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THE COUPLED CLUSTER METHOD: THEORY AND APPLICATIONS
TO QUANTUM MANY-BODY AND FIELD-THEORETIC SYSTEMS*

RAYMOND F. BISHOP
Depariment of Mathematics, UMIST
(Universily of Manchesier Institute of Science and Technology)
P.O. Boz 88, Manchester M60 1QD, England

ABSTRACT

The coupled cluster method (CCM) is one of the most powerful and most
successful fully microscopic, ab initio formulations available for quantum N-body
theory, with N finite or infinite. It has probably been applied to more systems
in quantum chemistry, nuclear, condensed matter and other areas of physics, and
quantum field theory than any other competing method. In nearly all such cases
the numerical results are either the best or among the best available. The CCM
can deal with ground- and excited-state energies of closed- and open-shell systems,
density matrices and hence other properties, sum rules, and the sub-sum-rules
that follow from imbedding linear response theory within it. Extensions exist
to deal with systems at nonzero temperature and out of equilibrium. At the
formal level it provides an exact mapping of the quantum-mechanical problem
onto a classical Hamiltonian phase space where the multiconfigurational canonical
classical coordinates have specific cluster and locality properties. In this way it
can provide exact hierarchical generalizations of mean-field theory and the random
phase approximation. We discuss here both the formalism itself and a selection
of its applications.

1. Introduction

Nearly all of physics is many-body physics. This is particularly so at the most
fundamental (i.e., the most microscopic) level appropriate to the energy scale of
that particular sub-division of the subject under discussion.

There are fields like nuclear, atomic, molecular, and solid-state physics where
the fundamentally many-particle aspects of the subject and of its basic objects-or
systems of interest are immediately apparent. For example, atomic nuclei, atoms,
molecules, solids and fluids are manifestly interacting quantum many-body systems.
There are other fields like elementary particle physics where it is less immediately
apparent that one is also usually dealing with intrinsically many-particle systems
rather than only single or few particles. We know, however, that at some level of
modelling, even such a ‘fundamental’ particle as a neutron or proton may be viewed

* This article is dedicated to J. Dirk Walecka, teacher and friend, on the occasion of his 60th birthday.
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as a cloud of mesons surrounding and compressing a smaller bag at its core in which
the quarks are confined, or as three quarks interacting via gluons. Thus, our single
nucleon has rapidly become a multiparticle problem.

However, at least technically, but also much more deeply and subtly too, the
single nucleon is indeed a truly infinite many-body problem since the underlying
quantum field theory, namely quantum chromodynamics in this case, intrinsically
allows the possibility of the virtual excitation of many particles out of the vacuum.
In this sense even the vacuum, the ultimate zero-body problem, becomes endowed
with an enormously complex structure due to quantum fluctuations. Indeed, it is
no great exaggeration to say that in terms of quantum field theory, the structure of
the physical vacuum is the most important many-body problem of all in the field
of high-energy particle physics.

It is clear from this last example that quantum field theory may itself be viewed
as a branch of quantum many-body theory. Although it is more usual to draw the
demarcation line between the two subjects by restricting the quantum many-body
problem to systems which obey the non-relativistic Schrédinger quantum mechanics,
the overlaps between the two fields are strong. From the modern perspective of fully
microscopic, ab initio quantum many-body theory, we need a formalism powerful
enough to treat, both in principle and in practice, the full range of many-body and
field-theoretic systems. We begin by discussing the contenders to play this role.

The most fundamental and more universal tools used nowadays in many-body
theory fall into six main classes: time-independent perturbation theory, Green’s
function or propagator techniques (including parquet or planar theory), variational
methods, the method of correlated basis functions, the configuration-interaction
method (or the generalized multiparticle shell model), and the coupled cluster
method. Each of these methods employs essentially analytical techniques, and is
based on a completely microscopic starting point, which is usually the many-body
Hamiltonian. A great deal of effort has been expended in each case on the investi-
gation of possible hierarchies of approximations, with the special aim to formulate
them in such a way that the results at each order are guaranteed to improve system-
atically upon those obtained in the preceeding order. It is clearly only within the
confines of such an approach that one can be said to possess a rigorous theoretical
microscopic understanding of the system. We mention in passing that among the
most important of the more heuristic or less theoretically fundamental treatments
in the above sense, are the Landau theory of Fermi liquids, the polarisation po-
tential methods of Pines and co-workers, and density functional theory. Finally,
sitting as a third paradigm between theory and experiment is the very important
class of Monte Carlo or other stochastic simulation techniques, that have grown in
importance in recent years with the advent of increasingly powerful computers.

It is my contention that perhaps the only really proven contender that satisfies
all of the criteria of being: fully microscopic; widely applicable to a broad spectrum
of both finite and extended systems; open to systematic improvement; very accurate
(according to the highest precisions attainable by other techniques) in practice; and
very widely and deeply tested, is the coupled cluster method (CCM). Certainly, the
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only other possible candidate in this respect is the correlated basis functlon method
of Feenberg and Clark.

The roots of the CCM lie within nuclear physics!*? and the specific need to
deal there with the hard-core interaction between two nucleons. Kiimmel, one of
the co-founders of the method, has recently given® a perspective of these historical
origins and their relationship to the earlier work in quantum many-body pertur-
bation theory of Brueckner,* Goldstone,® Hubbard,® and Hugenholtz;” and to the
even earlier work in quantum field theory of Gell-Mann and Low.® Most of this
latter work has itself been integrated into the now standard textbook of Fetter and
Walecka,® which has done so much to codify the foundations of modern quantum
many-body theory.

In the approximately thirty-five years since its invention, a large panoply of
formal developments has taken place under the umbrella title of coupled cluster
(CC) theory. The dual aim of the present paper is to give the reader a flavour of what
is presently available and to provide a thumbnail sketch of some of the applications
of the method so that he or she can appreciate the accuracy and level of description
attainable. It is impossible in an article of this size to do full justice either to the
method or to those who have developed or applied it. Nevertheless, I will attempt
to give sufficient references at the key stages, so that the interested reader may more
readily explore the literature. In particular, a considerably fuller and more detailed
recent overview article by the same author!? also covers similar ground and provides
a much more exhaustive set of references. A more elementary and pedagogical
approach was given earlier by Bishop and Kiimmel.!* Other recommended reviews
include those of Refs. [12-23].

In Sect. 2 we attempt an overview of all of the main strands that comprise CC
theory, or the CCM, as it exists today. In the space available we can do no more
than give the most cursory review of all of the main applications that have been
made. We therefore limit ourselves in Sect. 3 to the two illustrative examples of the
electron gas (or one-component Coulomb plasma) and pseudoscalar pion-nucleon
field theory. In Sect. 4 we give the barest outline of the other main applications
made to date.

2. Formal Aspects: Key Elements of the CCM

In its original formulation!s> the CCM was invented as a means of parametriz-
ing the exact (pure) ground ket state |¥g) of an interacting N-fermion system at
zero temperature, and hence of evaluating its ground-state energy eigenvalue Ej.
The parametrization started from a single uncorrelated reference state |®), given as
the usual single-particle shell-model (Slater determinant) state formed from an an-
tisymmetrized product of suitably chosen single-particle orbitals. For an extended
translationally invariant system this becomes the usual filled Fermi sea of plane-
wave states. The multiparticle correlations were then in principle included exactly
in terms of an ezponentiated cluster correlation operator S,

[Wo) =e®1®);  H|¥o) = Eo|¥o). 1)
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This led to the original name of the CCM, the exp(S) method.

The correlation operator S was itself decomposed as a linear superposition of n-
body partitions, S = 277:1 Sp, where S,, describes the configurations formed with
respect to this single-reference non-interacting, closed-shell state by the formation of
n pairs of single fermions in (particle) orbitals unoccupied in |®) and single vacancies
in the corresponding (hole) orbitals occupied in |®). The reason for writing the
correlations in exponentiated form in Eq. (1), rather than the linear form, e —
1+F =1+ Zfd F,, typical of the configuration-interaction (CI) method (or
generalized shell-model approach), is absolutely fundamental to the CCM. Good
heuristic descriptions have been given in earlier pedagogical articles.3!! We merely
recall here that the exponential form leads to: (i) proper counting of independent
cluster excitations (e.g., n independent pairs excited from |®) are properly described
by the wave function 3;57|®}); (ii) an automatic incorporation of the important
linked cluster theorem of Goldstone;® and (iii) hence a correct scaling with particle
number N (size-extensivity) of such extensive variables as Ey, in the infinite limit
N — oo. In some sense the CC exponential ansatz is the quantum-mechanical (i.e.,
operatorial) analogue of the well-known Ursell-Mayer cluster expansion of classical
statistical mechanics.

It is important to realize from the outset that the CCM has now developed far
beyond this ground ket-state single-reference level. We attempt in Fig. 1 to give
a systematic overview of such other elements of the CCM as now exist, and the
relationships between them. In the remainder of this Section we briefly sketch their
main ingredients.

The starting point for a CC description is the model (or reference) state [®).
Although there is freedom in its choice, the primary requirement on it is that it
is a cyclic vector, with respect to which we may define two mutually commuting
subalgebras of multiconfigurational creation operators {C} and their Hermitian
conjugate destruction operators {Cr}. Thus, we require that arbitrary ket and bra
states within the many-body Hilbert space may be decomposed as the respective
linear combinations,

o) = "piclidy;  (F=) dr(ICr (2)
I I

The set-index I labels a general multiparticle cluster configuration with respect to
the state [®) in the role of vacuum or reference state.

The choice of |®) clearly depends upon the system under consideration. It is
usual for |®) to embody the underlying statistics and other symmetry properties
of the system, or its particular phase under consideration, so far as possible. For
fermionic systems, the superconducting Bardeen-Cooper-Schrieffer (BCS) state is
an alternative choice of |®) to the Slater determinant of single-particle orbitals dis-
cussed above. For extended number-conserving bosonic systems a standard choice is
the zero-momentum condensate, and for field-theoretic bosonic systems one would
usually choose the bare vacuum as model state. Other, less familiar, systems can
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tel !

Fig. 1. A schematic outline of the main ingredients of coupled cluster theory,
and their inter-relationships.

also be described in the same overall picture. For example, for such spin-% magnetic
systems as the Heisenberg model defined on a bipartite lattice, |®) may be chosen
as the perfectly aligned state in the ferromagnetic regime, or as the classical Néel
state in the antiferromagnetic regime, for example. For a further discussion of these
very general algebraic foundations of the CCM, the reader is referred to Ref. [19].
With the exact ground ket-state parametrized in the CCM form of Eq. (1), the
correlation operator may now be decomposed wholly in terms of creation operators,

s=Y""s:Cl, (3)
I

where, by definition, the prime on the sum over configurations {I} excludes the
I = 0 term corresponding to the identity operator, Cg = 1. We thus have the
intermediate normalization condition (®|¥,) = ($|®) = 1. The ground-state (g.s.)
Schrédinger equation is then rewritten in the similarity-transformed form,

(e_s HeS — Eo)|<I’) =0, 4)



26

which is the hallmark of the CCM. By taking the inner products of Eq. (4) with the
complete set of states comprising |®) itself and {C}|®); I # 0}, we find respectively,

Eo = (2le”He®|) = (3|He®|®), (5)
(®|Cre~SHeS|®) =0; I#0. (6)

The set of equations (6) represents a coupled set of nonlinear equations for the
c-number cluster coefficients {sr}, in terms of the solution to which Eq. (5) gives
the ground-state energy, Eq = Ep[s;]. Due to the nested commutator expansion,

e‘sHeS=H+[H,S]+%[[H,5],S']+-“, 0

and the fact that all of the individual components of S commute with each other,
each element of S in Eq. (3) is linked directly to the Hamiltonian in each of the
terms of Eq. (7). Thus, each of the coupled equations of Eq. (6) is of linked-cluster
type. Furthermore, the otherwise infinite series of Eq. (7) always terminates in
this case after a finite number of terms if, as is usually the case, each term in the
second-quantized form of the Hamiltonian contains a finite number of destruction
operators, defined with respect to |®). For example, for a system of fermions, say,
interacting via two-body forces only, Eq. (7) terminates after the term of fourth
order in S.

Equations (6) are therefore of finite order, and need no additional (artificial
or approximate) truncation, by contrast to the unitary-transformation equivalent
that would arise in a standard variational formulation, in which the bra state (¥o|
is simply taken as the manifest Hermitian conjugate of [¥g). This feature is im-
portant, and leads naturally to the biorthogonal CCM description (rather than the
more usual orthogonal one), in which the bra gs. is parametrized as,

(Fol = (@13eS; §=1+)'5:Cr; (¥olH = Eo(¥al, ®
I

in terms of a new correlation operator S composed only of destruction operators
with respect to |[®). We note that although the manifest Hermiticity is lost, the
normalization (¥o|®¥) = 1 is explicitly imposed. The amplitudes {sr, 37} now
provide a complete description of the g.s. In particular, the g.s. expectation value
of an arbitrary operator A may be given as,

A = (Bo]A|To) = (8|Se5 Ae%|®) = Alsy, 51]- 9)

The coefficients {s7,37} are regarded as being independent parameters, even
though formally we have the relation,

((Dlest es

@5 = BRsesay

(10)
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They may themselves be determined variationally by requiring the g.s. expectation
value H of the Hamiltonian, from Eq. (9), to be stationary with respect to all inde-
pendent variations. Thus, §H /85 = 0 gives precisely Eq. (6), whereas §H /és; =0
gives the coupled set of equations,

(®|8e~S[H,Clle®|1®8) =0; I#0. (11)

One may easily verify that Eqs. (6) and (11) are fully equivalent to the bra and ket
g.s. Schrodinger equations. The linear set of equations (11) for S may formally be
solved as,

(815 = (8] + (Ble"SHeSQ(Ey — Qe SHeSQ)1Q, (12)

in terms of the projection operator @ which projects out of the model space spanned
by the single reference state | @),

Q=1-12)@ =Y clie)@|Cr. (13)
I

The expectation value A = A[sr,3;] — A[s;] then becomes,
A = Alsp] = (®le™5 A5 |®)

+ (®le S HeSQ(Ey — Qe SHe®Q) Qe ™5 Ae®|®).
We note from the CCM Eq. (6) that Eq. (14) reduces to Eq. (5) for the Hamiltonian,
H[sj] = E,, at the stationary point. Although this variational formulation does
not lead to upper bounds for Ey when S and S are truncated, due to the lack of
Hermiticity, it does show rather explicitly that the important Hellmann-Feynman
theorem is satisfied.

The above static variational principle for the energy expectation value is rather
easily generalized to a dynamic variational principle for the action, A,

(14)

a= [~ dt(¥(2)|(:0/0t — H)|T(t)). (15)

The time-dependent states are now parametrized in the similar CCM form,
[B(2)) = FMe5D|B);  (T(t)] = e FO(B|S(t)e=5Y, (16)

where k(£) is a necessary c-number scale factor, and otherwise S = S(t) and § = 5(2)
are parametrized exactly as in Eqgs. (3) and (8), but now with time-dependent
cluster coefficients {s(t), 3(t)}. The normalization (¥(¢)|¥(t)) = 1 is still manifestly
preserved for all times. Stationarity of A with respect to all independent variations
now readily gives,

6A Osy 6H

=0 = i— = — 1
el Yot~ 85 (17a)
4 _ 0 _g@ - 6_H_ (178)

63! 3t 68[
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Equations (17a,b) thus show that {s7(t), 31(t)} are a complete set of canonical coor-
dinates, despite the somewhat asymmetric way they appear in Egs. (3) and (8). Fur-
thermore, Egs. (17a,b) show that the CCM parametrization has led in principle to
an exact mapping of the original quantum-mechanical many-body/field theory onto
the classical mechanics of a set of multiconfigurational classical fields {s;, 37} with
dynamics given by these classical Hamilton’s equations. The deep implications of
this equivalence are explored elsewhere by the author and his collaborators.13:19:20,24

It is clear that by considering small oscillations around the stationary g.s. val-
ues, and by performing a linear response analysis of the resulting Eqs. (17a,b), we
can put the now classicised problem into normal modes. It is intuitively obvious that
the resulting eigenfrequencies and eigenmodes immediately yield the excited-state
(e:s.) energy spectrum and wave functions of the original quantum-mechanical prob-
lem. A detailed general analysis along these lines has been performed in Ref. [20].

An alternative, time-independent description of excited states has been given
by Emrich.2® Strictly speaking, Eq. (1) describes not only the g.s. but also any
state |¥) with the same quantum numbers as the g.s. and with nonzero overlap with
the model state, {(#|¥) # 0. The possibility of obtaining multiple solutions to the
nonlinear g.s. CCM equations has been discussed in some detail in Ref. [26] for the
particular model case of the anharmonic oscillator treated as a single-mode bosonic
field theory. For excited states (or, more generally, for states with zero overlap with
|¥)) we construct the respective ket wave functions {|¥,}} in the CCM in terms of
a set of linear excitation operators {X*},

[T,) = X2 To) = X?e5|9), (18)

where X* is again decomposed wholly in terms of creation operators with respect
to |),

XX = ':z:’\C’t. 19
I I L}
I

Hence, the operators X* and S commute. The prime on the sum in Eq. (19) ensures
that (®|¥,) = 0. For extended systems with more than one phase, the so-called
g.s. formulation of Eqgs. (1) and (3) will generally yield only the lowest state of a
given symmetry imposed implicitly by the particular choice of [®). Indeed, phase
transitions may often be detected within this CCM description by observing (for
fixed |®)) the onset of “excited” states of negative excitation energy from Egs. (18)-
(19), as some parameter characterizing the system is varied beyond some critical
value. This point has been discussed more fully elsewhere.?”
The e.s. Schrédinger equation,

H|T,) = E)\|¥)) = (Eo + e2)| ), (20)
may be combined with its g.s. counterpart to derive the equivalent CCM eigenvalue

equations,
e 5[H, X %)) = exX?|®), (2la)
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(e7SHeS — Eg)X*|®) = exX?|®), (21b)

for the excitation energy ex = (Ej — Ey) directly. We may now simply write down a
coupled set of linear eigenvalue equations for the e.s. configuration coefficients {z}}
by taking the inner products of Eq. (21a) or Eq. (21b) with each member of the set
{CH@); I # 0}. It is clear that, formally, the excitation energies {€x}, are simply
the eigenvalues obtained by diagonalizing the same matrix Q(e~SHe® — Eo)Q as
needs formally to be inverted to obtain S, as in Eq. (12). We also note that the
left-hand side of Eq. (21a) again has the form of a similarity transform, which may
be expanded by analogy with Eq. (7). In this way we observe that the e.s. CCM
equations may rather simply be derived from their g.s. counterparts by replacing
each multinomial term in the coefficients {sy} arising from the expansion of the
left-hand side of Eq. (4) with a corresponding set of terms in which each single
coefficient s, is replaced one at a time by the corresponding factor =%, and where
the zeroth-order (inhomogeneous) terms in {sr} are dropped.

In order to implement any of the above CCM schemes in practice, one needs
to approximate. This is done by restricting the otherwise complete set of configu-
ration indices {I} for the various cluster configuration operators (e.g., S, 5, X*) to
some particular finite or infinite subset, according to some well-defined hierarchical
appraximation scheme. There are clearly many ways of doing this. One of the sim-
plest is the so-called SUB(n) scheme for either the static formulation of Egs. (1), (3)
and (8) or the dynamic formulation of Eq. (16). Here, the configurations {sr,3r}
which describe clusters of more than n particles (or particle-hole pairs in the case
of Fermi systems) are set to zero. An extension for the static e.s. formalism is
the so-called SUB(m,n) scheme in which all configurations {z}} and {s;} which
describe clusters of more than m and n particles (or particle-hole pairs) respectively
are set to zero. All remaining equations, derived as described previously, for the
configurations retained, are then solved without further approximation.

It should be clear that in the SUB(m, n) scheme, the excitation energies {€)}
are equivalently obtained by diagonalizing the operator Q(e™5HeS — E;)Q, where
S is the SUB(n)-truncated CCM g.s. correlation operator, within the subspace
of multiconfigurational states defined by the truncation index m. The freedom in
choosing m and n independently allows considerable flexibility in implementation.
Further work in this connection!® has shown that by also imbedding the theory of
linear response within the CCM, each of the usual energy-weighted-moment sum
rules for the dynamic (liquid) structure function can be exactly decomposed into.
an infinite cluster hierarchy of sub-sum-rules. It is interesting to note that by
making the simple approximation that the lowest members of the CCM sub-sum-
rules are exhausted by a single (collective or “giant resonance”) state, we regain the
important Bijl-Feynman relation for the excitation spectrum in terms of the static
structure function.

For the static g.s. CCM formalism, the remaining (suitably truncated) equa-
tions for the cluster configuration coefficients {sr} may be arranged in such a way
that upon iteration they yield precisely the well-known time-ordered Goldstone di-
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agrams of time-independent many-body perturbation theory. The interested reader
is referred to the literature?'*¢ for further details. A rather full derivation and
discussion of the extremely rich SUB(2) approximation for infinite homogeneous me-
dia is given in Ref. [12], for example." It should be clear to the reader that the cluster
coefficients {3y, §;} may also be viewed as generalized multiparticle mean fields or as
generalized collective coordinates. In this way, hierarchical approximation schemes
for the static and dynamic CCM formalisms respectively provide equivalent general-
izations of mean-field theory!® and the random phase approximation.?? Finally, we
note that other approximation schemes, apart from the SUB(m, n) scheme above,
have been devised for specific systems. For example, in the case of quantum spin
lattice problems, quite different localized approximation schemes have also been
very successfully employed.?®

Everything that we have described so far within the CCM is nowadays de-
scribed as the normal coupled cluster method (NCCM), to distinguish it from an
extended version (or ECCM). Briefly, although out of the complete set of coordinates
{s1,3r} which, in principle, fully parametrize our quantum many-body system, the
coefficients {s;} are completely linked, the bra-state coefficients {37} are unlinked.
While this has no effect at all on the linked nature of arbitrary expectation values
A in Eq. (9), for many purposes it is useful (if not vital) to have all of the cluster
configuration coefficients linked. This is precisely what is achieved in the ECCM,®
a complete description of which would now take us too far afield. We merely re-
mark here that at the formal level, the ECCM has a double exponential structure
which, in turn, leads to a double similarity transform structure and a double-linking
structure to its diagrams.

By contrast with both the configuration-interaction method (where neither bra-
nor ket-state cluster coefficients are fully linked) and the NCCM (where only half
the coefficients are linked), all of the basic ECCM aplitudes are linked-cluster quan-
tities with well-defined diagrammatic representations.!® In turn; therefore, they all
obey the important cluster property, namely that they become asymptotically zero
as any subset of particles described by the amplitude becomes far removed in real
space from the remainder. The ECCM also provides an equivalent classicisation
mapping to that provided by the NCCM via Eqs. (17a,b), but now all of the classi-
cal fields or amplitudes are local (or, better, multi-local) in the sense of obeying the
cluster property.. We note here only that the ECCM is, to the best of our knowl-
edge, unique as a formulation of quantum many-body/field theory in which every
fundamental amplitude exactly obeys the cluster property at all reasonable levels
of approximation. It is clear that only such formulations have the possibility to
describe both the local properties of many-body systems and such global properties
as their phase transitions, states of topological excitation or deformation, spon-
taneous symmetry breaking, and general nonequilibrium behaviour. We indicate
schematically in Fig. 2 the overall structure of the ECCM, and refer the reader to
the literature!®:19:20,:22=24 for fyrther details.

Finally, to complete our discussion of Fig. 1, we note firstly that indepen-
dent extensions of the previous NCCM analysis of pure states to deal with mixed
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Fig. 2. A schematic representation of the hierarchical structure and general
features of the extended coupled cluster method (ECCM) of quantum many-body
and quantum field theory

states, and hence systems at nonzero temperatures, have also been given both within
the stationary formalism in terms of the Bloch equation for the statistical density
operator,?? and within an imaginary-time formalism for the partition function.3®
Secondly, we note that just as the single-reference version of the NCCM described
above incorporates the Goldstone linked cluster theorem® for the _energy in, the
context of nondegenerate perturbation theory, so a multi-reference version of the
NCCM also exists,3! which incorporates the linked valence expansion of Brandow??
in the context of degenerate many-body perturbation theory and its diagrammatic
expression in terms of so-called folded diagrams.

The essential ingredients of the multi-reference formalism are indicated schema-
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tically in Fig. 3. Thus, we start with a closed-shell system of N particles, whose
CCM single-reference model state is |®) = |®xn), and whose exact g.s. energy is
Ey — E{¥. We now add valence particles (or holes) one at a time. The basic idea
is to keep the closed shell as a starting wave function, and to incorporate into it
the extra correlations arising from the valence particles. If we denote the single-.
particle creation operators as {al,}, we may distinguish three sorts of single-particle
states, namely: (i) orbitals occupied in |®n) (labelled @ — p,v,...); (ii) valence
orbitals (labelled @ — i,7,...) partially occupied by the valence particles outside
the core; and (iii) the remaining “unoccupied” orbitals (labelled @ — p,a,...). The
multi-reference CCM ansatz for the exact (N + 1)-particle states is given as,

v
[541) = Y e5[1 + FMlaf|Bx)CP, (22)

where S is assumed known from the N-body “closed-shell” calculation, and where
the sum on ¢ runs over the set V of valence orbitals considered as degenerate or
quasidegenerate. Thus, the states {a{|®x); i € V} form a set of multi-reference
(N + 1)-body Slater determinants for the low-lying states {a} which we wish to
construct.

occupation probability |Ci|*

,
% valence orbital i

Fig. 3. A schematic representation of the main ingredients of the multi-
.reference coupled cluster parametrization of the ket-state wave functions of an
open-shell system.

Whereas, the coefficients {C{*} determine the mixture of uncorrelated states
in the multi-reference model state, the operator F(1) describes the dressing of the
bare valence particle by its interactions with the core. It may be decomposed as,

N+41
FO= Y D, )

n=1
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where, for example, Fl(l) describes the one-body (Hartree-Fock) part of the valence
problem,

\4
. B =373 (el li)alas, (24)

and Fél) describes the “core polarization” terms which arise from the correlations
between the valence particle and any one core particle,

\4
1 .
FO =2 3 3 Y mmlFVliv) act, o}, avai, (25)

Mz vooi

where the labels 77; and 7, indicate any extra-core state (i.e., valence or “unoccu-
pied”). We note that the CCM ansatz of Eq. (22) is completely general provided
only that, as in the single-reference counterpart of Eq. (1), the states [¥%,;) do
not have zero overlap with all of the wave functions {a!|®x);i € V} in the model
space.
The comparable ansatz for the two valence-particle (N +2)-body wave function
is,
8 L 1 2
[ 950) = Zes[l +FO 4 5 :FO":  F®elal|@n)CE, (26)
37
where the factor of 1/2 in the quadratic term describing two “dressed” but uncorre-
lated valence particles prevents us from counting each excitation twice. This term is
also normal-ordered so as to avoid contractions (or links) between them, which are
more properly contained in the genuine two-valence-particle-plus-core correlation

operator F(2),
N42

F®& =Y FO. (27)
n=2
If we proceed further in this fashion to add more valence particles outside the
core, we rapidly arrive at the normal-ordered exponential ansatz first written down
explicitly by Lindgren,®® although the formulation of Ey®! is equivalent.

Insertion of Egs. (21) and (25) into the respective (N + 1)-body and (N + 2)-
body Schradinger equations, and premultiplication as usual by the factor e~5, leads
readily to equations for the energy eigenvalues EN+! and Ef *2. Suitable projec-
tions onto the model space thus lead to secular equations for the coefficients C§*
and Cg It is easily shown'®!®31 that these may be represented as generalized
eigenvalue equations for fully-linked one-and two-body effective Hamiltonians re-
spectively (which yield the folded diagrams of degenerate perturbation theory),
with eigenvalues equal to the respective excitation energies, e.g., €, = EY*! — EY
for the single-valence case. Similarly, by projecting out of the model space onto “un-
occupied” states, we may derive equations which determine the matrix elements of
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the operators F(!) and F(?). The interested reader is referred to the literature
cited above for further details.

In the remainder of this paper we now indicate some of the main applications
of the CCM techniques described in this Section and summarized diagramatically
in Fig. 1.

3. Illustrative Examples of CC Applications
3.1. The Electron Gas

The electron gas (or “jellium”)® was originally invented to model the electrons
in a metal, in a simplified form in which the iodic lattice is replaced by a uniform
positive charge as an inert neutralizing background. The two-body potential is
otherwise pure Coulombic, and is given in momentum-space representation as,

T 2
V(@) = Ford — e, (28)

where §2 is the normalization volume. More generally, a system of N identical
particles (bosons or fermions), of mass m and charge e each, interacting via the
two-body potential of Eq. (28), is denoted as the one-component Coulomb plasma.
The number density, p = N/2, may be expressed as, '

p=(4nria[3)7" = ki /377, (29)

in terms of either the only independent dimensionless coupling constant, r, = ry/aq,
which characterizes the system, namely the average interparticle spacing, rp, in units
of the Bohr radius, ag = h?/me?, or a (what is for bosons purely fictitious) wave
number kp applicable to an unpolarized spin-1 system. (Henceforth, we use units

2
such that i =1.) Equation (29) implies the relation,

krao = (ar,)™;  a=(97/4)7/3. (30)
We also define the g.s. energy per particle in Rydberg units as,
Eo/N = 6(62/200), ’ (31)

and, as necessary, scale momentum variables in units of kr defined in Eq. (28), as
q = krx.

The one-component Couloumb plasmas are interesting because they exhibit a
phase transition between the high-density (weak-coupling, r, — 0) plasma limit
and the low-density (strong-coupling, r, — 00) limit of a Wigner crystal. They
are also analytically clean in that they contain only one dimensionless coupling
parameter, r,. The quantum statistics play a crucial role at high and intermediate
densities, but their importance vanishes in the essentially classical low-density limit.



35

Furthermore, these systems are highly nontrivial for all values of r, due to the long-
range (r~!) nature of the Coulomb potential.

‘We consider first the CCM treatment of the algebrmcally simpler bosonic
plasma. As reference state we take the zero-momentum condensate,

1) = (N)28})V(0), (32)

where |0} is the vacuum state, and {b},} are a complete set of single-boson creation
operators. In the plane-wave momentum-eigenstate representation, @ — 0 labels
the sole “occupied” (and hence hole) state, and & — q(7# 0) labels the “unoccupied”
particle states. The cluster correlation operator of Egs. (1) and (3) takes the explicit
form,

N
1 - n
S= an; Sp= ;!’ z Sn(ih,-»-,Qn)bLl o bI;,.(N 1/2b0) ’ (33)
q1°-°GQn

n=2

where the matrix elements in Eq. (33) are subject to the condition } .., q; =
0, which arises from the assumption that the N — oo ground state is that of a
homogeneous (translationally-invariant) phase.

In the present case where the interaction potential is of local two-body type,
and with the added constraint from Eq. (28) that V(q = 0) = 0, one may show
that the ezact two-body equation for S3(g) = S2(q, —q) becomes

¢ &34 ,
552(41) + Trpa + Tcp + Tiap + Q/ @) V{d')
1
x [2N'253(q,q,—q ~ q) + 5NSi(@, —a. 4, ~a)] =0,  (39)

in the thermodynamic limit where N — oo at fixed p, and where

Trea = NV(q)[1 + S2(a))?, (35a)
Tcp = —47%52(11), _ (350)
&
T =@ [ ZLv(a-a)5:@) (350)
and where the g.s. energy is given by,
E, 1 d’q
jv__— 59 (27r)3 V(q)Sz(Q)' ] (36)

The SUB(2) approximation is obtained from Eq. (34) by setting S; and Sy
to zero. The remaining four terms represent respectively: (i) the kinetic energy
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(KE) contribution; (ii) the terms that together with KE generate precisely the
random phase approximation (RPA); (iii) the terms that generate the self-consistent
energy insertions on the hole lines, namely the condensate potential (CP) terms;
and (iv) the terms that generate the two-boson ladder (LAD) diagrams for repeated
scattering of a pair from out of the condensate. When fully expressed in terms
of dimensionless variables, the SUB(2) equation for the bosonic Coulomb plasma
becomes,

25,(2) + sors (1 + Sy(@)]’ - 2ar,VeS(z)
+f§/o d"‘n”’ Si(z") =0, (37)
- = / dz53(o). (38)

Although the nonlinear equation (37) is readily solved numerically, it is more
instructive to examine its high- and low-density limits. In the high-density limit, it
is trivial to show that,

€ Qr73* +R, (39)

and, furthermore, that only the KE and RPA terms contribute to leading order, to
give the well-known exact result,

__1(3\V/'re/e
Q ( ) /4 ~ 0.8031, (40)

first obtained by Foldy.?* The CP and LAD terms also contribute to next order to
give a SUB(2) value for the constant R of 16/9x. Inspection of Eqs.(34)-(35) shows
that the coupling terms to S3 and Sy also contribute to the constant R (although
not to Q). A careful and detailed calculation®® including these terms leads to the
value R = 0.0280, and an intricate rearrangement of terms shows that this result is
identical to the first correct result reported, namely that of Brueckner.3® It is also
worth noting that, by contrast with most competing approximations, each term
generated by the SUB(2) approximation is finite and no (cancellations between)
spurious logarithmic singularities occur. This point illustrates the more general
feature of the CCM that terms which tend to cancel one another are automatically
grouped together and/or are never split apart.

In the opposite strong-coupling (rs — o0o) limit, one may not expect the above
SUB(2) approximation to be at all accurate, since one imagines that n-body clusters
with n > 2 are now important. Indeed, we expect the system to Wigner crystallize
below some critical density, and such a crystal phase is an archetype of a situation
where N-body correlations dominate. Furthermore, the translational-invariance
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symmetry of |#) and the Hamiltonian is also spontaneously broken in the crystalline
phase. However, in the SUB(2) approximation we find the result,

€ —Ar7 4 Br7¥? 4 O(r %), (41)
typical of the solid phase, even though the numerical values of the coefficients A and
B are not precisely those of the actual b.c.c. lattice. A more detailed discussion of
this surprising result has been given elsewhere,? and we do not pursue it further
here.

Instead, we turn next to the fermionic Coulomb plasma, and restrict our-
selves to the unpolarized spin-1 electron gas. The analogue of Eq. (32) for a
translationally-invariant system is now the usual filled Fermi sea with Fermi wave
number kp. In the thermodynamic limit the fermionic SUB(2) analogue of Eq. (37)
is a nonlinear integral equation in three three-momentum variables for the antisym-
metrized matrix elements,

S717%(k1, k2;q) = (k1 + q,01; ke — q,02|S2|k1015ka02) 4, (42)

which depend not only on a momentum transfer q as for bosons, but also on the
two hole-state momenta k; and k; inside the Fermi sphere, as well as the spin-
projection indices 03,02(= £3). The corresponding SUB(2) equation is thus much
more complex than Eq. (37). It has been described fully elsewhere.!?

Once again, it can be shown!? that in the weak-coupling (r, — 0) plasma
regime, the SUB(2) equation reduces to a leading contribution which is the complete
analogue of the KE and RPA terms of Eq. (34). The RPA? is well known to give
the exact leading high-density contribution to the correlation energy, €., where

e=co+e; (Pr|H|®F) = Neo(e?/2a0). (43)

The corresponding nonlinear RPA equation for S; has been solved exactly,!? and
the leading (logarithmic) contribution to €. at high densities has been verified.

In the intermediate-coupling regime (1 < ry; < 5) of metallic densities, we
no longer expect the RPA to suffice. Thus, apart from neglecting (i) the sim-
ple exchange terms needed to antisymmetrize RPA, we have omitted from even
the SUB(2) approximation: (ii) all combined particle-particle and hole-hole ladder
terms, some at least of which are important for describing correctly the short-range
behaviour; (iii) the self-energy correction terms which self-consistently generate
both the particle potential and the (more important) hole potential; (iv) classes
of higher ring-exchange terms to preserve overall antisymmetry; and (v) other ex-
change terms which include the particle-hole ladders. Since the full SUB(2) equa-
tion is so technically complicated, a “state-averaging” approximation method was
introduced3® in order to proceed systematically beyond RPA. It was motivated by
analogy with the mathematically much simpler Bose equations (34). The basic
approximation is to average inside the Fermi sea over the hole momenta k; and ks
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in Sa(ki, ko;q). However, in performing this averaging the very important Pauli
exclusion principle is preserved by requiring that the particle momenta (k; +q) and
(k2 —q) simultaneously lie outside the Fermi sea. In this way the exact S2(k;, k2;q)
is replaced by an approximate state-averaged S3(g). The precise details are de-
scribed in Ref. [35]. The approximation was tested on the RPA where it was shown
to be exact in the high-density limit (r, — 0), and to give results better than 2%
accuracy at all densities.

The same state-averaging procedure was then implemented on the full SUB(2)
equation and, furthermore, with the additional inclusion of some of the more im-
portant contributions for the coupling terms to S3 and S;. Results from such calcu-
lations were first presented by Bishop and Lithrmann.?®* They were later repeated
by Emrich and Zabolitzky.3” These latter authors also avoided the use of several
additional minor approximations made by the former, and their CCM results are
shown in Table 1, where they are labelled CC(4) to indicate that they include at
least part of the contributions from triple and quadruple excitations.

Table 1. Correlation energy per particle (in milli-Rydbergs) of the unpo-
larized electron gas, for various values of the dimensionless coupling constant, r,.

Ty —0 1 2 3 4 5 6 10 20

RPA 622lnr, -158 -124 —106 -93.6 -84.9 —78.2 -61.3 —42.8
ccs®  622lnr, -122 -90.4 738 -63.4 -56.0 -50.5 -37.0 -23.6
GFMC? [62.2In7,] -121 -90.2 [-73.8] [-63.6] -56.3 [-50.7] -37.22 —23.00
FHNC® 570lnr, -114 -859 -71.0 -61.2 -54.1 — -355 -21.8
vs? —  -130 98 -81 -70 62 — - —

@ CCM result of Emrich and Zabolitzky®”

b Green’s function Monte Carlo result of Ceperley and Alder, with the results
in brackets obtained by the interpolation procedure of Vosko et al. 39

¢ Results of a Fermi hypernetted chain type of varlatlonal calculation of
Zabolitzky3®

4 Results of a phenomenological approach of Vashishta and Singwi‘m

We compare the CCM results in Table 1 with the Green’s function Monte
Carlo results®® which come from an essentially exact (apart from statistical errors)
stochastic simulation of the many-electron Schrédinger equation. We also com-
pare with representative results from the best of the other available calculations,
including a variational calculation of Zabolitzky,*® and a more phenomenological
calculation of Vashishta and Singwi.*® It is clear that over the entire metallic den-
sity regime the CCM results are extraordinarily accurate. Indeed, we know of no
better microscopic description of the electron gas at these densities. Since the elec-
tron gas is still perhaps one of the most well-studied of all quantum many-body
problems, we believe that these results amply demonstrate the power and accuracy
of the CCM.
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3.2. Pseudoscalar Pion-Nucleon Field Theory

A rather different application of the CCM techniques described in Sect. 2 is
provided by the standard (3+1)-dimensional model of pions and nucleons interacting
via an isospin-invariant pseudosalar coupling. The model is described in terms of
the Hamiltonian density,

H = Ho + Hius,

1 = .
Ho = Ho(x) = g[n:n, 4+ V8! V&, + mi®i®] + Tpu(—iv-V+ Mp)Tp, (44)

Hint(x) = —ig / d®z' F(x — x") 0y (x)y57:To (x)B4(x"),

where ®; = ®;(x) and II; = II;(x) are respectively the (bosonic) pion field operator
and its conjugate momentum density operator, and ¥y(x) and Uy (x) are respec-
tively the (fermionic) four-component Dirac nucleon field operator and its adjoint.
The matrices 4 and -5 are the usual 4 x 4 Dirac matrices; the three matrices ¢
are the usual 2 x 2 Pauli isospin matrices; and the summation convention is im-
plied over the repeated isospin indices ¢ for the (isospin-1) nucleon and ¢ for the
(isospin-1) pion. The form factor F'(x) is necessary to renormalize the pion-nucleon
vertex. It is taken to have the usual Yukawa form, given by its Fourier transform
in momentum space as,

A2 —m?
A2 4 q2 %

where A is a high-momentum (or, equivalently, small-distance) cutoff parameter.
Finally, the mass parameters mo and M, are the bare pion and nucleon masses,
respectively.

A CCM calculation for this system has been performed?*' within the multi-
reference (“open-shell”) formulation described in Sect.2. The physical vacuum |¥g)
is first written in terms of the bare vacuum |®) exactly as in Eq. (1), in terms of a
cluster correlation operator S which is now expanded as a double sum,

F(q) = (45)

S= 3 S (46)

m,n=1

in terms of the number m of pions and the number n of nucleon-antinucleon pairs
virtually excited. Secondly, the (physical) one-nucleon state is treated exactly as in
the one-valence parametrization of Eq. (22); and, thirdly, the two-nucleon state is
treated as in the two-valence parametrization of Eq. (26). The operators F() and
F® are also decomposed as in Eq. (46).

Such a multi-reference CCM calculation has been performed by Hasberg and
Kiimmel,#! in which they retained the partitions S,1, 51,1, Fl(,lo) (and Fz(,lo) . Fé’ll) and

Fl(’ll) in low order). The results clearly depend upon the free parameters My, g, and
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A. In principle, they also depend on myg, but it turns out that the pion self-energy
is actually a higher-order effect than the above approximations used, and hence my
is set to the physical (experimental) pion mass of about 139 MeV. The one-nucleon
calculation was then used to fit the bare mass M; so as to give a CC outcome for
the physical nucleon mass equal to its experimental value, 940 MeV, for a particular
choice of A and g. Finally, with all parameters thus fixed, the two-nucleon {deuteron)
binding energy was predicted. For example, with the pion-nucleon coupling constant
set at the physical (“experimental”) value, ¢? /4w = 14.4, and with A = 1000, 1300,
and 1500 MeV respectively, bare nucleon masses of My = 726, 664, and 651 MeV
respectively give a physical nucleon mass equal to 940 MeV in each case, and a
deuteron binding energy of 9.4,10.5, and 10.8 MeV respectively. It is particularly
gratifying to note that the dependence on ) is very weak. Alternatively, it was
found that to get the deuteron binding energy in the above calculation to emerge
at the experimental value of 2.22 MeV, using a cutoff parameter A = 1000 MeV,
for example, required a bare nucleon mass My = 771 MeV and a.value for g2/4r
reduced by only a factor 1.28 from the above physical value.

The convergence obtained in these pioneering calculations is most impressive,
and indicates that CCM techniques which have been widely used in, for example,
quantum chemisry and nuclear physics to treat atoms, molecules and nuclei, can
also find valuable applications in quantum field theory.

4. Other Applications of the CCM

Many other equally impressive applications of the CCM have been made. In
an article of this size we can do little other than list them below. For further details
the interested reader is referred to the literature already cited, in particular Ref. [10]
and the references quoted therein.

e Nuclear physics: Many applications of the CCM have been made for finite
nuclei,’®'® both for such closed-shell nuclei as *He, 10 and %°Ca, and such open-
shell nuclei as **N and 170, and 14C, 20 and ®F that can be obtained from them
by the addition of one or two valence particles or holes. Calculated quantities in-
clude g.s. energies, density distributions, elastic-scattering electron form factors,
and excitation spectra. What are probably still the best perturbative-type calcula-
tions of nuclear matter,*? including three-body and (the most important) four-body
cluster terms, have also been performed within the CCM framework. By contrast
with most other calculations being done even now (especially for open-shell nu-
clei), essentially all of these CCM calculations in nuclear physics are demonstrably
converged.

e Quantum chemistry: The very high accuracy required nowadays for the calcula-
tion of parity violation in atoms, as well as for the calculation of molecular energy
differences of chemical significance, calls for extreme accuracy in the solution of
the electron correlation problem. The success demonstrated above for the electron
gas clearly demonstrates that the CCM is excellently suited for such use. Indeed,
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it is now widely recognized as the method of first choice in terms of power and
accuracy, for calculations on, for example, ionization potentials, electron affinities,
Auger spectroscopy, excitation energies and energy gradients (for use, for example,
in searching potential energy surfaces to predict vibrational spectra or to locate tran-
sition states in decomposition reactions). A huge number of atoms and molecules
(including, e.g., LiH, H,O, GaAs, benzene, etc.) has been studied, and state-of-the
art calculations are now done on molecules with up to 80 active electrons.14:17:21,43

e Model many-body problems: Examples here include: (i) the Lipkin-Meshkov-Glick
SU(2) quasispin model of the spherical to deformed shape transition in the rare-
earth nuclei under rotation; (ii) the exactly integrable one-dimensional Lieb model
of bosons interacting via pairwise repulsive delta-function potentials; and (iii) the
polaron problem.

e Quantum field theory: Apart from the model outlined in Sect. 3.2, other examples
which have been studied by CCM techniques include: (i) anharmonic oscillators
treated as a single-mode (0+1)-dimensional bosonic field theory; (ii) #* bosonic
field theory in (1+1) and (2+1) dimensions; and (iii) lattice gauge field theories,
e.g., Z; and U(1) (i.e., lattice quantum electrodynamics).

e Quantum spin chain and lattice models: Recent successful applications of the
CCM have been made to both the solid phases of *He and various models ex-
hibiting antiferromagnetism.?® The latter includes the Heisenberg model on a two-
dimensional square lattice, which is believed to be of relevance to the (undoped)
ceramic cuprate high-temperature superconductors.

e Quantum fluid mechanics: A recent application of the ECCM** has been made
to the strongly-interacting condensed Bose fluid at zero temperature where, inter
alia, a hierarchy of exact local balance equations (for number conservation, momen-
tum conservation, energy conservation, etc.) is derived microscopically. These are
precisely the quantum-mechanical macroscopic laws of hydrodynamics for the sys-
tem. Furthermore, the well-known Gross-Pitaevskii approximation? for this system
is regained at the lowest level of implementation of the CCM, namely SUB(1).

o Charged impurity in a polarizable medium: The technique of allowing a low-energy
positron to annihilate inside metals, alloys, and other forms of condensed matter,
has become an important experimental tool. A complete, ab initio, microscopic de-
scription of such a system comprising a positron embedded in an electronic medium
has been recently given within the ECCM, using gauge-field techniques.

5. Summary

The CCM has proven itself to be an extremely versatile formulation of quan-
tum many-body theory. At the practical level it is capable both of systematic
improvement in principle through systematic hierarchies of approximations, and
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of achieving extremely high accuracy in practice at relatively low levels of imple-
mentation. At the purely formal level, recent developments, particularly with the
extended (ECCM) version, have shown it also to be capable of embodying and de-
scribing many fundamental modern concepts of quantum many-body theory and
quantum field theory. We expect that the method will continue to be developed
and to grow even further in importance over the next decade, particularly for fun-
damental applications in quantum field theory.
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