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In this article new results are presented for the zero-temperature ground-state properties
of the spin-half transverse Ising model on various lattices using three different approxi-
mate techniques. These are, respectively, the coupled cluster method, the correlated basis
function method, and the variational quantum Monte Carlo method. The methods, at
different levels of approximation, are used to study the ground-state properties of these
systems, and the results are found to be in excellent agreement both with each other
and with results of exact calculations for the linear chain and results of exact cumulant
series expansions for lattices of higher spatial dimension. The different techniques used
are compared and contrasted in the light of these results, and the constructions of the
approximate ground-state wave functions are especially discussed.

PACS number(s): 75.1O.Jm, 75.30.Gw, 75.50.Ee, 75.40.Cx

1. Introduction

Two of the most versatile and most accurate semi-analytical formalisms of micro-
scopic quantum many-body theory (QMBT) are the coupled cluster method'<"
and the correlated basis function (CBF) method.9-19 In recent years such QMBT
methods, together with various quantum Monte Carlo (QMC) techniques, have been
applied with a great deal of success to lattice quantum spin systems at zero temper-
ature. Some typical recent examples of such applications include Refs. 20-27 for the
CCM, Refs. 29-32 for the CBF method, and Refs. 33-40 for the various QMC tech-
niques. Current state of the art is such that these methods are sufficiently accurate
to describe the various quantum phase transitions between the states of different
quantum order that exist in such abundance for spin-lattice systems. However, each
of the above methods is characterised by its own strengths and weaknesses. Hence,
a fuller and more complete understanding of such strongly interacting systems as
the lattice quantum spin systems is expected to be given by the application of a
range of such techniques rather than by the single application of anyone of them.
In this article we wish to apply the CCM, the CBF method, and the variational
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quantum Monte Carlo (VQMC) method to the spin-half transverse Ising model
(for reviews of this model see, for example, Refs. 41-46). The Hamiltonian for this
model on a lattice of N sites, each of which has z nearest neighbours, is given by

H = (~ + A) N - L at aJ - AL at',
(i,j) i

(1)

where the a-operators are the usual Pauli spin operators and (i, j) indicates that
each of the zN /2 nearest-neighbour bonds on the lattice is counted once only. We
work in the thermodynamic limit where N -t 00. We note that this model has an
exact solution in one dimensionr'" and approximate techniques, such as the random
phase approximation (RPA)47 and exact cumulant series expansions,48,49 have also
been applied to it for lattices of higher spatial dimensionality. For A :::> 0, we note
furthermore that the model contains two distinct phases, with a critical coupling
strength Ac depending on lattice type and dimensionality. For A < Ac there is
nonzero spin ordering in the z-direction, and hence this regime will be referred to
here as the ferromagnetic regime. By contrast, for A > Ac, all of the ferromagnetic
ordering is destroyed, and the classical behaviour oi chese systems is that the spins
lie along the positive x-axis. Hence, the A > Ac regime will be referred to here as
the paramagnetic regime. In Sec. 2 the technical aspects of applyin« the CCM, the
CBF, and the VQMC methods to the spin-half transverse Ising model are presented,
and in Sec. 3 the results of these calculations are discussed. Finally, the conclusions
are given in Sec. 4.

2. Quantum Many-Body Techniques

2.1. The coupled cluster method (GGM)

In this section, we firstly describe the general CCM formalism.l+" and then proceed
to apply it to the specific case of the spin-half transverse Ising model. The exact
ket and bra ground-state energy eigenvectors, 1'lJ) and (~I, of a many-body system
described by a Hamiltonian H,

(2)

are parametrised within the single-reference CCM as follows:

s= ~SICt,
NO

s= 1+ ~SICi.
1,#0

(3)

The single model or reference state I<]?) is required to have the property of being
a cyclic vector with respect to two well-defined Abelian subalgebras of multi-
configurational creation operators {ct} and their Hermitian-adjoint destruction
counterparts {Ci == (Cnt}. Thus, I<]?) plays the role of a vacuum state with
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respect to a suitable set of (mutually commuting) many-body creation operators
{ct},

Crl<I» = 0, I i= 0, (4)

with Co == 1, the identity operator. These operators are complete in the many-body
Hilbert (or Fock) space,

1= I<I»(<I>I+L ctl<I»(<I>ICr .
foIO

Also, the correlation operator S is decomposed entirely in terms of these creation
operators {ct}, which, when acting on the model state ({ct I<I»}), create excita-
tions from it. We note that although the manifest Hermiticity, (Wit = Iw)/(wlw)),
is lost, the intermediate normalisation condition (Wlw) = (<I>lw)= (<I>I<I»== 1 is
explicitly imposed. The correlation coefficients {Sf, Sf} are regarded as being in-
dependent variables, even though formally we have the relation,

(5)

_ (<I>lest eS

(<I>IS = (<I>lesteSI<I» .

The full set {S1,S1} thus provides a complete description of the ground state. For
instance, an arbitrary operator A will have a ground-state expectation value given

(6)

as,

(7)

We note that the exponentiated form of the ground-state CCM parametrisation
of Eq. (3) ensures the correct counting of the independent and excited correlated
many-body clusters with respect to I<I»which are present in the exact ground state
IW). It also ensures the exact incorporation of the Goldstone linked-cluster theo-
rem, which itself guarantees the size-extensivity of all relevant extensive physical
quantities.

The determination of the correlation coefficients {S I ,Sf} is achieved by taking
appropriate projections onto the ground-state Schrodinger equations of Eq. (2).
Equivalently, they may be determined variationally by requiring the ground-state
energy expectation functional H( {S1, SJ}), defined as in Eq. (7), to be stationary
with respect to variations in each of the (independent) variables of the full set. We
thereby easily derive the following coupled set of equations,

off loS1 = 0 => (<I>ICre-s HeSI<I» = 0, I i= 0;

oH IJS1 = 0 => (<I>ISe-S[H, CtJesl<I» = 0, I i= o.

(8)

(9)

Equation (8) also shows that the ground-state energy at the stationary point has
the simple form

(10)



1520 R. F. Bishop, D. J. J. Farnell f3 M. L. Ristig

It is important to realize that this (bi- )variational formulation does not lead to an
upper bound for Eg when the summations for Sand S in Eq. (3) are truncated,
due to the lack of exact Hermiticity when such approximations are made. However,
it is clear that the important Hellmann-Feynman theorem is preserved in all such
approximations.

We also note that Eq. (8) represents a coupled set of nonlinear multinomial
equations for the c-number correlation coefficients {S [ }. The nested commutator
expansion of the similarity-transformed Hamiltonian,

A -8 S 1H == e He = H + [H,S] + ,[[H,S],S] + ... , (11)2.
together with the fact that all of the individual components of S in the sum in
Eq. (3) commute with one another, imply that each element of S in Eq. (3) is
linked directly to the Hamiltonian in each of the terms in Eq, (11). Thus, each of the
coupled equation (8) is of linked cluster type. Furthermore, each of these equations
is of finite length when expanded, since the otherwise infinite series of Eq. (11) will
always terminate at a finite order, provided (as is usually the case) that each term
in the second-quantised form of the Hamiltonian H contains a finite number of
single-body destruction operators, defined with respect to the reference (vacuum)
state liP). Therefore, the CCM parametrisation naturally leads to a workable scheme
which can be efficiently implemented computationally. It is also important to note
that at the heart of the CCM lies a similarity transformation, in contrast with the
unitary transformation in a standard variational formulation in which the bra state
(~I is simply taken as the explicit Hermitian adjoint of 1111).

The CCM formalism is exact in the limit of inclusion of all possible multi-spin
cluster correlations for Sand S, although in any real application this is usually
impossible to achieve. It is therefore necessary to utilise various approximation
schemes within Sand S. The three most commonly employed schemes previously
utilised have been: (1) the SUBn scheme, in which all correlations involving only n or
fewer spins are retained, but no further restriction is made concerning their spatial
separation on the lattice; (2) the SUBn-m sub-approximation, in which all SUBn
correlations spanning a range of no more than m adjacent lattice sites are retained;
and (3) the localised LSUBm scheme, in which all multi-spin correlations over
distinct locales on the lattice defined by m or fewer contiguous sites are retained.
The specific application of the CCM to the spin-half transverse Ising model in the
paramagnetic and ferromagnetic regimes is now described.

2.1.1. The paramagnetic regime

In the paramagnetic regime, a model state is utilised in which all spins point along
the x-axis, although it is found to be useful to rotate the local spin coordinates of
these spins such that all spins in the model state point in the "downwards" direction
(i.e., along the negative z-axis). This (canonical) transformation is given by,

(12)



Ab Initio Treatments of the Ising Model 1521

such that the transverse Ising Hamiltonian of Eq. (1) is now given in the (rotated)
spin-coordinate frame by,

H = (~+ A)N - L [o-{o-t + 0-;0-; + o-;o-t + o-{o-;] + A Lo-i, (13)
(i,j) i

where o-t == Ho-k ± io-n· In these local coordinates the model state is thus the
"ferromagnetic" state I\II) = I-W. ... -l.- ... ) in which all spins point in the downwards
direction. In order to reflect the symmetries of this Hamiltonian, the cluster cor-
relations within S are explicitly restricted to those for which sf = Li sf (in the
rotated coordinate frame) is an even number. Hence, the LSUB2 approximation is
defined by

(14)

where p covers all nearest-neighbour lattice vectors. The ground-state energy is now
given in terms of b1 by,

E z
- = -(1- bt).N 2

(15)

It is found that this expression is valid for any level of approximation for S. Using
Eq. (7) it is found that,

5bi + 4Ab1 - 1 = 0 , (16)

and hence an approximate solution for the ground-state energy at the LSUB2 ap-
proximation level purely in terms of A may be obtained. The SUB2 approximation
contains all possible two-body correlations, for a given lattice, and is defined by

(17)

where the index r indicates a lattice vector. Equation (7) may once again be
utilised to determine the SUB2 ket-state equations. Hence the CCM SUB2 ket-
state equation corresponding to a two-body correlation characterised by index s is
given by,

T

We note that this equation is meaningful only for s =I- 0 as we may only ever
have one Pauli raising operator per lattice site. This equation may be solved by
performing a Fourier transformation. (Details of how this is achieved in practice
are not given here and the interested reader is referred to Refs. 20 and 23.) An
alternative approach, however, is to use Eq. (18) in order to fully define the SUB2-
m equations. This is achieved by truncating the range of the two-body correlations
(i.e., by setting [s] ~ m), and the corresponding SUB2-m equations may be solved
numerically via the Newton-Raphson technique (or other such techniques). We note
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that coupled sets of high-order LSUBm equations may be derived using computer-
algebraic techniques, as discussed in Ref. 24. The technicalities of these calculations
are not considered here, but the interested reader is referred to Ref. 24. A full
discussion of the CCM results based on the paramagnetic model state is deferred
until Sec. 3.

2.1.2. The ferromagnetic regime

In the ferromagnetic regime, a model state is chosen in which all spins point "down-
wards" (along the negative z-axis), and so the Hamiltonian of Eq. (1) may therefore
be utilised directly within the CCM calculations. The lowest order approximation
is now the SUB1 approximation (in which case, S = a Liof) and the ground-state
energy is given in terms of a by,

E
N=A(1-a). (19)

It is again noted that this expression is valid for any level of approximation in
S. In this case, it is found that the solution of the SUB2 approximation collapses
onto the LSUB2 solution due to the simple nature of the Hamiltonian and model
state, although it is again possible to perform high-order LSUBm calculations.
Furthermore, the lattice magnetisation (i.e., the magnetisation in the z-direction),
M, is defined within the CCM framework by,

1 N _

M = - N L('l1latl'l1),
i=l

(20)

which may be determined once both the ket- and bra-state equations have been
solved at a given level of approximation. Again, the discussion of the results for
this model state is deferred until Sec. 3.

2.2. The CBF formalism

The treatment of the transverse Ising model by the CBF method is begun by
defining the lattice magnetisation (i.e., again the magnetisation in the z-direction),
given by

M = ('If; Iat I1/!)
(1/!I1/!) , (21)

for a ground-state trial wave function, I'lf;). Furthermore, the "transverse" magnet i-
sation is given by,

A = (1/!laf I1/!)
(1jJI1jJ) . (22)

It is also found to be useful to define a spatial distribution function (which plays a
crucial part in any CBF calculation) in the following manner,

( ) _ (1/!Iat a} I1/!) (23)
g n - (1/!I1/!) ,
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where n = ri - rj. The corresponding approximation to the ground-state energy
per spin is given by

E (1PIHI1P) z 1
N = N(1PI1P) = 2 - 2L~(n)g(n) + oX(1- A),

n

(24)

where the function ~(n) is equal to unity when n is a nearest-neighbour lattice
vector and is zero elsewhere. It is noted that the distribution function g(n) may be
decomposed according to g(n) = 8n,o+(1-8n,o)M2+(1-M2)G(n) such that G(n)
now contains the short-range part of the spatial distribution function and vanishes
in the limit [n] --+ 00. The magnetisation, M, and the transverse magnetisation, A,
may now be expressed in a factorised form in terms of a "spin-exchange strength" ,
n12, such that,

A = (1- M2)!n12.

The energy functional is now expressed in terms of G(n) and n12 as,

(25)

E 2){z 1" } { 2!}N = (1 - M 2 - 2 L..- .6.(n)G(n) + oX 1 - (1 - M ) 2 n12 .

n

(26)

Note that in the mean-field approximation G(n) in Eq. (26) is set to zero (for all
n) and n12 is set to unity.

In order to determine the ground-state energy and other such ground-state
expectation values, a Hartree-Jastrow Ansatz is now introduced, given by

11P) = exp{MUM + U}IO). (27)

The reference state 10) is a tensor product of spin states which have eigenvalues of
+1 with respect to a", The correlation operators U and UM are written in terms
of pseudopotentials, u(rij), ul(ri), and uM(rij), where

N

U = ~Lu(rij)ataj,
i<j

(28)

and
N N

UM = Lul(ri)ai + ~LUM(rij) (ai + aJ).
i i<j

(29)

The pseudopotential Ul (ri) "" Ul is independent of the lattice position by transla-
tional invariance, and the pseudopotentials, u(rij) and uM(rij), similarly depend
only on the relative distance, [n] = [r, - rjl "" Irijl. The" Jastrow correlations are
determined via a cluster expansion of the various quantities in the Hamiltonian, as
explained in Refs. 29-32. A common approximation yields the hypernetted chain
(HNCjO) equations, which one may solve iteratively in order to determine the
Hartree-Jastrow pseudopotentials. One then wishes to determine the expectation
values such as the ground-state energy, and in the paramagnetic regime an explicit
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assumption is made that M = O. However, in the ferromagnetic regime M is taken
to be a variational parameter with respect to the ground-state energy of Eq. (26).

There are now two ways of determining the pseudopotentials from the HNC
equations. The first such approach is to assume that the pseudopotential has the
simple parametrised form,

u(n) = a.6.(n) , (30)

where .6.(n) is unity if n is a nearest-neighbour lattice vector and is zero otherwise.
This approach is henceforth denoted as the parametrised HNC-CBF method. The
c-number a is taken to be a variational parameter with respect to which the ground-
state energy is minimized. In the paramagnetic regime, the minimum of the energy
surface as a function of ex is sought, at a given value of A. This is easily performed
computationally, and the solution is readily tracked iteratively, starting from the
trivial limit A -t 00 and then moving to smaller values of A. In the ferromagnetic
regime, one again searches for a minimum of the energy surface, but this time
with respect to both a and M, at a given value of A. In this case, one tracks
from the trivial limit of A = 0 to higher values of A. In previous articles,29-32
this was achieved by analytically determining the derivative of the energy with
respect to M, although in this article a computational minimisation of the energy
is performed with respect to both variables. The second such approach allows one to
find the optimal pseudopotential within the CBF /HNC framework from a functional
minimisation,

6E
6u(n) = O. (31)

Within the context of this article, this is henceforth denoted as the paired phonon
approximation (PPA) (or, more precisely, the paired magnon approximation), and
the corresponding equations are the PPA equations. Note that in this article the
PPA calculation is only performed in the paramagnetic regime, although PPA re-
sults in the ferromagnetic regime have also been performed previously.30,31 (In-
deed, results for the phase transition points predicted by the PPA-CBF approach
of Refs. 30 and 31 are quoted in the Table 1 in sec. 3.) A full discussion of the
results of the CBF calculations presented in this section, in comparison to the
corresponding results of the CCM and the VQMC method, is given in Sec. 3.

2.3. The VQMC formalism

Although the specific variational calculations presented in this article concentrate
on the spin-half transverse Ising model, we note that the formalism presented in this
section is given in a generalised form and that the treatment of other spin models
would follow a similar pattern. We shall specifically consider here the transverse
Ising model in the ferromagnetic regime where the relevant Hamiltonian is defined
by Eq, (1). An Ansatz for the expansion coefficients, {CI}, of a ground-state wave
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function defined by

17J!) = L cIII) ,
I

is chosen. Note that {II)} denotes a complete set of Ising basis states, defined as all
possible tensor products of states on all sites having eigenvalues ±1 with respect to
a", An expression for the ground-state energy is thus given by,

(32)

E = "L:h,I2 ctcI,(hIHlh)
"L:II ICll1

2 .

Specifically for the spin-half transverse Ising model, a Hartree-Jastrow Ansatz50

(for A > 0) is now defined with respect to the {cr} expansion coefficients, where

Cl = (II rr(1+ akPI) II( 1+ Aj [P/Pf + P/P]])iI). (34)
k t<J

(33)

The pt and P~ are the usual projection operators of the spin-half "up" and "down"
states respectively. The simplest form of the variational Ansatz of Eq. (34) is given
by,

];'j= {
h
o

if i and j are nearest neighbours,
(35)

otherwise.

The symmetry-breaking term ad= a) is also independent of k by translational
invariance. The expectation value of Eq. (33) may now be evaluated directly and
the variational ground-state energy minimised with respect to both a and h at each
value of A. However, such a calculation is soon limited by the rapidly increasing
set of Ising states and the amount of computational power available. Indeed, for
the spin-half transverse Ising model the number of states that one must sum over
is 2N, where N is the number of lattice sites. For the linear chain it is possible to
solve for chains of length N :S ,...,12with relatively little computational difficulty,
although the calculations with N > 12 grow rapidly in computational difficulty.

Hence, as an alternative for lattices of larger size, we may simulate the summa-
tion over all the states h in Eq. (33). In order to to do this we define the probability
distribution for the set of states {II)}, given by

icll2
P(l) := ~ I 12' (36)

I' Cl'

and the local energy of these states, given by

Ed!) == L Cll (IIHlh).
11 ci

(37)

The expression of Eq. (33) may thus be equivalently written as,

E = 2:P(I)EL(I) .
I

(38)
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We now wish to perform a random walk based on the probability distribution
of Eq. (36). However, a few more useful quantities should be defined before a de-
tailed description of the VQMC algorithm is actually given. Firstly, the acceptance
probability, A(I ----+ I'), of the Monte Carlo "move" from state II) to state II') is
given by

A(I -+ I') = minjl , q(I -+ I')J , (39)

where

(I -+ I') = P(I')T(I' -+ I)
q - P(I)T(I ----+ I') . (40)

Here, T(I ----+ I') is the sampling distribution function. For spin lattice problems, if
state II) can connect to K(I) possible Ising states via the off-diagonal elements of
the Hamiltonian then T(I ----+ 1') = 1/K(I). Hence, q(I --t I') is written as

(I ----+ I') = P(J')K(I)
q P(I)K(J') . (41)

For the spin-half transverse Ising model, we note that K(I) is equal to N for any
state II) and so the common factor of N in Eq. (41) cancels. The simplest VQMC
procedure is now defined by the following algorithm:

(1) Select an initial Ising state II) for which (II1lI) i= 0, where 11Ji) is the "true"
ground-state wave function of the system.

(2) Choose a particular state II') out of the K(I) possible states accessible to II)
via the off-diagonal elements in H.

(3) Define a random number r in the range [O,IJ and accept this move from state
II) to state II') if and only if

A(I -+ I') > r . (42)

(4) If the move is accepted then let 1----+1' and c[ --t Cj»:

(5) Obtain the local energy E(I) of Eq. (37) for state II).
(6) Repeat from stage (2) NMC times.
(7) The average ground-state energy (and the error therein) may be determined

from the number N MC of local energies during the simulation.

The minimal VQMC ground-state energy is now obtained by searching over
the variational parameter space for either the lowest ground-state energy or lowest
variance in the ground-state energy (here for a given value of .Ain H). In order to
determine the lattice magnetisation, we note that

M = I (~I Li O'fI~)I
N('ljJI'ljJ)

= I~P(I)ML(I)I, (43)
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where P(I) is the probability density function given above, and

ML(I) '= L ::~ (IILailh) = ~(IILaiII).
[1. .

1 t •

(44)

Hence, a mean value (and its associated error) for the VQMC lattice magnetisation,
M, may be obtained by determining the average of the local lattice magnetisation,
ML(I) , throughout the lifetime of the run. A discussion of the results of the varia-
tional calculations discussed here is given in Sec. 3.

\
l

2.4. The infinite lattice limit and convergence of results

In this section we consider how the results of each method are determined in the
infinite lattice limit. Firstly, it is noted that the CCM method produces expectation
values which are size-extensive (i.e., the numerical values of each expectation value
scale linearly with N), and we always deal with an infinite lattice in all calculations
from the very outset. Furthermore, the "raw" CCM LSUBm results based on the
ferromagnetic model state are found to converge rapidly with increasing LSUBm
approximation level m over most of the ferromagnetic regime except for a region
very near to the phase transition point. In order to obtain even better results for
the CCM method across the whole of this regime, a simple extrapolation of the
LSUBm data in the limit m --+ 00 has also been carried out at each value of
A separately. The results of the extrapolation using a leading-order "power-law"
dependence (see Appendix A for details) are denoted as Extrapolated(l) CCM
results and results of a Pade approximation for l = 0 (again, see Appendix A for
details) are called Extrapolated(2) CCM results. In the paramagnetic regime, the
results for the ground-state energy are found to converge extremely rapidly with
LSUBm approximation level over the whole of this regime and so no extrapolation
of these results is necessary.

For the CBF method, although the treatment presented here is formally valid
for any lattice size (including the infinite lattice case), the results presented have
been obtained for finite-sized lattices. The results are found to converge extremely
rapidly with increasing lattice size, and the results of the 20 x 20 square lattice (used
in the figures given below) are found to be essentially fully converged for all A except
for a region very near to the critical point.

The results for the VQMC method presented below have been obtained for a
16x 16 square lattice, where the number of Monte Carlo iterations was set to 50000.
As for the CBF calculations, the 16x16 lattice is again expected to be large enough
for the VQMC results to be essentially fully converged to the infinite lattice limit for
all values of A except for a region near to the critical point. By comparing the results
of a 10x 10 lattice VQMC calculation with those of a 16x 16 lattice it was found
that this was indeed true. Furthermore, we note that for small A the variational
minimum of the ground-state energy was found to be rather flat with respect to
the variational parameters a and II, and the ground-state energy was also highly
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Fig. 1. R.esults for the ground-state energy per spin, Eg/N, of the spin-half transverse Ising model
on the square lattice in the ferromagnetic regime using the CCM, CBF, and VQMC approaches.

converged with increasing lattice size. However, as the phase transition point is
approached one finds that a precise evaluation of the position of the variational
minimum with respect to a and II becomes harder to determine.

3. Results

The results for the ground-state energy per spin of the spin-half transverse Ising
model on the square lattice in the ferromagnetic regime are shown in Fig. 1. We
see from this figure that excellent correspondence between the results of the CCM,
CBF, and VQMC methods for the ground-state energy is obtained in this regime.
We note, however, that the extrapolated CCM results appear to lie very slightly
lower than the other two sets of results, especially near to the phase transition
point. This indicates the increasing importance of higher-order correlations for the
ground-state energy near to the phase transition point.

The results for the lattice magnetisation M obtained using the CCM, CBF,
and VQMC formalisms are shown in Fig. 2 (and also Fig. 4 in Appendix A) for the
spin-half transverse Ising model on the square lattice. We note that the "raw" CCM
LSUBm results for the lattice magnetisation do not become zero at any value of A.
for any finite value of the truncation index m, because all of the ferromagnetic order
inherent in the model state must be destroyed in order for M to be zero in this case.
In practice this is a difficult thing for the CCM to achieve with this model state.
However, we may see from Fig. 2 that the extrapolated CCM results are in excellent
agreement with those results of the CBF and VQMC methods. In addition, it is
possible to imagine other CCM model states, such as a spin-flop model state or a
mean-field model state, in which the lattice magnetisation with respect to this state
is not a priori fully saturated for all A.. Furthermore, we remark that a treatment of
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Fig. 2. Results for the lattice magnetisation, M, of the spin-half transverse Ising model on the
square lattice using the CCM, CBF, and VQMC approaches.
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Fig. 3. Results for the ground-state energy per spin, Eg/N, of the spin-half transverse Ising
model on the square lattice in the paramagnetic regime using the CCM and CBF approaches. The
boxes for the CCM data indicate the terminating points at which X becomes infinite.

this problem with the ferromagnetic model state using the extended coupled cluster
method (ECCM)4,5,7,28 would present an interesting challenge.

In the paramagnetic regime, the ground-state energy per spin for the transverse
Ising model on the square lattice is presented in Fig. 3. The "raw" CCM LSUBm
results for the ground-state energy are already highly converged with increasing
truncation index m, even up to the phase transition point. We note again that
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an extrapolation in the limit m ~ 00 is therefore not necessary. Indeed, good
correspondence between the results of the different methods is seen although it is
noted that CCM LSUB4 and LSUB6 ground-state energies lie lower than those
predicted by the CBF method. This indicates that high-order order correlations
become increasingly important the nearer one gets to the phase transition point.
However, this could be rectified, in principle, for the CBF method by the inclusion of
higher-order (than pairwise Jastrow) correlations in the ground-state wave function.
We note that in practice, however, the inclusion of such higher-order correlations
in the ground-state wave function in the CBF and VQMC methods is a difficult
and unresolved question.

It is also possible to determine the second-derivative of the ground-state energy
per spin with respect to A for the CCM calculations based on the paramagnetic
model state, defined by

182E
X- g

= - N 8A2 .

It is found that X diverges at some critical value Ac for the SUB2 approximation
in any dimension, and for SUB2-m and LSUBm (with m ~ 4) approximations for
spatial dimensionality greater than one. Again, this behaviour is associated with a
phase trarisition in the real system and the point at which this occurs is denoted Ac.
Correspondingly, CCM results for A < Ac based on the paramagnetic model state
do no exist, and hence Ac acts as a terminating point for the calculation in the
paramagnetic regime. Also, it is found that the SUB2-m results for Ac as a function
of m scale with m-2 for large m, and a simple linear extrapolation gives the full
SUB2 result for the critical point to within 2% accuracy. By analogy, this rule has
also been used for the LSUBm results to extrapolate to the limit m ~ 00, and the
results thus determined are shown in Table 1. The values thus obtained are also in
good agreement with the points at which M ~ 0 from the extrapolations in the
ferromagnetic regime discussed above (and see Fig. 2 for the square lattice case).

For the CBF and VQMC methods the point, in terms of A, at which M becomes
zero is taken to indicate a quantum phase transition and is again denoted, Ac, and
these results are presented in Table 1. The phase transition point predicted by the
VQMC method on the square lattice case is estimated to be at Ac = 3.15 ± 0.05.
For the linear chain, the expression for ground-state energy of Eq. (33) has been
obtained directly for chains with N ::; 12. These results are found to be in good
agreement with a previous calculation-" using the Ansatz of Eq. (34) for the linear
chain transverse Ising model which predicted a value for the phase transition point
of .xc = 1.206.

(45)

4. Conclusions

In this article, results of the CCM, CBF, and VQMC approaches for the ground-
state energy, the lattice magnetisation, and the position of the critical point of
the spin-half transverse Ising model on various lattices have been presented. These
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Table 1. Results for the critical points of the spin-half transverse Ising model on various lattices
using the CCM and CBF approaches. These results are compared to those of exact calculations
for the linear chain,46 and to RPA47 and exact cumulant series expansions=? in higher spatial
dimensionality. For the linear chain, we note that the LSUBm approximation does not show any
evidence of a critical point, at the levels of approximation shown, and this is indicated by "none".
(Previous CBF results of Refs. 29-31 for the square and cubic lattices are also appropriately
indicated. )

Linear Chain Square Triangular Cubic

Classical 2 4 6 6
RPAa 3.66 5.76

CCM,\c SUB2 1.44 3.51 5.42 5.55

CCM '\C LSUB4 none 2.41 4.27 3.85

CCM '\C LSUB6 none 2.76 4.57 4.61

CeM '\c LSUBoo none 3.04 4.81 5.22

parametrised HNC-CBF 1.22 3.12b 4.91 5.17b

PPA·CBFc 3.14 5.10

Variational or VQMC Calculations 1.206d 3.15±0.05

Exact or Series Expansions Calculations 1.0e 3.044f 4.768f 5.153f

afrom Ref. 47

bfrom Ref. 29

cfrom Ref. 30, 31

d from Ref. 50

efrom Ref. 46

ffrom Ref. 49

results have been seen to be in excellent agreement both with each other and with
those results of exact calculations for the linear chain and those of exact cumulant
series expansions for higher spatial dimensionality. Indeed, by treating these systems
using three separate approaches, it has been shown that each set of results has been
mutually supported and reinforced by those of the other approaches.

Furthermore, we have gained some insight into the strengths and weaknesses of
each approach. This is exemplified in the different parametrisations of the ground-
state wave function. The CBF and VQMC approaches both utilise Jastrow wave
functions and their bra states are always the explicit Hermitian adjoints of the
corresponding ket states. Hence, for the CBF and VQMC approaches, an upper
bound to the true ground-state energy is, in principle, obtainable, although the
approximations made in calculating the energy may destroy it. By contrast, the
CCM uses a bi-variational approach in which the bra and ket states are not mani-
festly constrained to be Hermitian adjoints and hence an upper bound to the true
ground-state energy is not necessarily obtained.
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Also, the CCM uses creation operators with respect to some suitably normalised
model state in order to span the complete set of (here) Ising states. The other ap-
proaches, in essence, use projection operators to form the Hartree and the Jastrow
correlations. For the CBF case, this is with respect to a reference state, whereas
for the VQMC case, the Hartree--Jastrow Ansatz is encoded within the expansion
coefficients of the ground-state wave function with respect to a complete set of Ising
states. In some sense, the CCM is found to contain less correlations than the oth-
ers at "equivalent" levels of approximation (e.g., the CCM LSUB2 approximation
versus Hartree and nearest-neighbour Jastrow correlations). A fuller account of the
different parametrisations of the ground-state wave function within the CCM and
CBF methods has been given in Ref. 32. However, in practice the other methods are
difficult to extend to approximations which contain more than two-body or three-
body correlations. By contrast, the CCM is well-suited to treat such higher-order
correlations via computational techniques, as has been demonstrated here.

Furthermore, the CCM requires no information other than the approximation
in Sand S in order to determine an approximate ground state of a given system.
The CBF method, however, may require that only a certain subset of all possible
diagrams are summed over (e.g., the HNC/O approximation). The VQMC approach
also often requires an intimate knowledge of the manner in which the two-body
correlations behave with increasing lattice separation if all two-body correlations
are to be included. This information may be approximated, for example, by use
of the results of spin-wave theory. In any case, it is often necessary to reduce the
minimisation of the variational ground-state energy with respect to N parameters
to much fewer parameters. Another potential application of all of the methods
presented here is the use of their ground-state wave functions as trial or guiding
wave functions in (Green function or similar) quantum Monte Carlo calculations.

Finally, encouraged by these results for the transverse Ising model, we intend
to extend them to other models of interest, such as systems with higher quantum
spin number or those with complex crystallographic lattices. A further goal is to
extend the treatment of this and other spin models, via these methods, to nonzero
temperatures.
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Appendix A. Extrapolation of CCM Results

In this Appendix, we explain how we extrapolate a set of LSUBm data points,
{Xi, yd, in the limit i -t oo at each value of some parameter (>.) within the Hamil-
tonian separately. Note that the number of data elements to be extrapolated is
given by the index p. The value of Xi is now set to be 11m and Yi is set to be the
corresponding value of an expectation value (for example, the lattice magnetisa-
tion) determined using the CCM at this level of approximation at a given value of
A. Note that the value of m must increase with increasing index i, although m and
i do not have to be equal.

Before the extrapolation procedures are given in detail, we define some useful
quantities. Firstly, the mean value of a set {Ci} is denoted by c and of a set {dd is
denoted by d. Secondly, the linear correlation, R, of a set of two-dimensional points,
{ci,di}, is defined by

p

2)Ci - c)(di - d)

R == r==t='==l==--;===== (A.1)
P

2)di - d)2
i=l

We are now in a position to outline the the first extrapolation procedure. This
procedure firstly assumes that the data scales with a leading-order "power-law"
dependence, given by

Yi = a + bxr· (A.2)

We set Ci= log(xi) and di = log(Yi - a), where {xi,yd is the LSUBm data set at
some fixed value of a parameter within the Hamiltonian. Hence the best fit of the
data set, {Xi, Yi}, to the power-law dependence of Eq. (A.2) is obtained when the
absolute value of R is maximised with respect to the variable a. Indeed, we make
the assumption that this value of a is then taken to be the extrapolated value of
the Yi in the limit i -t 00 (in which case, Xi -t 0).

The second extrapolation procedure of the LSUBm data uses Pade approxi-
mants. This is achieved by firstly assuming that the set of data can be modeled by
the ratio of two polynomials, given by

k '
Lj=D ajxi

Yi = I ' •
1+ Lj=l bjx;

(A.3)

Note that when l
implies that,

0, this is a simple integral power series. This furthermore

We now wish to determine the coefficients aj and bj in order to find the polynomials
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Fig. 4. Results for the lattice magnetisation, M, of the spin-half transverse Ising model on
the square lattice in the ferromagnetic regime for the eeM LSUBm approximation with m =
{2,3, 4, 5, 6, 7}. The extrapolation of the LSUBm results at each separate value of,\ is performed
in two ways. The first uses Pade approximants in order to perform the extrapolation, and the
second assumes a leading-order power-law scaling of the lattice magnetisation with m -1.

in Eqs. (A.3), and Eq. (A.4) is rewritten in terms of a matrix given by,

1 Xl xi xk XIYI xiYI xiYI ao YII
1 X2 x~

k
X2Y2 X~Y2 X~Y2x2 al Y2

ak (A.5)

-b:

1 xp X2 xk xPYP
2 I -i,P P xpYP xpYP YP

The inverse of the matrix in Eq. (A.5) is now obtained and the coefficients aj and
bj are determined. (Note that k + I + 1 = p.) However, we also note that because
Xi -t 0 as i -t 00, ao gives us the extrapolated value of {Vi} in the limit m -t 00.

Furthermore, using this method with I = 0 we found that a previous extrapolated
result24 of CCM LSUBm data for the sublattice magnetisation of the Heisenberg
antiferromagnet on the square lattice was reproduced. In this previous calculation, 24

the sublattice magnetisation was extrapolated in the limit m -t 00 by fitting the
LSUBm points (with m = 4,6,8) to a quadratic function in 11m thus giving an
extrapolated value of about 0.6.

In this article, we have already plotted extrapolated CCM LSUBm results for
the lattice magnetisation of the square lattice spin-half transverse Ising model in
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Fig. 2, and these results were seen to be in excellent agreement with those results
of CBF and VQMC calculations. However, a further discussion of the extrapolated
CCM results presented here is also useful in order to illustrate the strengths and
weaknesses of the extrapolation procedures outlined in this appendix. We can see
from Fig. 4 below that the results for the Pade approximant extrapolation with
l = 3 contains a zero in the denominator of Eq, (A.3) at about A ~ 2.6 such that
the results show a divergence for IvI in Fig. 4 which is simply an artifact of the
extrapolation procedure. This is because an assumption is made as to the scaling of
the LSUBm data with 11m to some functional form. The validity of this assumption
is unknown as no exact scaling laws are known, as yet, for the behaviour of CCM
LSUBm results as functions of m. However, the empirical evidence in Fig. 4 suggests
that this is a reasonable assumption over much of the ferromagnetic phase, except,
of course, for those points at which the Pade approximant results demonstrate this
"artificial" divergence.
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