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THE O(4)D+l NONLINEAR SIGMA MODEL:
The Vacuum State and the Mass Gap

N.E. Ligterink, N.R Walet, and R.F. Bishop
Department of Physics, UMIST, PO Box 88, Manchester M60 IQD, UK

ABSTRACT

We study the ground state and low-lyingexcited states in the nonlinear sigma
model with the coupled cluster method of quantum many-body theory.

1. Introduction

Although the Hamiltonian formulation of quantum field theory is more involved
than its Euclidean equivalent, it has some fundamental advantages. These advantages
start already at the level of the vacuum. Indeed, the vacuum is only clearly defined in
the Hamiltonian formulation; it is the wave functional of the lowest-energy state. Given
the vacuum, the particles are the low-lying excitations on this state, and therefore the
properties of particles and their interactions are determined by the vacuum.' Even
the absence of degrees of freedom, such as quarks, from the physical spectrum should
almost automatically follow from the analysis of the vacuum.

Perturbations in single-quark degrees of freedom around the vacuum state should
lead to high-energy states, probably a superposition of low-energy collective states.
These perturbations can be considered the theoretical counterparts of deep-inelastic
scattering, where an initial hit of a constituent leads to jets of particles in a "break-
up" reaction. If the energy is high enough, the collective modes can move off freely.

Although the observables should follow easily when the vacuum state is deter-
mined, the practice is different. The vacuum problem is one of the hardest to solve. The
number of non-perturbative methods for treating the vacuum state in the Hamiltonian
formulation is restricted. Moreover, in QCD there are additional questions arising from
the gauge invariance and the required gauge fixing.

The vacuum is invariant under space symmetries: rotations and translations.
Therefore, the wave function can be restricted from the start. Usually it is restricted
to mean-field states, where fields on each point act independently. However, in the true
physical system correlations play an important role, not least to imprint the length
scale of the collective modes which live on the vacuum.

If one wants to recover the global properties of a non-perturbative vacuum in an
ab-initio calculation, one needs to retain as many as possible of the correlations allowed
in the vacuum. For this purpose we investigate the possibility to apply the coupled-
cluster method (CCM), a many-body technique, to nontrivial field theories. The CCM
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has a number of properties, which, in principle, makes it very suitable for the study of
the vacuum state and low-lying excitations. As a many-body technique it is designed
to deal with a large number of degrees of freedom, which can be chosen to satisfy
the symmetries of the vacuum. Its quasi-analytical nature allows for a linear reponse
approximation (RPA) upon the vacuum state to recover the excitation spectrum.

For an initial investigation we study the nonlinear sigma model. It is known to
exhibit symmetry breaking, beyond which.the whole nature of the ground state changes.
The model is used as an effective field theory for QeD from different perspectives. It
is best known for the dynamics of pions, dominated by the chiral symmetry breaking
expressed in the low-energy theorem.

2. The Nonlinear Sigma Model

The nonlinear sigma model consists of a single field ¢>nwith four components
¢>1>4>2, 4>3, and ¢>4constrained by ¢>! = 1. The field is considered free and massless. The
self-interaction among the components is the result of the constraint, which ties them
together. The Lagrangian density

£, = O,.¢>n{}P¢>n ,

leads to the corresponding 0(4) spin-lattice Hamiltonian

(1)

H = -2
1 2:~+"2:(1- ¢>n,itPnJ) ,

i (iJ)
(2)

where>. is proportional to a2(D-l) for a D-dimensional cubic lattice with spacing a,2

and I is the angular momentum operator in four dimensions. The interaction term is
summed over all nearest neighbour pairs of lattice sites (i,j).

If the model is thus regularised by considering only fields at lattice points it has
two phases, although the case D = 1 is pathological since the coupling constant does
not then depend on lattice spacing. As the coupling constant is small, the fields at
each lattice point are virtually independent and the lowest-energy state consists of free
rotors in the S-state at each site. If the coupling constant increases, the fields, which
are vectors on a four-dimensional unit sphere, will align, and, in terms of the free-rotor
spectrum, higher states will be filled. This behaviour is general for many systems: the
kinetic and potential terms tending to drive the system into different phases.

The mean-field results give a rough indication of the behaviour of the system. In
this case one has to introduce a direction into the system and investigate whether the
vacuum aligns with respect to this direction. Generally, the mean-field state is

({tPaJ}lw)=II!(¢>i·e) ,
i

(3)

where e = (0,0'00,1) and ! is an arbitrary function. However, the position of the
phase transition and the global behaviour is already given with the simple linear trial
function: !(¢>·e) = cosa+¢>·e sina. Below the critical coupling >'c = 31D the ground
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Fig. 1. The results using the functional NCCM: left, the ground-state energy per link in
one, two, and three dimensions; and right, the corresponding lowest excitation energy. The
solutions terminate as the excitation energy vanishes.

state is the constant state. However, above the critical coupling the ground state has
a nontrivial solution,

f(x) = V(>,D + 3)/(2).D) + V(>'D - 3)/(2).D) x . (4)

The exact mean-field result above the critical coupling is given by the first odd char-
acteristic function ce2 of the Mathieu equation. These results extend easily to the
corresponding O(N) model, yielding a critical coupling of >'c = 2(N - l)/DJN. The
mean-field results predicts essentially the same behaviour for any dimension, although
it is known that in the one-dimensional system the symmetry is never broken.

3. The Coupled Cluster Method

The CCM is a powerful technique for quantum many-body calculations. Here we
will review only the essential features, and we refer to the literature" for the details.
There are three key features of the CCM: firstly, the exponentiated wave functional

(5)

where Iof?} is an uncorrelated model state, and S is a linear combination of all multi-
configurational creation correlation operators, which commute among themselves and
annihilate the model bra state. Due to the exponentiation the independent correlations
are automatically summed in the correct way. Secondly, the bra state is parametrised
in a way which builds in a similarity transform,

(6)

where the first form is known as the normal CCM (NCCM), and the second as the
extended CCM (ECCM).4 The third key feature of the CCM is the choice of operators:
Sand t contain only destruction operators; they are conjugate to the creation operators
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Fig. 2. The excitation energy, for operatorial ECCM, in one dimension (left) and two dimen-
sions (right) (preliminary results).

in S. The similarity transform then has the advantage that only correlations linked to
the Hamiltonian are retained. The bi-variational equations in Sand S (or S and E)
are therefore only of moderate complexity.

The NCCM SUB2 form, where only two-body correlation are retained, allows the
use of functions as correlation operators

S = 'LSi,i(t!>i. ,pi) ,
i,i

(7)

which yield the results shown in Fig. 1.5 However, the NCCM has the same failure as
the mean-field result; it finds a phase transition in one dimension where there should
not be one. The NCCM also fails to track across the phase transition, which is the
ultimate goal, as we want to be able to describe the collective low-lying modes in terms
of local degrees of freedom.

The ECCM seems to fulfill above demands," Preliminary investigations show
that we are indeed able to cross the phase transition and in one dimension the phase
transition disappears, as we can see in Fig. 2, where the excitation energy remains
massive in one dimension, but still vanishes, as expected, in two dimensions.
4. Conclusion and Outlook

The CCM allows an ab-initio study of the vacuum state and low-lying excitations
. in the nonlinear sigma model. However, to cross the phase transition requires the more

elaborate extended CCM in an operatorial form. This work is in progress.
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