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Abstract

The paper presents the solution of a very important problem, which can be used for active noise shielding and vibration control.
The problem of active shielding is related with shielding one domain from the influence of another one via a distribution of
additional sources outside of the first domain. The general solution of the problem of active shielding in the differential form
is obtained. The solution only requires the knowledge of the total field on the boundary of the shielded area. It does not need
any additional information about the characteristics of the undesirable sources or the surrounding medium. The knowledge of the
Green’s function is not required either. The active shielding source terms in acoustics are obtained in the form of the potential of
a simple layer. We show a correspondence between the active shielding solutions obtained in the analytical and finite-difference
formulations. We also suggest an estimate of a space step in the finite-difference formulation.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The problem of active shielding (AS) is related to shielding one domain from the influence of another one via a
distribution of additional sources outside of the first domain. The solution of this problem can be applied to active noise
shielding and vibration control. The problem of active noise control is a relatively new but extensively developed area
in acoustics. In this problem it is assumed that either some internal or external area is shielded via the implementation
of additional (secondary) sources or active shielding. This is the key difference from “passive” shielding where noise
reduction is achieved via mechanical obstacles. In addition, the problem becomes much more complicated if some
“friendly” sound is assumed to be in the protected area.

There are many publications devoted to the problem of AS, sound and vibration control. The first theoretical papers
in this field by Jessel, Malyuzhinets and Fedoryuk appeared about 30 years ago [5,10,3], while the first publications
related to some possible realistic implementation arose much later (see, e.g., [1,2]). The most comprehensive the-
oretical and practical reviews can be found in books [11,4,14]. As mentioned above in the standard approaches to
AS, it is necessary to know the characteristics of “adverse” sources including their location. From a practical view,
this information is often not available. To our knowledge, it was Malyuzhinets who first suggested a solution of the
problem that only requires the information on the total sound (both “friendly” and “adverse”) at the perimeter of the
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domain to be shielded. The method of the factorization of the “adverse” and “friendly” components was considered by
Malyuzhinets and Fedoryuk. These works were based on the accessibility of the Green’s function and were developed
for the Helmholtz equation with constant coefficients. Tsynkov [15] derived the general single-layer and double-layer
solutions of the problem for the Helmholtz equation in both continuous and finite-difference formulations. This so-
lution is applicable to the linear analogue of the Helmholtz equation with variable coefficients. The general solution
of the problem in a finite-difference formulation was obtained by Ryaben’kii [12,13]. The solution is based on the
Difference Potential Method (DPM) [13] and applicable to arbitrary geometric configurations, medium properties,
and boundary conditions. The optimization of the finite-difference solution [13,15] in application to the Helmholtz
equation is studied in [7–9].

In the current paper, the solution of the AS problem is obtained in the general continuous formulation. In a way, this
solution can be considered as a generalization of the solution [12,13] to the continuous case. In particular, the solution
provides the general surface-layer AS for the Helmholtz equation (and its linear analogue with variable coefficients)
and the acoustics equations without any specific limitations apart from linearity and the uniqueness of solution. The
correspondence between the differential and finite-difference solutions is shown. The solution for the discrete case
depends on a parameter, a space step, and its optimal value is evaluated.

2. General formulation of the active shielding problem

General mathematical formulation of the AS problem is presented in the following form. Let us assume that some
field (sound) is described by the following boundary value problem in a domain D0 ⊆ R

m:

LW = F, (1)

W ∈ ŨD0 . (2)

Here, Eq. (1) is supposed to be linear; ŨD0 is a linear subspace of the functions belonging to the space of smooth
enough functions on D0 and satisfying some linear boundary conditions such that the only solution of the boundary
value problem (1), (2), if F = 0, is trivial. It is worth noting that Eq. (1) can represent a system of equations, so that
W and F can be vector-functions. The operator L is some linear differential operator. In particular, it can correspond
to the operator of either the Helmholtz equation or the acoustics equations.

Consider now some bounded domain D ≡ D+ such that D ⊂ D0. It is worth noting that the domain D can be a
disconnected domain. It is assumed that the domain D has a smooth boundary Γ . The sources at the right-hand side
can be situated both in D and outside of D:

F = f + + f −,

suppf + ⊂ D,

suppf − ⊂ D− def= D0\D. (3)

Here, f + is the source of a “friendly” field (sound), while f − is the source of an “adverse” field (noise).

Suppose that we know the value WΓ
def= W|Γ of the function W on the boundary Γ of D. It is to be noted that only

this information is assumed to be available. In particular, the distribution of the sources F at the right-hand side is
unknown. The AS problem is reduced to seeking additional sources G in D− such that the solution of problem

LW(g) = F + G,

suppG ⊂ D−, (4)

W(g) ∈ ŨD0 (5)

coincides with the solution W of problem (1), (2) on the subdomain D if F = f +. It is to be noted that an “obvious”
solution F = −f − is not appropriate here because the distribution of f − is unknown.
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3. General solution of finite-difference active shielding problem

Following the DPM [13], let us introduce some grid M0 in D0. We introduce subsets of grid M0 as follows:

M+ def= M0 ∩ D, M− def= M0\M+. Suppose that Eq. (1) is approximated on some stencil by equation

LhW
(h)|m

def=
∑
n

amnW
(h)
n = F (h)|m, m ∈ M0. (6)

Eq. (6) is completed by a boundary condition approximating the continuous boundary condition (2):

W(h) ∈ U
(h)

D0 , (7)

where W
(h)

D0 is a linear space that is a counterpart of the space ŨD0 .

The extensions of the sets M0, M+, M− by the stencil we denote as N0, N+, N−, respectively. It is clear that
the sets N+ and N− intersect each other. Their intersection is regarded as the grid boundary γ of the domain D:
γ = N+ ∩ N−. The grid boundary γ is split into two nonintersecting subsets: γ = γ + ∪ γ −, where γ + = γ ∩ M+
and γ − = γ ∩ M−.

Now we wish to find the finite-difference solution of the AS problem (4), (5).
It is given by the following theorem [12]:

Gh = −LhV
(h)|M− , m ∈ M−, (8)

Gh = 0, m ∈ M+, (9)

where V (h) is an arbitrary function such that

V (h) ∈ U
(h)

D0 , V (h)
γ = W(h)

γ . (10)

The proof of this theorem can be found in [13]. It is important to emphasize that the solution given by Eq. (8) is
obtained for the general statement of the problem formulated in the previous section and is not based on the knowledge
of the Green’s function.

It is clear that the function V (h) in (8) is not unique. A particular case of this function corresponds to V (h)|N0\γ = 0.
In this case the AS source term is only situated on a minimal possible support.

4. General solution of the differential problem

Now suppose that the field W is described on either R
m or R

m+1 by the following linear boundary value problem
defined on D0 = D+ ∪ D−:

LW
def=

m∑
1

Ai ∂W

∂xi
+ R = F, (11)

W ∈ UD0,

F = f − + f +,

suppf + ⊂ D+, suppf − ⊂ D−, (12)

where {xi} (i = 1, . . . ,m) is some nonsingular coordinate system; W, R
def= BW and F are vector-functions taking

values in R
p; Ai, B are p × p matrices such that Ai = Ai(x),B = B(x) ∈ C∞(Rm).

Let us consider the solution of problem (11), (12) in the weak sense (see, e.g., [6,16]). Suppose that UD0 is the
completion of the linear space ŨD0 in some Sobolev norm, so that ŨD0 is dense in UD0 . The space UD0 contains, in
particular, piece-wise smooth functions. We say that a function W ∈ UD0 is a generalized solution of boundary value
problem (11), (12) if (LW,Φ) = (F,Φ) for any test function Φ(D0) ∈ C∞

0 (D0). Here, (f,Φ) denotes the linear
functional associated with a given generalized function f .

Suppose that the right-hand side F belongs to some space YF of “admissible” functions such that problem (11), (12)
has a unique generalized solution. It is also supposed that if F = f + + f −, then f + ∈ YF , f − ∈ YF and vice versa.
This means that a generalized solution of problem (11), (12) exists if either F = f + or F = f −. To avoid possible
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uncertainties, we also make a natural assumption that for any non-zero density the appropriate simple-layer potential
solution is unique and cannot be trivial in D+.

Then the solution of the AS problem is given by the following theorem.

Theorem. The general solution of the AS problem formulated for (11), (12) is as follows:

G = AnWΓ δ(Γ ) + LW(v) ≡ G0(Γ ) + LW(v), (13)

suppW(v) ⊂ D−, W(v) ∈ UD0, (14)

An =
m∑
1

Aini, (15)

where W(v) is an arbitrary function satisfying conditions (14), n is the external normal vector to the boundary Γ , ni

(i = 1, . . . ,m) are its covariant coordinates in the coordinate system {xi}.

Proof. To prove the statement of the problem, let us consider the following four auxiliary boundary-value problems:

1◦ LW+ = f +, W+ ∈ UD0 . (16)

2◦ LW− = f −, W− ∈ UD0 . (17)

3◦ LW(0) = G0(Γ ), W(0) ∈ UD0 . (18)

4◦ LW(1) = LW(v), W(1) ∈ UD0 . (19)

The solution of problem (18) is the following:

W(0)(x) =
{−W−, if xD+,

W+, if x ⊂ D−.
(20)

Thus, the function W(0)(x) is a simple-layer potential with the discontinuity on the boundary Γ of [W(0)]|Γ =
(W+ + W−)|Γ .

Relation (20) can be proved as follows. First, the matrix An in (14) is invariant. In order to prove this, let us rewrite
Eq. (11) in another coordinate system {ξ i} (i = 1, . . . ,m):

LW =
m∑
1

Aj ∂W

∂ξj
+ R = F,

where

Aj =
m∑
1

∂ξj

∂xi
Ai.

On the other hand, the covariant coordinates of the normal vector in the new coordinate system are given by:

nk =
m∑
1

∂xi

∂ξk
ni (k = 1, . . . ,m).

Then,

An =
m∑
1

Ajnj =
m∑
1

m∑
1

∂ξj

∂xk

∂xi

∂ξj
Aink =

m∑
1

Aknk.

Thus, without the loss of generality we can further assume that the coordinate system {xi} is Cartesian.

In this case for any regular function X we are able to introduce functions Xi def= AiX (i = 1, . . . ,m). Then, we have
m∑ ∂

∂xi
Xi def= ∇X. (21)
1
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Next, having introduced the conjugate operator

L∗ def= −
m∑
1

AiT ∂

∂xi
+ BT, (22)

we obtain(
LW(0),Φ

) = (
W(0),L∗Φ

) =
∫

Rm

W(0)L∗Φ dx =
∫

D−
W(0)L∗Φ dx +

∫
D+

W(0)L∗Φ dx

= −
∫

D−
W(0)

m∑
1

∂

∂xi

(
AiT

Φ
)

dx −
∫

D+
W(0)

m∑
1

∂

∂xi

(
AiT

Φ
)

dx + (R,Φ)

= −
∫

D−
∇(

W(0)Φ
)

dx +
∫

D−
∇W(0)Φ dx −

∫
D+

∇(
W(0)Φ

)
dx +

∫
D+

∇W(0)Φ dx + (R,Φ)

=
∫

Rm

{∇W(0) + R
}
Φ dx =

∫
Γ

AnWΓ ΦΓ dx +
∫

Rm

{
LW(0)

}
Φ dx = (

AnWΓ δ(Γ ),Φ
)
.

Here, {LW } denotes the regular part of the operator L, W(0)
n ≡ W(0) · n = AnW

(0).
Problem (19) obviously has the following solution

W(1) = W(v). (23)

Then, the general solution of problem (4), (5) is represented by the following sum:

W(g) = W− + W+ + W(0) + W(1). (24)

Thus, if

G(x) = AnWΓ δ(Γ ) + LW(v), (25)

then on D+: W(g) = W+.
Conversely, if there is any other AS source G̃, it is to be a partial case of LW(v). In order to prove this statement,

let us consider the following problem:

LV = F + G̃, V ∈ UD0 . (26)

From Eq. (26) we obtain:

(G̃,Φ) = (
L(V − W),Φ

) = (V − W,L∗Φ) =
∫

Rm

(V − W)L∗Φ dx

= −
∫

D+
W−L∗Φ dx −

∫
D−

(V − W)
∂

∂xi

(
AiT

Φ
)

dx +
∫

D−
B(V − W)Φ dx

=
∫
Γ

W−
n ΦΓ dx +

∫
Γ

(Vn − Wn)ΦΓ dx +
∫

D−
L(V − W)Φ dx

=
∫
Γ

WnΦΓ dx +
∫
Γ

ZnΦΓ dx +
∫

D−
LZ · Φ dx = ({LZ} + G0(Γ ) + Znδ(Γ ),Φ

)
,

here Z = V − W − W+, Z = V − W − W+, Zn ≡ Z · n = AnZ(Γ ).
Let us show that Zn = 0. If G̃0 = LZ+G0(Γ )+Znδ(Γ ) is an AS solution, then G̃1 = G0(Γ )+Znδ(Γ ) is to be an

AS solution also. It immediately follows from the fact that supp {LZ} ⊂ D−. On the other hand, Z(Γ ) = β(Γ )WΓ ,
where β(Γ ) is some surface function defined on Γ , since the value WΓ is only known.

Assume that G̃1 is an AS solution. Consider the following two problems:

LW0 = F + G0, W0 ∈ UD0 (27)
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and

LW1 = F + G̃1, W1 ∈ UD0 . (28)

By subtracting (27) from (28), we have:

LW2 = β(Γ )AnWΓ δ(Γ ), W2 ∈ UD0, (29)

where W2 = W1 − W0.
In (29), W2 ≡ 0 on D+ for any distribution of WΓ . Hence, β(Γ ) = 0. �
From the theorem it follows that the solution of the AS problem is not unique. The first term at the right-hand

side of (13) represents a simple layer with the density of G0 ≡ AnWΓ which is the necessarily component of the
AS solution; whereas the second term can be variable and represents the volume distribution of AS additional (free)
sources. In particular, if W(v) ≡ 0, we obtain the AS having the minimal support Γ : G = G0 ≡ AnWΓ δ(Γ ). It should
be noted that the solution of the AS problem is obtained here in the general differential form for a wide class of
differential equations with variable coefficients under some general natural assumptions. It is worth noting that after
some appropriate modifications a similar AS solution can be used for shielding the domain D− from the domain D+.
In particular, the simple-layer AS solution G0(Γ ) is simply obtained by the change of sign since the normal direction
n is to be altered.

Let us now consider a few examples of possible applications of the obtained results.

Example 1. In the case of the Helmholtz equation

	φ + k2φ = s (30)

we rewrite it as the system of first-order equations:

∇a + k2φ = s, ∇φ − a = 0. (31)

In R
3, we have:

W = (a1, a2, a3, φ)T, (32)

where ai (i = 1,2,3) are the coordinates of the vector a. Hence,

An =
⎛
⎜⎝

n1 n2 n3 0
0 0 0 n1
0 0 0 n2
0 0 0 n3

⎞
⎟⎠ (33)

and

G0(Γ ) = (an,φn1, φn2, φn3)
Tδ(Γ ), (34)

where an = a · n.
Coming back to the Helmholtz equation for the variable φ, we obtain

	φ + k2φ = s + q0, (35)

where the shielding function q0 is as follows:

q0 = δ(Γ )
∂φ

∂n
+ ∇(

δ(Γ )φn
)

(36)

or

q0 = δ(Γ )
∂φ

∂n
+ ∂δ(Γ )φ

∂n
. (37)

This solution coincides with the solution derived in [15]. As mentioned above, the solution is applicable to the
linear analogue of the Helmholtz equation with variable coefficients.
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Example 2. It should be noted that the result of the theorem is valid for nonstationary problems. As an example,
consider the following 1D nonstationary problem. Suppose that the domain D ≡ D+ corresponds to x < 0 and the
field W is described by the following problem:

Wt + AWx = f − + f +, W ∈ UD0, (38)

where we assume that the location of the sources f − and f + is stationary. Next, consider the following boundary
value problems:

W−
t + AW−

x = f −, W− ∈ UD0, (39)

and

W+
t + AW+

x = f +, W+ ∈ UD0 . (40)

Then, the following vector G0 is a solution of the AS problem:

G0 = AW(0, t)δ(0). (41)

Indeed, the generalized solution of equation

W
(0)
t + AW(0)

x = G0 (42)

is given by

W(0) =
{−W−, if x < 0,

W+, if x > 0
(43)

and [W(0)(t)]x=0 = W+(0, t) + W−(0, t).

Example 3. Next, let us consider the acoustics equations:

pt + ρc2ux = ρc2qvol, ρut + ∇p = fvol, (44)

where qvol is the volume velocity per unit volume and fvol is the force per unit volume [11]. In this case, we have

W = (u1, u2, u3,p)T, (45)

where uj (j = 1,2,3) are the coordinates of the velocity u.
It turns out that the matrix An coincides with the corresponding matrix (33) of the Helmholtz equation.
As a result,

qvol = u · n|Γ δ(Γ ), fvol = p|Γ nδ(Γ ). (46)

Example 4. It is possible to derive the counterpart of the general continuous solution in a discrete space.
In R

3, let us introduce some orthogonal coordinate system {ηi} (i = 1,2,3) related to the boundary Γ in such a
way that the coordinate η3 is directed along the external normal to Γ . Eq. (11), written in the coordinate system {ηi}
at some point (k, l,m), can be approximated as follows:

An

Wk,l,m+1/2 − Wk,l,m−1/2

η3
k,l,m+1 − η3

k,l,m

+ R̃k,l,m+1/2 = Fk,l,m, (47)

where R̃k,l,m+1/2 includes the terms with finite-difference derivatives in the other two directions. Assume that we
shield the area m < 0, then the boundary γ is single-layer: (k, l,−1/2).

It is possible to see that the following function satisfies the general finite-difference solution (8)–(10):

G
(h)
k,l,0 = An

Wk,l,−1/2

η3
k,l,0 − η3

k,l,−1

. (48)

Hence,

G
(h)
k,l,0 = (u · n,pn1,pn2,pn3)

T|k,l,−1/2

η3 − η3
. (49)
k,l,0 k,l,−1
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For the sake of simplicity let us set h = η3
k,l,0 − η3

k,l,−1. Then we obtain a finite-difference representation of source
terms (46):

q
(h)
vol = 1

h
u · n|γ , f(h)

vol = 1

h
p|γ n. (50)

The optimal value of the space step h can be found from the following analysis. Let us consider the domain D with
the boundary Γ and the simple layer having the density G0(Γ ). In reality, it is impossible to realize the delta-function
source term exactly. Therefore, we approximate the surface source fs(Γ ) = G0(Γ )δ(Γ ) by the volume source fv

with the density G0(Γ )/h distributed on the layer σ(Γ ) of thickness Δ along the surface Γ .
The simple-layer potential Ws is as follows:

Ws(x) = Gr ∗ fs(Γ ) =
∫
Γ

Gr(x|yΓ )G0(yΓ )dη1 dη2, (51)

where Gr is the Green’s function of problem (1), (2). We assume here that the convolutions Gr ∗ fs and Gr ∗ fv exist.
Suppose that Δ � V

1/3
D , where VD is the volume of the domain D. Then, the volume source fv yields the following

volume potential:

Wv(x) =
∫
D

Gr(x|y)fv(y)dy =
∫
D

Gr(y|x)fv(y)dy

≈ Δ

h

∫
Γ

Gr(yΓ |x)G0(yΓ )dη1 dη2 = Δ

h

∫
Γ

Gr(x|yΓ )G0(yΓ )dη1 dη2. (52)

Here, in the volume integral, we first integrate in the normal direction neglecting by the variation of the Green’s
function across Δ. In (52), the principle of reciprocity is used: Gr(x|y) = Gr(y|x). Thus, if we require the equality
between Ws and Wv , then we obtain h ≈ Δ. Hence, the optimal space step in the finite-difference AS solution equals
the thickness of the shielding layer. This result seems to be quite expectable, because on one hand h should be as
small as possible, but on the other hand, it should be not less than the thickness Δ. The latter statement follows from
the fact that the AS discrete source is single-layer.

If the Green’s function Gr(y|x) is regular in the vicinity of the boundary Γ and Δ � |x|, it is possible to show
that the potentials Ws and Wv coincide with each other modulo O(h2). Indeed, in the volume integral of the Green’s
function we have:

Δ/2∫
−Δ/2

Gr(y|x)dη3 = Δ · Gr(yΓ |x) + O
(
Δ3). (53)

In this analysis we do not consider any discretization of the AS terms along the boundary Γ , which would correspond
to a fine mesh in the directions η1 and η2. The discretization in these directions is beyond the current consideration.

5. Conclusion

The general solution of the AS problem in the differential form has been obtained. The solution only requires the
knowledge of the total field on the boundary of the shielded area. It does not require any additional information about
the characteristics of the undesirable sources or the surrounding medium. The knowledge of the Green’s function is
not required either. The AS source terms in acoustics have been explicitly obtained in the invariant form of a simple
layer. The correspondence between the AS solutions obtained in the analytical and finite-difference formulations has
been obtained. The evaluation of the space step in the finite-difference formulation has been done.
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[9] J. Lončarić, S.V. Tsynkov, Quadratic optimization in the problems of active control of sound, Appl. Numer. Math. 52 (4) (2005) 381–400.

[10] G.D. Malyuzhinets, An unsteady diffraction problem for the wave equation with compactly supported right-hand side, in: Proceeding of the
Acoustics Institute, USSR Ac. Sci., Moscow, 1971, pp. 124–139 (in Russian).

[11] P.A. Nelson, S.J. Elliott, Active Control of Sound, Academic Press, San Diego, CA, 1992.
[12] V.S. Ryaben’kii, A difference shielding problem, Funct. Anal. Appl. 29 (1995) 70–71.
[13] V.S. Ryaben’kii, Method of Difference Potentials and Its Applications, Springer, Berlin, 2002.
[14] O. Tochi, S. Veres, Active Sound and Vibration Control. Theory and Applications, The Institution of Electrical Engineers, New York, 2002.
[15] S.V. Tsynkov, On the definition of surface potentials for finite-difference operators, J. Sci. Computing 18 (2003) 155–189.
[16] V.S. Vladimirov, Equations of Mathematical Physics, Dekker, New York, 1971.


