ(t2))

(
Ũ1(ξ(t2)) Iγvt1,t2 − Ũ2(ξ(t2)) Iγvt1,t2 Ũ

−1
2 (ξ(t1)) Ũ1(ξ(t1))

)
Iγv0,t1

η0, ζ
〉
g(y)

= IŨ1,Ũ2
[f ](v)(η0, ζ).

Therefore IŨ1,Ũ2
[f ] = 0. Thus far all steps in the proof apply in any dimension, but now

we must apply either Theorem 12 or Theorem 13 to complete the proof. In either case we

have that f vanishes to infinite order on ∂M . By the definition of f this implies that f1 and

f2 agree to infinite order on ∂M . Finally, the last statement of the theorem follows from

lemma 4.

�

Remark 11: Note that the result of Theorem 16 implies that f1 = f2 if f1 and f2 have the

same polarization data and are assumed to be real-analytic.

4.3 Local invertibility of the non-linear problem

We now turn to the full inverse problem and establish local invertibility and stability for

generic simple metrics and near a generic set of tensor fields f ∈ τ1
1 (M). We now restate

and prove Theorem 1 given in the introduction.
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Theorem Assume that (M, g) is a real-analytic simple manifold of dimension greater than

3 with real-analytic metric g. If f̂ ∈ τ1
1 (M) is real-analytic, then there exists an ε > 0 such

that whenever g′ ∈ S2(M) is another metric on M and f1, f2 ∈ τ1
1 (M) are such that

‖g − g′‖C4S2(M) < ε, and ‖f̂ − fi‖C3τ11 (M) < ε for i = 1 and 2, (4.15)

if the polarization data of f1 and f2 with respect to the metric g′ are the same then f1 = f2

(this is the meaning of local injectivity). Furthermore, there is a stability estimate for such

f1 and f2

‖f1 − f2‖L2τ11 (M) ≤ C‖U ′2 − U ′1‖H1β1
1((∂+ΩR)′M) (4.16)

for some constant C > 0. If the dimension is 3, then the statement of local injectivity still

holds if we also assume that dβ(f1−f2) = 0 and that f1−f2 satisfies the tangential boundary

condition with respect to the metric g. The stability estimate also holds if f1 and f2 are

further restricted to have support within a given compact set K bM where the constant C

in (4.16) may then depend on the set K.

Proof: Let (M, g), f̂ , f1, and f2 be as in the statement of the theorem. Also let Û ,
˜̂
U ,

U1, Ũ1, U2 and Ũ2 denote the respective semi-basic tensor fields described in section 4.1

corresponding respectively to f̂ , f1 and f2, and define f ∈ L2τ1
1 (M) just as in the proof

of Theorem 16 by (4.11). Further, the same objects defined with respect to g′ will be

denoted with a prime. In the 3 dimensional case note that f ∈ L2
β(M) since by assumption

dβ(f1 − f2) = 0 on the interior of M .

For the next paragraph we consider only the case of dimension greater than 3. We first

assume that f1 and f2 have the same polarization data. Then, as already established in the

proof of Theorem 16

IŨ ′1,Ũ ′2
[f ] = 0. (4.17)

Now we see that the results on the linear problem of inverting IŨ1,Ũ2
from Chapter 3 will

play an important role here. Indeed, we will now show that IŨ1,Ũ2
is injective. In order to do

this we must first use (4.4) and lemma 9. Taken together these imply that for ε sufficiently

small

‖ ˜̂
U − Ũ ′i‖C3β1

1((Ωba)RM1) < C(‖f̂ − fi‖C3τ11 (M) + ‖g − g′‖C4S2M2
) (4.18)
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for a constant C > 0 that does not depend on fi or g′. Now note that by Theorem 15 I ˜̂
U,

˜̂
U

is injective on L2τ1
1 (M), since

˜̂
U is analytic, if the dimension is greater than 3. Therefore if

ε is taken to be small enough, by Theorem 12 we have the stability estimate

‖f‖L2τ11 (M) ≤ C‖NŨ ′1,Ũ ′2 [f ]‖H1τ11 (M1). (4.19)

where NŨ ′1,Ũ ′2 is with respect to the g′ metric. By (4.17) this implies that f = 0, or f1 = f2

when the polarization data are the same. This proves the local injectivity part of the

theorem in dimension greater than 3. We next prove the local injectivity in dimension 3.

In the case of dimension 3, (4.17) and (4.18) from the previous paragraph still apply.

The difficulty in the rest of the proof is that Theorem 15 only shows that I ˜̂
U,

˜̂
U

is injective on

C3
βτ

1
1 (M), which is not a closed subspace of L2

βτ
1
1 (M) and so the stability estimate (3.18)

may not hold. We avoid this difficulty however by noting that when dβ(f1 − f2) = 0 on

M and f1 − f2 satisfies the tangential boundary condition with respect to g, and ε is small

enough, by Theorem 16 f1 − f2 vanishes to first order on ∂M . Therefore f is actually

in L2
βτ

1
1 (M1) (with respect to g), and has support contained in M . Now we introduce an

intermediate manifold M1/2 such that M b M1/2 b M1. The subspace L of L2
βτ

1
1 (M1/2)

consisting of tensor fields having support contained in M is a closed subspace of L2
βτ

1
1 (M1/2),

and by Theorem 12 and Theorem 15 applied on the manifold M1/2, IŨ ′,Ũ ′ is injective on L.

Therefore, by Theorem 13 (3.18) holds for tensor fields in L, and so (4.19) also holds there

if ε is small enough. Since f is in L, this proves that f = 0, or f1 = f2.

Now we move to the proof of the local stability estimate (4.16). As above, we first

work in the case of dimension greater than 3. Assuming that ε is sufficiently small, most of

the argument in the previous paragraph still holds, and we may still establish (4.19). By

Theorem 11 this implies

‖f‖L2τ11 (M) ≤ C‖IŨ ′1,Ũ ′2 [f ]‖H1β2((∂−ΩR)′M1) (4.20)

We no longer have that the right hand side is zero, but we still have (4.12). Using (4.13)
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with s = t2 we may rewrite (4.12) partially in terms of U ′1 and U ′2 as follows

IŨ ′1,Ũ ′2
[f ](v)(η0, ζ) =

〈
Iγvt2,0 (Ũ ′2)−1(ξ(t2))

(
Ũ ′1(ξ(t2)) Iγvt1,t2 (Ũ ′1)−1(ξ(t1))

−Ũ ′2(ξ(t2)) Iγvt1,t2 (̃U ′2)−1(ξ(t1))
)
Ũ ′1(ξ(t1)) Iγv0,t1

η0, ζ
〉
g(y)

=
〈
Iγvt2,0 (Ũ ′2)−1(ξ(t2))

(
U ′1(ξ(t2))− U ′2(ξ(t2))

)
Iγvt1,t2 Ũ

′
1(ξ(t1)) Iγv0,t1

η0, ζ
〉
g(y)

.

By (4.4) and the hypothesis that ‖f ′ − fi‖C3τ11 (M) < ε, for ε small enough the terms

Ũ−1
2 (ξ(t2)) and Ũ1(ξ(t1)) are bounded and have bounded derivatives, and so this last identity

together with (4.20) shows that

‖f1 − f2‖L2τ11 (M) = ‖f‖L2τ11 (M) ≤ C‖U ′2 − U ′1‖H1β1
1((∂+ΩR)′M).

This completes the proof of the stability estimate for dimension greater than 3.

In dimension 3 we once again have the problem that I ˜̂
U,

˜̂
U

is only injective on C3
βτ

1
1 (M),

which is not a closed subspace of L2
βτ

1
1 (M). However, if we restrict to consider the space

L of tensor fields in L2
βτ

1
1 (M) having support within a fixed compact set K b M , then by

Theorems 13 and 15 I ˜̂
U,

˜̂
U

is injective on L. Therefore by Theorem 13 we have (4.19) for

f ∈ L, and the remainder of the proof follows as in the higher dimensional case.

�



90

BIBLIOGRAPHY

[1] H. Aben. Integrated Photoelasticity. McGraw-Hill, 1979. 203 pp.

[2] L. Ainola and H. Aben. Principal formulas of integrated photoelasticity in terms of
characteristic parameters. J. Opt. Soc. A, 22:1181–1186, 2005.

[3] L. Ainola and H. Aben. Factorization of the polarization transformation matrix in
integrated photoelasticity. J. Opt. Soc. A, 24(11):3397–3402, 2007.

[4] Earl A. Coddington and Norman Levinson. Theory of ordinary differential equations.
New York, Toronto, London: McGill-Hill Book Company, Inc. XII, 429 p. , 1955.

[5] Nurlan Dairbekov, Gabriel Paternain, Plamen Stefanov, and Gunther Uhlmann. The
boundary rigidity problem in the presence of a magnetic field. Adv. Math., 216(2):535–
609, 2006.

[6] Bela Frigyik, Plamen Stefanov, and Gunther Uhlmann. The X-ray transform for a
generic family of curves and weights. J. Geom. Anal., 18(1):89–108, 2008.

[7] H Hammer and B. Lionheart. Application of Sharafutdinov’s ray transform in Inte-
grated photoelasticity. J. Elasticity, 75(3):229–246, 2005.

[8] H Hammer and W. R. B. Lionheart. Reconstruction of spatially inhomogeneous dielec-
tric tensors through optical tomography. J. Opt. Soc. Am. A, 22(2):250–255, 2005.

[9] Sean Holman. Boundary determination from polarization data. Inverse Problems,
25(3), 2009.

[10] Sean Holman and Plamen Stefanov. The weighted doppler transform. arXiv:
0905.2375.
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