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1. INTRODUCTION

The techniques now available in the field of ab initio microscopic quantum many-
body theory have become increasmgIy refined over the last decade or so. This is
particularly true for what are nowadays recognized as the two most powerful modern
techniques, namely the coupled cluster method (CCM) (1-11J and the method of
correlated basis functions (CBF) [12-18J. Both methods have by now been deeply
and thoroughly tested, and both have been found to give extremely accurate results
for a wide variety of physical systems. In many cases the results obtained from these
fully microscopic techniques are found to be completely competitive with those ob-
tained from the much more computationally intensive quantum Monte Carlo (QMC)
simulations, in those situations where the latter can be applied.

However, QMC simulatiqns remain unavailable for many systems of current in-
terest, typically those where the iDfamous "fermion minus sign problem" cannot be
circumvented. In view of the proven applicability of the ab initio techniques, it
therefore now seems timely to apply them to those problems where QMC results
are unavailable, and especially to that most interesting class of topical systems char-
acterized by novel ground states, and which display quantum order in some region
of the relevant parameter space. Examples of such systems include heavy fermions,
high-temperature superconductors, the fractional quantum Hall effect, new quantum
states in the condensed phases of helium, and antiferromagnetic materials.

In this context particular interest centres on whether any of the modern micro-
scopic formulations of, quantum many-body theory can provide an unbitued micro-
scopic description of the quantum order. One is particularly interested in whether
any of the techniques which have been developed for conventional systems can detect
the position of the critical value of the relevant parameter driving the quantum phase



transition, and, if so, evaluate the corresponding critical exponents of the associated
singularities in the order parameter and other physical quantities. The aim of the
present paper is to show that at least one method, namely the CCM, does indeed
have this capability, at least so far as our preliminary investigations indicate for ap-
plications involving one important class of systems exhibiting quantum order, namely
antiferromagnets.

Over the last few years the CCM has been applied rather successfully to vari-
ous lattice Hamiltonian systems, including spin-lattice models [19-23], lattice gauge
models [24-27], and such models of strongly interacting electrons as the Hubbard
model [28-31]. In the present paper we extend the earlier calculations on the spin-
lattice models, and in particular make the first application to a frustrated lattice,
namely the two-dimensional (2D) triangular lattice. By explicit applications to var-
ious anisotropic antiferromagnetic model Hamiltonians on both bipartite (unfrus-
trated) and frustrated lattices, we show how the CCM enables us to study the quan-
tum phase transitions, including the detailed critical behaviour, of these systems in
a very systematic and unbiased manner [32,33].

2. THE CCM FORMALISM FOR SPIN-LATTICE MODELS

2.1 Basic Ingredients

Detailed descriptions of the basic CCM formalism have been given many times
[1-11], and therefore we only review the essential ingredients here. The exact ket
and bra ground-state energy eigenvectors, 190} and (~ol, of a many-body system
described by a Hamiltonian H,

H/90) = Eg/90} j (~o/H = Eg(~ol ,
are parametrized within the CCM as follows,

190) = eSI~} j S = ESloj ,
]#.0

(~ol = (~ISe-s j S = 1 +EilCi (2b)
1#0

A fundamental role is thus played by the model or reference state lti), which is
required to have the property of being a cyclic vector with respect to two well-
defined Abelian subalgebras of multiconfigurational creation operators {cj} and
their Hermitian-adjoint destruction counterparts {Ci:; (oj)t}. Thus, lti} plays
the role of a vacuum state with respect to a suitable set of (mutually commuting)
many-body creation operators {cj},

Cilti} = 0, 1#:0, (3)

(1)

(2&)

where Co == 1, the identity operator. These operators are complete in the many-body
Hilbert (or FocIt) space 1£,

1= lti}(til +E cj/ti}(tiICi (4)
1#0
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We note that although the manifest Hermiticity, «~ol)t = ,q;o), is lost, the
intermediate normalization condition (~olq;o) = (.,q;o) = (~I.) == 1 is explicitly
imposed. The cluster correlation coefficients {"I, 8I} are regarded as being indepen-
dent parameters, even though formally we have the relation,

(5)

The full set {"I, 8I} provide a complete description of the ground state. For example,
an arbitrary operator A has a.ground-state expectation value given as,

(6)

We note that the exponentiated form of the ground-state OOM parametrization
of Eq. (2) ensures the correct counting of the independent fluctuations of excited
correlated many-body clusters with respect to I~) which are present in the exact
ground state ''10). It also ensures the exact incorporation of the Goldstone linked
cluster theorem, which itself guarantees the size..extensivity of all relevant extensive
physical variables.

The coefficients {"I, 8I} are themselves determined by taking appropriate pro-
jections onto the ground-state SchrOdinger equations (1). Equivalently, they may be
determined variationally by requiring the ground-state energy expectation functional
H[SI' iI], defined as in Eq. (6), to be stationary with respect to variations in each of
the (independent) parameters of the full set. We thereby easily derive the coupled
sets of equations,

SH/SiI=O => {~'OIe-sHes,~)=O, 1=1-0 ,

SH/S"I = O=> (.,Se-s[H,Ot]es,.) = 0, 1 =I- 0

(7)

(8)
Equation (7) also shows that the ground-state energy at the stationary point has the
simple form

Eg = E'["I] = (~'e-sHes,~) = (~IHesl.) . (9)
It is important to realize that this (bi-)variational formulation does not lead to an
upper bound for E, when the summations for S and S in Eq. (2) are truncated, due to
the lack of Hermiticity when such a.pproximations are made. However, it is clear that
the important HeDman-Feynman theorem i& preserved in all such approximations.

We also note that Eq. (7) represents a coupled set of nonlinear equations for the
c-number cluster correlation coefficients {S I }. The nested commutator expansion,

e-SHes = H + [H,S] + ~![[H,S],S] + ... , (10)

together with the fact that all of the individual components of S in the sinn in Eq. (2)
commute with one another, imply that each element of S in Eq. (2) is linked directly
to the Hamiltonian in each of the terms in Eq. (10). Thus, each of the coupled
equations (7) is of linked cluster type. Furthermore, each of these equations is of
finite length when expanded, since the otherwise infinite series of Eq. (10) will always
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terminate at a finite order, provided (as is usually the case) that each term in the
second-quantized form of the Hamiltonian H contains a finite number of single-body
destruction operators, defined with respect to I~). It is important to note that this
is in sharp contrast with the unitary transformation equivalent of the fundamental.
similarity transformation that lies at the heart of the OOM, which would arise in a
standard variational. formulation in which the bra state (~ol is simply taken as the
explicit Hermitian adjoint of Iq;0).

Although we shall not be concerned here with excited states, for reasons of space,
we note that excited states also have a similar OOM parametrization. The interested
reader is referred to the literature [5, 8-11] for details.

2.2 Applications to Spin-Lattice Models

The general. OOM formalism described above is now specialized to the specific
case of spin-i anisotropic Heisenberg models defined on two-dimensional (2D) lat-
tices. We consider both the non-frustrated bipartite square lattice and the frustrated
non-bipartite triangular lattice. We shall choose different models of the anisotropic
terms for the two lattices, for reasons described below. However, we note that both
reduce at the isotropic point to the usual. nearest-neighbour Heisenberg model. This
is described by the antiferromagnetic-coupIing Hamiltonian,

H = LSi·Sj ,
{i,j}

(11)

where Si are the spin-l operators at site i on the lattice, defined as Si == lUi in
terms of the usual. Pauli spin operators Ui. The sum in Eq. (11) runs over nearest-
neighbour lattice bonds. We note that the operators in Eq. (11) are defined in terms
of some global. spin quantization axes referring to all spins, whereas henceforth we
shall consistently employ a notation in which the spin operators are described in terms
of local. (Nee!-like) quantization axes defined separately below for each sublattice of
the lattice under consideration.

For the bipartite square lattice we refer the local. coordinates to a perfect clas-
sical. Nee! state. Thus, on (only) one of the two equivalent sublattices we perform
the up-down transformation in which the Pauli matrices on the rotated sublattice
undergo the canonical transformation: (1'= ~ -u"', (1''11 ~ (1''11, qZ ~ -(1'%. Such a
transformation not only makes transparent the physical meaning of the correlation
operator S, but it also facilitates later discussions on the Marshall-Peierls. the-
orem. In these local quantization axes referred to the Nee! state, the anisotropic
Heisenberg or XXZ model Hamiltonian is specified as

HI L[ z z A ( + + - -)]1=- -(1'.(1'.-- (1'.(1'. +(1'.(1'.
4 "2"'J'

(ij)
(12)

where (1'% == (1'''' ± i(1'!i are the corresponding spin creation and destruction operators
in the local coordinates, and A denotes the anisotropy parameter.

When A = 0, the Hamiltonian H1 describes the usual Ising antiferromagnet with
a perfect Neel-ordered ground state. This is simply the fuDyaligned ("ferromag-
netic") configuration in the local spin coordinates described above. A natural choice
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for the OOM model state I.} is thus the Nee! state, where in the local axes all spins
point along the respective negative z-axes,

N

I.} =® I.l.).; in local quantization axes,
i=l

(13)

where N -+ 00 is the number of lattice sites. Finally, when >. = I, Eq. (12) reverts to
the usual antiferromagnetic Heisenberg Hamiltonian, expressed in global coordinates
in Eq. {11}.

The triangular lattice has three equivalent sublattices, again defined so that no
two sites on the same sublattice are nearest neighbours on the original lattice. The
classical ground state of Eq. (11) is now the NcSel-likestate where all spins on each
sublattice are separately aligned (all in the zz-plane, say), and where, say, the spins
on sublattice A are oriented along the negative z-axis, and spins on sublattices B
and 0 are oriented at +1200 and -120°, respectively, with respect to the spins on
sublattice A. In order both to facilitate the extension of the isotropic Heisenberg
antiferromagnet to include an Ising-like anisotropy and to make the choice of OOM
model state the same as in Eq. (13), we again perform the requisite spin-rotation
transformations on each sublattice. Specifically, we leave the spins on sublattice A
unchanged, and we rotate about the y-axis the spins on sublattices B and 0 by -120°
and +120° respectively,

'" 1", V3-:O'B-+ -2'O'B - TUB;

O'~ -+ O'I,;

" V3", I"O'B-+ TUB - 2'O'B;

(14)

We may thus rewrite Eq. (11) in terms of spins defined in these local quantiza-
tion axes for the triangular lattice. With the further introduction of a comparable
anisotropy parameter >. for the non-Ising-like piece which thus results, we obtain

+~ (40'; + 0'-;0'1) - 3: (O't0'1 + 0'-;O';)} , (15)

where >. = 1 again corresponds to the isotropic Heisenberg Hamiltonian of Eq. (11).
We note that the summation in Eq. (15) again runs over all nearest-neighbour bonds,
as in Eq. (12), but now also with a directionality indicated by i -+ i,which goes from
A to B, B to 0, and C to A. As already indicated, in these specified local spin
coordinates the OOM model state is again chosen to be that specified in Eq. (13).

With the above choice of model state 1f1} for both HI and H2, the OOM oper-
ators {at} now simply become products of single spin-raising operators {O't}. The
multicoD1igurational indices {J} thus label a set of lattice sites, and in principle one
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should include all distinct multi-spin configurations allowed by the symmetries of the
lattice and the Hamiltonian. For example, since the Hamiltonian HI on the square
lattice commutes with the total z-component of spin (in global coordinates), the con-
figurations {f} for the Ned. choice of model state need only include those in which
an equal number of sites are chosen on the two sublattices.

To effect the CCM in practice we clearly need a well-defined hierarchical approx-
imation scheme in which the expansions of the correlation operators 8 and Sin Eq.
(2) can be truncated to some finite or infinite subset of the full set of multi-spin con-
figurations {f}. The implementation of the CCM thus amounts to the two distinct
problems of enumerating the set of independent configurations {I} to be retained at a
given order, and then evaluating the corresponding sets of (finite-order) equations (7)
and (8). We note that both steps can be enormously aided by the use of computer-
algebraic techniques. This is vital for the implementation of the higher orders of the
truncation schemes reported below. Once the resulting equationS for the retained
coefficients {6I , iI} have been solved, the calculation of arbitrary ground-state quan-
tities in the corresponding approximation is then effected via the enumeration of Eq.
(6).

We have investigated three main approximation schemes, namely: (i) the SUBn
scheme, in which all correlations involving only n or fewer spins are retained, however
far separated on the lattice; (ii) the simpler SUBn-m subapproximation, where only
SUBn correlations spanning a range of no more than m adjacent lattice sites are
retained; and (ill) the systematic local LSUBm (= SUBm-m) scheme, in which all
multi-spin correlations over all possible distinct locales on the lattice defined by m
or fewer adjacent lattice sites are retained.

3. RESULTS FROM THE SUB2 APPROXIMATION SCHEME

3.1 Square Lattice Results

In the case of the square lattice the SUB2 approximation for the correlation
operators 8 and S becomes

8 -+ 82 = LBrr'O';O'~ i
r,r'

S -+ S2 = LErr'O';O';; ,
r,r'

(16)

where the coefficients Brr' and Err' depend only on the difference of their lattice
vector indices, i.e., Brr' = Br-r" Err' = Er-r', due to the lattice translational
symmetries. The summations run over all lattice sites r and r' such that the vector
r - r' connects sites on clliferent sublattices, i.e., (r - r') E A, where A is the set of
distinct 8ublattice vectors.

Evaluation of Eq. (9) yields the exact result for the ground-state energy of the
Hamiltonian HI on the square lattice,

(17)

where Bl denotes the correlation coeflicientfor a pair of nearest-neighbour spins.
Similarly, the set of equations (7), with aT -+ 0';0';;, can be evaluated to yield the
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SUB2 approximation for the coefficients Br-r'. These may be further decoupled by
performing a sublattice Fourier transform with respect to (r - r') E A,

B - ~ iq-rB 2 ~ -iq.rBq = L..J e r <=> Br = N L..J e q ,
rEA qEM

(18)

where M is the first sub lattice (or magnetic) Brillouin zone (in the limit N -+ 00).
We find,

(19)

1 4
')'q = 4"Lexp(iq . rp) ,

p=I

where the index p runs over the four nearest-neighbour lattice vectors on the square
lattice. The (physical) solution to the quadratic equation (19) is easily obtained for
Bq, and thence we may evaluate Eg/N from Eq. (18) using the result,

(20)

(21)

We note that Eqs. (19) and (21) impose a quantitative self-consistency condition
an the solution. This may be contrasted with the conventional SWT [34J, where
the consistency of the assumption of an ordered phase can ouly be qualitatively
ascertained.

At the Heisenberg point (~ = 1) the SUB2 scheme gives a ground-state energy
per spin, Eg/N ~ -0.6508. This may be compared with the corresponding classical
result of -0.5, and the results of -0.6580 from lowest-order SWT [34J and approxi-
mately -0.6693 from QMC simulations [35J. The corresponding result for the SUB2
Heisenberg sublattice magnetization M% is about 83% of the classical value, com-
pared with an SWT value of 60.6% and with the best of the QMC results which vary
between 68 ± 2% and 62 ± 4%.

The most interesting aspect of the SUB2 approximation, however, is the exis-
tence of a terminating point at ~c ~ 1.252, beyond which no physical solution exists.
Although the COM based on the Nee! model state is sure to break down in that region
of the anisotropy parameter space where the true ground-state wave function has a

-different symmetry from that of the Nee! ordering, we have clearly demonstrated [19J
that this terminating point corresponds, at this level of approximation, to a true
critical point of a phase transition. The nature of the critical point Can be examined
in more detail by studying the singular behaviour of various physical quantities. We
find, for example, by analytic evaluation, that in the full SUB2 approximation we
obtain,

M% ----+ M: + "(~c _ ~)I/2 ,
).~).;

SUB2 , (22)

{}2(Eg/N} (,\ _ ,\)-1/2
~\ 2 ----+ II C
VA ).~).;

SUB2 , (23)



where M;, K, and IS are constants.
These critical exponents agree with those from SWT, which is perhaps not sur-

prising since both the CCM SUB2 scheme and SWT include only two-body correla-
tions, although, in both cases, of arbitrarily long range. It is interesting to note that
in the truncated SUB2-n approximation, we find

(}2(Eg/N) ~. u. (A'" _ A)-3/2 + p..(A'" _ A)-1/2. SUB2-n, (24)
8A2 >.~>.;"" ".,

where v", and IS •• are constants, and where A~ is the critical anisotropy, at the given
SUB2-n level of approximation. We:find heuristically, however, that v", -+ 0 (oc: n-2),

and IS", -+ IS as n -+ 00.

3.2 Triangular Lattice Results

The corresponding SUB2 approximation for the triangular lattice is now more
complicated than in the previous case. We have now $ -+ S1+S2, 8 -+ 81+82, where
the two-spin correlation operators have the same form as in Eq. (16), except that the
vector r- r' can now connect sites on the same sublattice since the reference state is no
longer an eigenstate of the z-component of total spin. For the same reason, the single
spin-flip operators $1 and 81are no longer automatically excluded. The analogues of
Eq. (19) are now also considerably more complicated. For present purposes, although
the full SUB2 equations may have other solutions, we restrict ourselves henceforth to
the so-called symmetric and coplanar solution. This has $1 = 0 = 81,and the two-
spin correlation coefficients Bn' and Bn' for a given lattice separation r - r' depend
only on whether the two spins are on the same or different triangular sublattices A,
B, or C.

The analogues of Eq. (19) for the coupled sets of nonlinear equations for the
two-body correlations in the first magnetic Brillouin zone M can no longer be solved
analytically for the triangular lattice. Instead, we use a large number Nk of points
to discretize M. Typically, we have used up to 600 x 600 points to obtain accurate
numerical estimates. Such large numbers of points are typically required only for
high accuracy near the critical point.

At the isotropic Heisenberg point (A = 1) we find Eg/N R1 -0.504, compared
with a classical value of -0.375 and a value of -0.5525 ± 0.0025 extrapolated from a
series expansion about the Ising point (A = 0) [36]. The fact that the 8002 ground-
state energy captures only about 70% of the quantum corrections to' the classical
energy, compared with a corresponding figure of about 90% for the square lattice,
essentially reflects the importance in the triangular case of the neglected three-spin
correlations which are strictly absent for the square lattice.

AB for the Hamiltonian HI on the square lattice, so for H2 on the triangular
lattice we also find a terminating point, namely at A" R1 1.33525. We also find
that in SUB2 approximation the power-law singularities. for the triangular model
H2 are the same as in Eqs. (22) and (23). This provides rather strong evidence
that both transitions belong to the same universality class. It also strongly sup-
ports the existence of nonzero three-sublattice ordering in the frustrated triangular
antiferromagnet. This is quite consistent with the result that the sublattice magneti-
zation computed within the SUB2 approximation is nonzero. In fact, at the isotropic
Heisenberg point (A = 1), we calculate a value of about 85% of the classical value.
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3.3 Comparison of Ground-State Wave Functions

It is of great interest to compare and contrast the structure of the ground-
state ket wave functions obtained for both of the above models at the SUB2 level of
approximation. This is of particular relevance for a discussion of the possibility of
performing QMC simulations for the triangnla.r lattice. In this context, the essential
ingredient for the unfrustrated antiferromagnets is provided by the Marshall-Peierls
sign theorem [37]. This addresses the phase relations of the projection coefficients of
the true ground-state wave function onto a complete set of multi-spin configurations.
When applied to the Ha.miltonian HI on the square lattice, the theorem asserts
that all of the coefficients, when expressed in the local spin-quantization coordinates
introduced here, are positive. The ground-state wave function thus has only one
nodal region, a connected region via the Ha.miltonian in the spin configuration space
where the wave function always has the same sign. It is this feature which lies at the
heart of straightforward applications of QMC simulations [35].

A direct expansion of the exponential operator in the CCM parametrization of
Eq. (2) shows immediately that each two-spin correlation coefficient Brr' is a projec-
tion of the ground-state wave function onto the corresponding elementary excitation
connguration which flips two spins with respect to the model Ned state I~}. Although
it is by no means clear IIpriori that the CCM SUB2 approximation will satisfy the
Marshall-Peierls sign theorem for the Hamiltonian Hl on the square lattice, explicit
solution shows that it is obeyed. By contrast, the corresponding coefficients for the
Hamiltonian H2 on the triangnla.r lattice are found to have an intriguing oscillatory
behaviour in their signs as a function of relative lattice separation.

We note that there has been some recent work [38] which suggests that the
Marshall-Peierls sign theorem might survive the onset of weak frustration in cer-
tain models. Our present findings, however, point to its breakdown for the trian-
gular Heisenberg antiferromagnet. More interestingly, perhaps, we also note that
the fixed-node Monte Carlo method [39] and its extension to deal with both lattice
and continuum fermion problems [40] require a reliable trial wave function in terms
of which the true wave function is well approximated, especially for its nodal sur-
face structure. It is our hope that the oscillatory behaviour observed in the SUB2
scheme for the frustrated triangula.r Heisenberg antiferromagnet might represent a
sufficiently accurate description of the nodal structure of the exact wave function as
to permit a successful implementation of a fixed-node Monte Carlo approach for this
system for the first time. We expect that this will be true so long as corrections from
correlations between three and more spins are not too large.

4. RESULTS FROM LSUBn APPROXIMATIONS

In order to go beyond the essentially mean-field-like SUB2 approximation, we
have also performed some LSUBm calculations for m > 2. We report here only on
results for the Hamiltonian Hl on the square lattice, for which one may show that the
number of independent configurations {J} retained, after the lattice symmetries have
been taken into account, are 1, 7, and 72 in the LSUBm schemes with m = 2,4, and
6, respectively. At the isotropic Heisenberg point (~= 1), for example, the LSUB6
approximation yields Eg/N ~ -0.6670 and M:& ~ 0.728. We find heuristically that
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for both the 1D chain (for which exact results are known via the Bethe ansatz method)
and the 2D square lattice our LSUBm results for Eg/N and MZ approach the exact
asymptotic (m -+ 00) limits as m -2 and m -1, respectively. Our best extrapolated
values at the Heisenberg point for the square lattice are Eg/N R$ -0.6691 ± 0.0003
and MZ R$ 0.68 ± 0.01, based on LSUBm results with m = 2,4,6. Both values are in
excellent agreement with the best available QMC results [35].

Interestingly, the LSUBm calculations with m > 2 also show corresponding
critical points A~j A~ R$ 1.733,A~ R$ 1.253. The corresponding SUB2-m results for
A~ appear to approach the full SUB2 value for Ac as m-2• A naive assumption of
the same extrapolation law for the LSUBm results gives a corresponding prediction
for the extrapolated critical point at Ac= >.~R$ 0.87. It will be of great interest to
perform higher-order LSUBm calculations with m > 6 in order to sharpen this still
relatively crude estimate of the critical anisotropy.

The critical index for the singular term in Eg / N as >. -+ A~ may also be obtained
. from an analysis of the LSUBm results. An especially interesting possibility in this
regard is to employ a variant of the so-called coherent anomaly method of Suzuki [41].
One of the great advantages of the CeM is that since at any level of approximation
we have analytic expressions for the coupled sets of equations that determine the
multi-spin correlation coefficients, we may take their derivatives analytically also. In
this way, for example, we may directly evaluate the anisotropy susceptibility, x~=
-B2(Eg/N)/8>..2. A numerical analysis for the LSUBm approximants, x~, with
m > 2, yields

X:;'(>") -+ X:;' (A:,"- A)-aD j A -+ A:,n , (25)

with an exponent ao R$ 1.50. This behaviour appears to be identical to that of the
SUB2-m subapproximants with finite values of m, for which ao = 3/2, as in Eq. (24).

However, we have also seen from Eq. (23) that in the full SUB2 approximation
ao = 1/2. Indeed, just as for the SUB2-m series, the LSUBm results can be fitted
with a prefactor X~ of the so-called coherent anomaly form,

X-'" -'- K('''' _ 'OO)v. , ,00~ +r Ac Ac , A -+ Ac , (26)

where K is a constant. Thus, as explained by Suzuki [411, one may expect the
asymptotic form,

(21)

A CAM analysis along these lines of our LSUBm results for m = 4,6 yields an
exponent v R$ 1.25 ± 0.2, and hence a singular term in Eg/N nea.r Ac with a critical
exponent 2 - ao + v R$ 1.75 ± 0.2. This may be compared with the corresponding
value of 3/2 from both the mean-field-like CCM SUB2 and SWT approximations.
Doubtless it will be of considerable interest to extend our LSUBm results to values
m > 6 in order to refine the above analysis and to sharpen our predictions for the
critical indices.

Similar LSUBm results can also, in principle, be obtained for the triangular-
lattice Hamiltonian H2, and we intend to report on such calculations elsewhere.
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5. DISCUSSION AND CONCLUSIONS

The results presented here clearly show that the combination of the theoretical
framework of the CCM and the use of computer algebra to implement it at high
orders of approximation, results in a powerful formalism for dealing with both un-
frustrated and frustrated spin-lattice problems. We have been able both to obtain
predictions for ground-state properties which are competitive with the best available
alternative calculations, and also to study quantitatively the critical properties of the
quantum phase transitions exhibited by these models. Based on this success, it will
be of considerable interest to extend the applications to include similarly high-order
calculations of electron-lattice models of interest to high-temperature superconduc-
tivity, where, as in the case of the triangular lattice, QMC results are not readily
available due to the infamous fermion sign problem.
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