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Interest in lattice quantum spin systems as models of quantum magnets has increased
with the discovery of new and interesting magnetic materials. Here we use a well-known
technique of quantum many-body theory, namely the coupled-cluster method (CCM), to
investigate the nearest-neighbour, spin-!, anisotropic Heisenberg model on the square
lattice. Ground-state expectation values for quantities such as the ground-state energy
and the sublattice magnetisation are determined to an accuracy comparable with that
of the best of other available techniques including Monte Carlo methods. In order to
demonstrate this point we present results for various values of the an,isotropy parameter,
including those for the isotropic Heisenberg model and the isotropic XY model. We show
that it is now possible to determine the presence and position of the quantum phase
transitions using ab initio CCM calculations, and furthermore that we can accurately
predict the critical behaviour at these points.

1. Introduction

The coupled cluster method (CCM) [1-5] is a widely-used technique of quantum
many-body theory. It has been applied over the last five or so years to many lattice
Hamiltonian systems with considerable success. These systems include various spin
lattices problems [6-9]of much current interest. As well as being models of quantum
magnets, quantum spin lattices often exhibit quantum phase transitions and com-
plicated phase diagrams. The strong effects of quantum mechanics on these systems
means that they can contain interesting and novel ground and excited states which
have no classical counterparts.

In this article we present a specific application of the CCM to the spin-~
anisotropic Heisenberg (or XXZ) model on the two-dimensional (2D) square lat-
tice. In the next section, we present the CCM formalism in general terms before
specializing to its application to the 2D XXZ model in Sec. 3. In Sec. 4 we describe
our results for the ground-state expectation values of the energy and sublattice
magnetisation, as well as results for the critical behaviour of this model. Finally,
in Sec. 5 we briefly discuss the relevance, quality and possible extensions of our
results.
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2. The CCM for Quantum Spin Lattices

The single-reference version of the normal variant of the CCM used here requires a
suitable single model or reference state 1<1», in terms of which a systematic descrip-
tion of the many-body (i.e., in the present case, multi-spin) correlations or fluctua-
tions may be given. vVedefer till later the important question of how to choose 1<1»
in practice, but note now that it is required only to be a cyclic vector with respect
to two well-defined Abelian sub algebras of multi-configurational creation operators
{ct} and their Hermitian-adjoint destruction counterparts {Cj == (Cn t}. Thus,
1<1» plays the role of a vacuum state with respect to a suitable set of (mutually
commuting) many-body creation operators {ct},

C; 1<1» = 0, \:jI # 0 , (1)

with Co == I, the identity operator. These operators are also complete in the many-
body Hilbert (or Fock) space,

1= 1<1»(<1>1+ L cr 1<1»(<1>ICj .
I#O

The choice of the operators {Cn depends on the choice of I<I», but for spin-
lattice problems c; will generally involve products of the basic SU(2) spin oper-
ators {st, sJ;, sO on different lattice sites k, which obey the fundamental commu-
tation relations,

(2)

(3)

where s,/: == s% ± is%. The set-index I will thus generally incorporate the indices
for a set of lattice sites. We discuss particular choices of {I <1», ct} in more detail
below in the context of a specific example.

The exact ground-state energy eigenket and eigenbra vectors, I'll) and (~I re-
spectively, of a many-body system described by a Hamiltonian H,

(4)

are now specified within the single-reference normal CCM as follows,

I'll) = eSI<I»; S = L SICt ;
1#0

(5)

(~I = (<I>ISe-S; S = 1+ LSICj
I#O

The correlation operator S is thus decomposed entirely in terms of the multiconfig-
urational creation operators {ct}, and similarly for S in terms of the destruction
operators {Cj}. Although the manifest Hermiticity, ((~I)t = IW)/(wlw), is lost,
the intermediate normalization condition, (~IW) = (<1>IW) = (<1>1<1» == 1 is imposed.
The full set of coefficients {SI, SI} now provides a complete CCM description of the

(6)
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many-body ground state. For example, an arbitrary operator A has a ground-state
expectation value,

(7)

The exponentiated form of the eigenket parametrization of Eq, (5) ensures the
proper counting of the independent fluctuations of excited multi-spin configurations
(described by the set-index 1) with respect to 1cI», which are present in the exact
ground state IW), and the exact incorporation of the linked cluster theorem of Gold-
stone. The latter guarantees the size-extensivity of all relevant physical quantities,
and allows us to work directly in the thermodynamic limit, N -+ 00, where N is
the number of lattice spins.

By taking appropriate projections of the ground-state ket and bra Schro-
dinger equations (i.e., with states (cI>IC! and ctlcI», respectively), we obtain cou-
pled sets of equations which may be solved to obtain the coefficients {S1} and {51}.
Completely equivalently, the correlation coefficients {S1, 51} may be determined
variationally by requiring that the ground-state energy functional fI ({s1,5/ }), de-
fined as in Eq, (7), is stationary with respect to variations in each of the (indepen-
dent) variables of the full set. The following coupled sets of equations are thereby
easily derived,

8Hj8S/=O=>(cI>ICre-SHeslcI»=0 , 'iIoJO;

8H j8S/ = 0 => (cI>ISe-S[H, Ct]eslcI» = 0, 'iIoJ 0

(8)

(9)

Equation (8) ensures that the ground-state energy at the stationary point has the
simple form

(10)

which also follows simply by projecting the ground-state ket equation (4) with
(cI>le-s. This hi-variational formulation does not, however, lead to an upper bound
for Eg when the summations over configurations {I} in Eqs. (5) and (6) for Sand
S are truncated in specific approximations, since the exact Hermiticity between IW)
and (~I will thereby be lost. On the other hand, the Hellmann-Feynman theorem
is preserved in all such approximations.

Equation (8) clearly represents a coupled set of nonlinear multinomial equations
for the c-number correlation coefficients {S I}. The well-known nested commutator
expansion for the similarity-transformed Hamiltonian,

A _ -8 S 1H = e He = H + [H,S] + 2T[[H,S],S] + ... , (11)

taken together with the fact that all of the individual components of S in the sum
in Eq. (5) commute with one another, imply that each element of S in Eq, (5)
is thus directly linked to the Hamiltonian in each of the non-vanishing terms in
Eq. (11). Each of the coupled set of equations (8) is hence of linked cluster type.
What is more, each of these equations is also of finite length when expanded using
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Eq. (11), since this otherwise infinite series will actually terminate at a finite order
here, provided only that each term in the Hamiltonian H contains a finite number
of single-site spin operators, as is usually the case. The CCM parametrization thus
leads in a very natural way to a workable scheme, which can also be efficiently
implemented as described in more detail below.

We turn now to the choice of 1<1» and the operators {ct} for spin-lattice prob-
lems. To be specific we henceforth restrict ourselves to spin-! quantum antifer-
romagnets on bipartite lattices, in regions where the corresponding classical limit
is described by a generalized Neel-like ordering in which all spins on each sublat-
tice are separately aligned in the coordinates of a global spin quantization axis
and corresponding global spin axes. In such cases it is a simple matter (and see
Sec. 3 for specific details in the case considered here) to introduce a different local
quantization axis and spin coordinates on each sublattice, by a suitable rotation
in spin space, so that the corresponding Neel-like state becomes a fully aligned
("ferromagnetic") state in the local axes. This "ferromagnetic" state is chosen as
the uncorrelated CCM model state, 1<1», in which all spins point, say, along the
respective negative z-axis of the corresponding local frames,

We also need to consider approximation schemes whereby the expansions of
Sand 5 in Eqs. (5) and (6) may be truncated to some finite or infinite subset
of the full set of independent (fundamental) multi-spin configurations. The three
most commonly employed schemes have been: (1) the SUBn scheme, in which all
correlations involving only n or fewer spins are retained, but no further restriction
is made concerning their spatial separation on the lattice; (2) the SUBn-m sub-
approximation, in which all SUBn correlations spanning a range of no more than
m adjacent lattice sites are retained; and (3) the localized LSUBm scheme, which
retains all multi-spin correlations over all possible distinct locales on the lattice
defined by m or fewer contiguous sites. For the results reported below we adopt
only the LSUBm scheme here.

3. The Spin-~ XXZ Antiferromagnet on the 2D Square Lattice

The XXZ Hamiltonian is specified in terms of global spin coordinates as follows,

H = ~[SXsX + sysY + 1::.szSZ] (12)
L2J 2J 2J'
(i,j)

where the sum on (i, j) counts all nearest-neighbour pairs once. On the 2D square
lattice this model has no exact solution, unlike its ID chain counterpart which
is exactly integrable using the Bethe ansatz. The XXZ model appears to have at
least three distinct regimes: an Ising-like phase for sufficiently large values of the
anisotropy parameter 1::., which is characterized by nonzero Neel order wherein
nearest-neighbour spins in the ground-state wave function align antiparallel along
the z-axis; a planar-like phase in which the spins in the ground-state wave function
are believed to lie in the xy plane; and a ferromagnetic phase. Note that at 1::.=0
we recover the isotropic case of the XY model.
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For ~ > 1 the classical Hamiltonian of Eq. (12) on the 2D square lattice (and,
indeed, on any bipartite lattice) is minimized by a perfectly antiferromagnetically
Neel-ordered state in the z-direction, whereas for -1 < ~ < 1 it is minimized
by a correspondingly ordered state with spins antiferromagnetically aligned along
any direction in the xy plane, say along the x-axis. Thus, we see that even for the
same spin model and lattice, different choices of model state may be preferable,
depending on the particular regime of parameter space in which we are interested.
For present purposes we shall utilize both of these classical Neel states, namely
the z-aligned Neel state and the x-aligned Neel state (with the latter henceforth
denoted as the planar model state), for two separate sets of corresponding CCM
calculations. In both cases we now set up different local sets of spin axes on both
sublattices so that in the local coordinates all spins in both model states point in
the negative z-direction, as discussed above in Sec. 2.

For the z-aligned Neel state we simply perform a rotation of the axes of the up-
pointing spins by 1800 about the y-axis, such that: SX -+ _sx, sy -+ sY, SZ -+ =s",
The Hamiltonian of Eq. (12) may then be written in these local axes as

z _ 1~ [ + + - - Z Z]H - -2 c: Si Sj +Si Sj +2~SiSj
(i,j)

where the superscript z on HZ reminds us that the Hamiltonian is written in the
local spin coordinate axes appropriate to the z-aligned Neel model state.

In order to produce a "ferromagnetic" model state for the planar model state in
the local frames, we rotate the axes of the left-pointing spins (I.e., those pointing in
the negative x-direction) in the planar state by 900 about the y-axis, and the axes
of the corresponding right-pointing spins by -900 about the y-axis. (Note that the
positive z-axis is defined here to point upwards and the positive x-axis is defined to
point rightwards.) Thus, the transformations of the local axes are described such
that: SX -+ e", sy -+ sY, SZ -+ _sx, for the left-pointing spins; and such that:
SX -+ _sz, sy -+ sY, SZ -+ sX, for the right-pointing spins. The transformed
Hamiltonian of Eq. (12) may now be written in these local axes as

(13)

1
HP=-4L[(~+1)(sts;+SiSj)+(~-1)(stSj+sisn+4sisj] , (14)

(i,j)

where, again, the superscript p on HP reminds us that the Hamiltonian is written in
the local spin coordinate axes appropriate to the planar model state. It is important
to recall that since the Hamiltonians H, HZ, and HP of Eqs. (12)-(14) differ only
by similarity transformations their eigenvalue spectra are identical.

We now note that the CeM is especially suited to the evaluation of the ket- and
bra-state equations by computer-algebraic techniques, and a detailed description of
how this may be efficiently achieved is given in Ref. [8]. Once the bra and ket states
are known at a particular approximation level then the approximate ground-state
energies and other ground-state expectation values may be obtained. In the next
section we describe our results for this model using both model states.
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4. Results

4.1. Ground-State Energy

Results for the ground-state energy using the two model states are illustrated in
Fig. 1 at the LSUB4 and LSUB6 levels of approximation, where they are compared
with the Monte Carlo results of Barnes et al. [10]. The results for the isotropic
Heisenberg model (which are identical using both model states for this case) are
summarized in Table 1 for calculations using both model states as CCM reference
states. We also present results for the isotropic XY model using the planar model
state.

In order to compare our results with those from other methods, we attempt
a simple heuristic extrapolation of our LSUBm results to the limit m ---+ 00 at
the isotropic Heisenberg point (~ = 1). As has already been found elsewhere [7],
our results seem to extrapolate well to their asymptotic value with a leading m-
dependent correction that scales as m-2. In this way we obtain an extrapolated
value for the ground-state energy per spin of Eg/N = -0.66968. This compares
very well with the best Monte Carlo simulation value [11] of -0.66934 ± 0.00004,
and is very much more accurate, by comparison with this Monte Carlo value, than
the linear spin-wave theory (LSWT) result [12]of Eg/N = -0.658. At the isotropic
XY point (~=O), using the planar model state [8,9], we obtain an extrapolated
value for the energy of -0.54892, which may be compared to a result of series
expansion calculations [13] of -0.5488.

~
F F Eg/N I M+

.6.=1
Eg/N I M+

.6.=0
.6.P

F

2 1 1 -0.64833 0.841 -0.54031 0.950 - - -

4 10 7 -0.66366 0.764 -0.54727 0.916 -l.250 l.648 0.577
6 131 75 -0.66700 0.727 -0.54833 0.901 -l.084 l.286 0.7631
8 2793 1287 -0.66817 0.705 -0.54862 0.894 ? ? 0.8429

CXJ - - -0.66968 0.62 -0.54892 0.869 -0.95 l.00 0.96(4)

Figure 1 illustrates that at a given LSUBm level of approximation the CCM
result for the ground-state energy using the z-aligned Neel model state lies lower
than its counterpart using the planar model state for ~ > 1, and vice versa for
~ < 1. This result is precisely as would be expected classically, and it illustrates
the power of being able to employ different CCM model states which are specifically
geared to different possible phases. If we were simply to take that solution with the
lower energy for each value of ~ (for which we note, however, that there is no real
justification), we would infer that there is a phase transition at ~ = 1 between a
phase with Ising-like order at ~ > 1 and a planar-like phase for ~ < 1.

We note, furthermore, and much more importantly, that each separate calcu-
lation also yields evidence of such a phase transition. Thus, we find that beyond
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-0.6
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·z··aligned Neel model slate: LSUB4
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x Monle Carlo (Ref.ll011

-1.0
-1.5 -1.0 -0.5 0.0 0.5

~
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Fig. 1. Results for the CCM ground-state energy of the spin-~ XXZ model on the 20 square
lattice, using the LSUBm approximation with m = 4,6 based on both the planar and z-aligned
Neel model states, compared to the Monte Carlo results of Ref. [lOJ. LSUBm critical points,
Cl~,Cl~ and ClA' are indicated by the boxes.

certain critical values, .6.c, of the anisotropy parameter there exists no physically
reasonable solution to the LSUBm CCM equations for m 2: 4, as is illustrated for
the cases m = 4,6 in Fig. 1. In previous work [7] we have related this characteristic
breakdown of the CCM equations at certain critical points to actual phase tran-
sitions of the real system, and we explore this further in Sec. 4.2 below. A useful
means to detect phase transitions within the LSUBm scheme is to calculate the
so-called anisotropy susceptibility, Xa,

_ 82(Eg/N)
Xa = - 8.6.2 ' (15)

Since the CCM equations are known analytically, Xa and all other derivatives may
also be calculated directly (i.e., from analytic equations). We find that Xa diverges
at the critical points.

More specifically, we find that for the CCM calculations based on the planar
model state Xa diverges at critical values .6.c = .6.)'.,and .6.~, corresponding to the
ferromagnetic and antiferromagnetic phase transitions respectively, for all LSUBm
approximations with m > 2. These results are illustrated in Table 1, which also
displays the single critical point at .6.c = .6.A for the CCM calculations based on
the z-aligned Neel model state, and which again corresponds to the antiferromag-
netic phase transition. As one might hope, the position of the critical point .6.)'.,
becomes closer to the true ferromagnetic phase transition at .6.= -1 as the ap-
proximation level is increased. Also, both .6.~ and .6.A appear to converge with
increasing LSUBm index m, and for a given value of m always bound the point
.6. = 1 at which the true antiferromagnetic phase transition is believed (by symme-
try arguments) to lie. We have shown elsewhere [7] how the corresponding SUB2-m
results for .6.A seem to approach the full SUB2 value as m -2, and the same rule
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fitted to the LSUBm results yields the corresponding predictions for the extrapo-
lated antiferromagnetic point indicated in Table 1, namely D.A ~ 0.96 ± 0.04, and
D.~~ 1.00. Both predictions are compatible with each other and with the expected
value D.A = 1.

4.2. Sublattice Magnetization

We now introduce the sublattice magnetization, which characterises the degree
of quantum order inherent in the CCM wave functions. By inserting the CCM
parametrizations of Eqs. (5) and (6) we find,

2 N _ 2 N _

M+ == - N L(WlskIW) = - N L(<I>ISe-S skesl<I» ,
k=l k=l

(16)

where sf. is in the local coordinates of each sublattice. Evaluation of the sublattice
magnetization requires both the ket- and bra-state cluster correlation coefficients.
The actual procedure to do this is straightforward, and is also described in more
detail elsewhere [8J.

Table 1 summarizes the results for the sublattice magnetization at the isotropic
Heisenberg point, D. = 1, and at the isotropic XY point, D. = O. We note again
that the corresponding LSUBm results for M+ using both model states at a given
truncation level m are identical at D. = 1. We find that over the entire range
-1 < D. < 1our results seem to converge well to a nonzero in-plane long-range
order, with a nonzero planar sublattice magnetization, whereas for all D. > 1 we
have comparable nonzero long-range order along the spin z-axis and a nonzero z-
component of sublattice magnetization. The fact that there is also a divergence in
M+ near the critical points D.A and D.~ strongly reinforces our interpretation of
these points as reflecting a phase transition.

We again attempt a simple heuristic extrapolation of our LSUBm results for M+
at the Heisenberg point CD. = 1) to the limit m ~ 00, in order to compare our results
with those from other calculations. As has been found elsewhere [7], the results for
M+ extrapolate well to their asymptotic value with a leading correction that scales
as m-1. As shown in Table 1 we thus obtain an extrapolated value, M+ = 0.62.
This compares extremely well with the best available Monte Carlo simulation value
of Runge [11], M+ = 0.615 ± 0.005, and with the value M+ = 0.62 ± 0.02 from
series expansion techniques [14J. At the isotropic XY point we obtain a similarly
extrapolated value of Ji.;f+ = 0.869, which again compares very well with the result
of series expansion calculations [13Jof M+ = 0.872.

4.3. Critical Properties

We have demonstrated that the CCM calculations provide an accurate representa-
tion of the ground-state properties of the spin-! square-lattice XXZ model. We now
use our CCM formalism to predict the critical behaviour of the physical observables
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near such phase transitions, i.e., that we can extract from the LSUBm results useful
information on critical indices.

Thus, the critical index for the singular (non-analytic) term in Eg/ N near an
LSUBm critical point D.c(m) can first be obtained, for example, by direct examina-
tion of the anisotropy susceptibility, Xa == -fP(Eg/N)/8D.2, of Eq, (15). For m > 2
we find,

(17)

Direct calculation for the LSUBm approximations using both the z-aligned and
planar Neel model states shows that for m > 2 we have ao ;;::;1.500 ± 0.005.
However, the prefactors x:- in Eq. (17) are themselves strongly dependent on the
truncation index m. We may now use a variant of the so-called coherent anomaly
method (CAM) of Suzuki [15] to extract further information. Thus, we attempt to
fit X;::' with the coherent anomaly form,

(18)

where K is a constant. Thus, as explained by Suzuki [15], one may intuit or prove
that the exact Xa(D.) has the critical form,

(19)

where K is a constant.
A CAM analysis along these lines of the LSUBm results based on the z-aligned

Neel stat.e gives v ;;::;1.25 using the D.A(4) and D.A(6) data, and u ;;::;0.97 using
the D.A(6) and D.A(8) data. We thus obtain a singular term in Eg/N near D.A
with a critical exponent 2 - ao + v;;::; 1.50 - 1.75. This may be compared with the
corresponding value of 3/2 for both the mean-field-like CCM SUB2 approximation
(in which all 2-spin-flip correlation terms are retained, however far apart on the
lattice) and linear spin-wave theory (LSWT). A corresponding analysis may also
be carried out on the LSUBm results based on the planar model state near D.~.
We again find ao ;;::;1.500 ± 0.005 for both the LSUB4 and LSUB6 results, and a
corresponding critical anomaly based on these of v ;;::;1.27. We thus obtain a singular
term in Eg/N near D.~with a critical exponent 2-ao+v;;::; 1.77. These preliminary
data are clearly compatible with the hypothesis that the critical exponent in the
energy is the same on both sides of the antiferromagnetic phase transition D.A.

Similar CAM analyses can also be performed for the ground-state energy near
the corresponding ferromagnetic critical point D.j" and for such other properties as
the sublattice magnetization M+ near any of these critical points.

5. Conclusions

We have shown in this article that it is possible to model accurately the properties
of the spin-! XXZ model on the square lattice in two regions of the phase space
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using the CCM. We have produced results for the ground-state energy and sub-
lattice magnetisation which are in full agreement with the best of the alternative
approximate theories, including quantum Monte Carlo techniques.

It has also been shown that the critical points, which mark the phase boundaries
of this model, are predicted to good accuracy, and that we can now make quanti-
tative statements regarding the criticality at these points. The CCM is therefore
essentially unique at present in the field of many-body theory in its ability to predict
with high accuracy both ground-state expectation values and the critical behaviour
of the system in the vicinity of quantum phase transitions between states of different
quantum order.

An interesting and fundamental extension of the CCM treatment of the quantum
spin lattice problems presented here would be to describe their behaviour at non-
zero temperatures. A possible method of achieving this would be to extend the
formalism by utilizing the general framework of thermofield dynamics [16]. We
note also that Mukherjee [17] and others have suggested alternative ways to extend
the CCM to incorporate a thermal averaging procedure.

Finally, we note that the CCM techniques discussed here may also be applied
with equal ease and success to such frustrated spin lattice problems as the Heisen-
berg model on a triangular lattice [8J. By contrast we note that such frustrated
lattices are much more difficult to deal with by quantum Monte Carlo methods
than bipartite lattices of the type considered here.
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