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1. INTRODUCTION

Coupled cluster techniquesl-7 have by now been very successfully applied
t? n~\p-IIous quantum systems of strongly-interacting particles and
f ields. ' One of the key features of the whole coupled cluster method
(CCM) is its ability to incorporate rather naturally and at a very fundamental
level, such unifying concepts as supercoherent states, generalized many-body
mean fields and generalized order parameters, and exact mappings onto
corresponding multilocal classical field theories. This is particularly true
of the most recent version of the theory, the so-called extended coupled
cluster method (ECCM).4,o,7 In common with its predecessor, the normal
coupled cluster method (NCCM) of Coester and Klimmel,I the essence of the
formalism is its intrinsic universality in being able to be applied to any
system governed by some underlying Schr-odinger dynamics. Furthermore, the
methods are both exact in principle, and capable of being systematically
implemented at various levels of approximation in practice. In its most
general form the CCMprovides a complete dynamical description of a many-body
system by formulating it in terms of a dynamical variational principle for the
action,4,7

The relationships between the ECCM, the NCCM and the more primitive
configuration-interaction (CI) method,13 and the way that they form a very
natural hierarchy of formulations, have been explored in some detail
elsewhere. 7 By focusing on the interpretation of each method in terms of
time-independent perturbation theory, and their decompositions in terms of
Goldstone diagrams, it was possible to formulate each of the three methods in
terms of suitably-defined generalized tree diagrams. Their connectivity
properties are intimately related to the linked-cluster properties of the
different cluster or correlation amplitudes which characterize each of the
three methods. Furthermore, these linked-cluster properties are important
with regard to the problem of the size-extensivity or size-consistency (i.e,
full separability) of the resulting many-body description. 14 Whereas the CI
method suffers from well-known deficiencies in this respect, coupled cluster
methods in principle take good care of these separability problems, insofar as
the relevant correlation amplitudes which describe the interacting many-body
system and its properties, obey the cluster property.
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In particular, in the ECCM (and only in the ECCM) all of the
corresponding amplitudes which fully characterize (for example, the ground
state of) the many-body system, obey the exact cluster property. Since the
ECCM is therefore capable, in principle, of describing such phenomena as phase
transitions, spontaneous symmetry breaking, and states of topological
excitation, as well as nonequilibrium properties, its potential range of
applicability is very wide. Particular applications to date include
gauge-field descriptions of both a char&ed impurity in a polarizable medium
(e.g., positron annihilation. in metals), and the zero-temperature quantum
hydrodynamics of a strongly-interacting condensed Bose fluid. 11 In view of
its promise for further use, it seems particularly appropriate to investigate
as rigorously as possible such fundamental features of the ECCM as the
existence and convergence properties of the method at its various levels of
approximation. To this end, we compare in this paper all three
parametrizations (vtz., CI, NCCM, and ECCM), via their holomorphic
representations in the Bargmann Hilbert space. 16 Each method is illustrated
by applying it to various quantum anharmonic oscillators, chosen both as an
important class of model field theories in themselves, and as an especially
stringent test of the ECCMin particular.

One of the most important outcomes of the present work is that by
utilizing the holomorphic representation of the various amplltudes, we are
able to algebraize the various formulations completely. In particular the
topological linking or connectivity requirements associated with the structure
of the vertices in the emergent tree-diagram structures, which are normally
analyzed diagrammatically, now have considerable new light shed upon them.
Indeed, we know of no other comparable example where the asymptotic analytic
behaviour of the various amplitudes which fully and exactly parametrize the
system, has been so fully analyzed. As an example, we show how certain
formally divergent series may be given precise - but generally non-unique -
interpretations. We stress from the outset that our final results, which take
the form of a. generating function for the expectation values of arbitrary
operators, are rather general and not simply restricted to the illustrative
case of the anharmonic oscillators.

The outline of the remainder of the paper is as follows. Sections 2 and
3 are devoted to describing the basic elements of respectively the three
fundamental methods (CI, NCCM and ECCM) and their parametrizations of the
wavefunction, and the Bargmann Hilbert space and the associated coherent
states which underpin the holomorphic representation. The Schrodlnger and
Fock representations of the wavefunction and their inter-relationships are
described in Sec. 4, where we also discuss the holomorphic representation of
all three (CI and CCM) parametrizations for the case of simple field theories
with a single bosonic mode. These techniques are illustrated in more detail
in Sec. 5 by specific reference to the anharmonic oscillator problem. After
describing in Sec. 6 how general expectation values of arbitrary operators may
be generated wholly algebraically, the results are discussed in Sec. 7.

2. BASIC ELEMENTS; PARAMETRIZATIONSOF THE WAVEFUNCTION

We consider the bra and ket ground-state wavefunctions <~I and I"'>
respectively, of an arbitrary many-body system,

(1)

where we do not necessarily assume that the Hamiltonian H is hermitian. For
ease of presentation we restrict ourselves to "closed-shell systems" for which
each of the parametrizations that we consider may be referred to some suitable
single model or reference state 10>. This state can be chosen rather freely,
so long as it is a cyclic vector in the sense that the algebra of all possible
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operators in the many-body Hilbert space is spanned by the two Abelian
sub-algebras of creation and destruction operators defined with respect to it.
In this way we may define sUitifble complete sets of (multlconf'Igurational)
orthonormal creation operators {Ck}, and their hermitian adjoint destruction

counterparts {Ck}, where each many-body configuration-space index k represents

some appropriate set of discrete or continuous (single-particle) labels.
Their choice depends upon the specific system under consideration. Examples
have been given elsewhere. 6

The three particular parametrizations of the ground-state wavefunction,
namely the CI method, the NCCM,and the ECCM, are now specified respectively
as follows:

11/1>- FIO> , <~I = <OIF
(Za)

I NCCM I
-s= (Olne ,

(2b)
s _ ['S Ct , Q =

k k k

I ECCM I (2c)

where a prime on a sum over the .ret-index k indicates that the term k = 0 is
excluded, where, by definition Co :: I, the identity operator. The three

methods are then completely specified by the respective pairs of creation and
destruction operators {F,F}, {S,m, and {~,~}, where in the latter (ECCM)
case,

~IO> - (I - 10><01) e~SIO> , ~ - L'a-kC~ •
k

(3)

or, equivalently, by the complete sets of correlation amplitudes {Fk.Fk}'

{Sk,Qk}' and {a-k';;:k}' in terms of which they may be decomposed.

If we denote these three sets of parameters generically as {xk'Yk}' we

have shown elsewhere 7 that in each case the exact ground-state energy
expectation value, H :: Hlxk.Jkl :: (~I H1I/I>/<~ 11/1>, is stationary with respect to

each member of the set.

(4)

These coupled sets of equations (4) determine the ground-state equilibrium
values of the respective amplitudes. Only in the case of the CI method are
the resulting equations linear. Both CCM parametrizations provide
intrinsically nonlinear decompositions of the underlying time-independent
Schrodinger equation (1). Furthermore, in a full dynamical description via
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the tiEle-dependent Schr-odinger- equation, in which the energy eigenstates IIjJ>
and <1/1 I are replaced by their non-stationary counterpar-ts, the equations of
motion in all three parametrizations have been shown to have the identical
form,

(5)

These are just the canonical equations of motion in a classical (multi-body)
phase space, in which the role of canonical co-ordinates is thus played by the
multiconfigurational correlation amplitudes themselves.

The primary difference between the three parametrizations lies in their
separability properties. Whereas the exact wave operators F and F, and the
correlation operator n are multiplicatively separable, the various cluster
operators S, ~, and ~ are additiveLy separable. The important physical
properties of the system are extensive quantities, and these are clearly most
directly formulated in terms of parameters which are additively separable even
when the full description is approximated by truncation in the
multiconfigurational phase space. Furthermore, this additive separability is
intrinsically related to the connectivity properties of the associated
amplitudes. For example, the coefficients {Sk} are just the Hubbard

linked-cluster amplitudes which represent the sums of complete sets of
connected (or linked) open-ended Goldstone diagrams for the ground state,
whereas the comparable coefficients {Fk} also contain disconnected (or

unlinked) terms. In fact, all of the amplitudes {\}, {crk} and {;;:k} are

linked, and hence obey the cluster property, whereas the amplitudes {Fk}, {Fk}

and {Ok} contain unlinked pieces. We see, in particular, that only the ECCM

thus comprises a parametrization in which all of the amplitudes are linked.

The classical phase space for all three parametrizations is in principle
of equal complexity. Nevertheless, the increasing amount of connectivity in
the chain CI -7 NCCM -7 ECCM (which, incidentallr, is also related to the
various "generalized time-ordering" properties 4, associated with the
tree-diagram structures which emerge from each method in terms of their
time-independent perturbation-theoretic content), is expected to bring about a
similar increase in the effective compactification of the respective phase
space. In particular, the ECCM phase space is a complex differentiable
manifold with a symplectic structure induced by a generalized classical
Poisson bracket form between the amplitudes, b each of which is now muLtiLocaL
in the sense of obeying the cluster property in co-ordinate space. The
associated compactification of the phase space may be expected to allow the
physically important region to be described in terms of an effective classical
mean Imultilocal) field theory of much reduced dimensionality and, hence,
complexity.

The above discussion opens the intriguing possibility that a further
exploration of the various parametrizations, and the ECCM in particular, might
shed new light on the relationships between classical and quantum mechanics
and on the quantization of classical systems. Despite the obvious intuitive
physical appeal of the ECCM, many open questions remain. Thus, the very
existence of the ECCM phase space is far from clear for infinite Hilbert
spaces. The related practical problems of the convergence properties of the
method (and the associated need for appropriate regularization procedures),
and how to devise useful approximation schemes, are also of fundamental
importance.

In order to address these issues we examine here the one-body anharmonic
oscillator as a much-studied system with infinite-dimensional Hilbert space.
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As a model interacting field theory, the anharmonic oscillator is highly
singular in the sense of being maximally nonlocal. It thus provides a most
stringent test for a method such as the ECCM whose linked-cluster properties
suit it particularly to physical systems with normal locality and separability
properties. Furthermore, it is well-known that ordinary perturbation theor~
fails to converge for this system, however weak the anharmonlcity.Y"
Nevertheless, the Fock space associated with such one-body systeI¥s can be
described in terms of (functions of) a single creation operator, a, and its
hermitian adjoint, a.

3. BARGMANN REPRESENTATION; COHERENT STATES

For a one-body problem in one dimension, with Hamiltonian

H = ~p2 + Vex)
2 '

(6)

the position operator x and its canonically conjugate momentum operator p =
-id/dx, are conventionally mapped into their canonical Fock+space creation and
destruction operator counterparts by,

-~t -~ tx = 2 (a + a) , p = 2 if a - a) ,

which obey the usual bosonic canonical commutation relation (CCR), la;a t] = 1.
The corresponding (normalized) vacuum state 10>, a 10> = 0, which now plays the
role of model state or cyclic vector, is simply the ground state of the
harmonic oscillator Hamiltonian, HO = ~p2 + ix2. It has the usual
coordinate-space representation, <xIO> ;: "'o(x) = 1[-4 exp(-~x2). Arbitrary ket
and bra states in the Fock space can now be represented in the form,

t * *t t *t[s> ;: gta )10> , (f I ;: (Olf(a) = If (a )10>] = <if » ;
ee

g(z);: L g zn , f'(z) =
n=O n

L
n=O

(8)

The normalized eigenstates of the operator a are the usual Glauber
coherent states Iz),

t * 2 t
I I I

(za - z a) I _11z I zaa z> = z z>; z> = e 0> = e "2 e I0> , (9)

where z is an arbitrary complex number.
representation is readily seen to be given as,

_1 2 2 2<x lz> = 1[:{ exp(-~Izl -~z + v'2xz - ~x) .

Their co-ordinate-space

(10)

They obey the well-known completeness and overlap relations,

-II 2 L'"I = 1[ d z Iz>(z I = dx Ix>(x I '
co

(11)

(12)

In the Bargmann space the CCR algebra is represented by the algebra,

at ~ z , a ~ d/dz (13)

of the complex variable z and its derivative. Arbitrary states f(a)g(a t) I0>
in the Fock space now have the holomorphic Bargmann representation
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f(d/dz)g(z). In this way the bosonic quantum field theory in a Hilbert space
may be mapped into the corresponding (classical) field theory of a complex
function in a particular normed space, the so-called Bargmann Hilbert space. 16

Thus, the ground-state Schr6dinger equation (1) with the Hamiltonian of
Eq. (6) -becomes the following ordinary differential equation in the complex
plane,

-l(d/dz - z)~(z) + V[(d/dz + zl/v'2]F(z) = E Ftz) ,
o

(14)

in terms of the CI representation II/J>
wavefunction.

F(at) 10> of the ground-state

It is easy to check, using the CCR and Eqs. (9) and (11), that the scalar
product of two such arbitrary states as in Eq.(8) can be expressed in any of
the following forms,

-II 2 -lzl2 •7[ d z e f(z lgfz) (1Sa)

f'(dzdzlglz l 1 z=O (ISb)

(1Sc)

If the two states are normalizable, both (holornorphic) functions f'(z) and glz)
will be entire functions of order p .s 2, and each of the relations 04a) -
(14c) yields the same (convergent) result. Differences will arise only when
the Hilbert space of normalizable wavefunctions is extended to a more general
linear vector space which may encompass states that are not normalizable in
the standard metrics. It is just such an extension which is necessitated by
the CCMparametrizations of the state vectors.

4. HOLOMORPHIC REPRESENTATIONS OF THE CI AND CCMPARAMETRIZATIONS
FOR SIMPLE BOSONIC FIELD THEORIES

In the case .pf simple bosonic field theories with a single mode, created
by the operator a , we may therefore now use the Bargmann-space concepts of
Sec. 3 to give a holomorphic representation of the various operators defined
generally in Eqs. (Za) - (Zc) that define our three basic (Cl, NCCMand ECCM)
parametrizations of Sec. 2. In the first place we consider the detailed
mapping between the Schr6dinger and Bargmann representations of an arbitrary
wavefunction,

eo

I I/J> = F(at) 1 0> , Ftz) - L
n=O

(16)

*written in its Cl form [c.f'.; Eq. tzall. By considering the overlap <z 1 I/J>,
inserting a complete set of position eigenstates 1 x>, and using Eq. (0), it
is straightforward to derive the Fourier-like mapping,

E(z) = 7[-1 exp(-~Z2)rdX exp(v'2zx - !x2)I/J(x) .
!Xl

(17)

By considering the Fourier transform of Eq. (17), or by likewise considering
the overlap <x1 I/J> and inserting a complete set of coherent states as in
Eq. (Ill, one may also derive the inverse relations,
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"'(x) = 2-~71-iexpqx2{" dn expHY2x'J} - ~'J}2)FCi'J})
IX)

(l8a)

-5/4 2 J 2 2 *2 *= 7l exp(-~x ) d z expf -j z ] - ~z + V2xz ) Flz) . (I8b)

For the further CCM parametrizations it is conventional to impose the
so-called intermediate normalization condition on I",>, namely <0I1/1>
Jdxl/1o(x)l/1(x)= 1, which implies that F = 1 in Eq. (l6). Furthermore, the CCM

°representations of Eqs. (Zb) - (2c) imply ~that <~l~> = 1. In the case of a
hermitian 2 Hamiltopian t~is simply gives _<1/1 I = ~ '-1/1 I, where N2 := <1/1 11/1>=
Jdx I",(x) I = <0IF (a)F(a ) I0>, and hence F(a) = N T (a).

In the CCM, the wave operator F(a t) is now parametrized in the
exponential form,

t tF(a ) = exp Sea )
IX)

S(Z) - L S zn
n=i n

(19)

The rernarrung NCCM operator Ora), where <~I - <olo(a)exp[-s(at)l, is then
simply given as,

<Olma)
IX)

L Q zn
n=O n

(20)

with no 1. If we define the average value of an arbitrary operator
t - - -2 * t tD = D(a .a) as <D> - D - <I/1IDII/1> N <OIF (a)D(a ,a)F(a )10), it is

immediately clear from Eq. (20) that the function mz+ is the
moment-generating function for the powers of the creation operator a ,

t n t
Q = «a ) >/n! , o(z) = <explza ».n

(21)

By inserting a complete set of co-ordinate states Ix> into the representation
of Eq. (21) and making use of Eq. (7), we readily find the expression,

o(z) = N-2JIX) dx 1/1* Ix) exp[2-~z(x - d/dx) II/1(x).
IX)

(22)

The exponential operator is easily transformed by use
Baker=Campbell-Hausdorff theorem to yield the explicit representation,

of the

-2 2 JIX) *
o(z) = N exp(-!z) dx exp(xz/Y2)1/1 (x)l/1(x-z/Y2) ,

-IX)

(23)

which is bilinear in the Schrodinger wavefunction.

In the ECCM parametrization, the function ~(z) of Eq. (Zc) is given by
n(z) = exp E(z), and is hence simply the associated cumulant function whose
coefficients provide a measure of the connected averages,

m
~ - n
L(z):= LO"nZ

n=1
0"
n

(24)

The relationship between the coefficients nn and 0"n is thus just the usual one

between the moments and cu!pulants of a probability distribution. Finally, the
remaining ECCM function L(a ) given by Eq. (3), is readily shown to have the
form,
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L(z) - I za t I(0 Q(a)(e - l)S(a ) 0>,

(25)

CF
n

i: (m+nl! Q S 1 d
n

m=O n! m m+n = n! dzn Q(d/dz)S(z) Iz=O .

If an arbitrary operator A(at.a) and the functions exp[±S(at)1 are now
expressed in their Bargmann form, we readily find. for example. that the NCCM
form of the average-value functional A has the holomorphic representation.

A = Q(d/dz)A(z,d/dz + S' Iz) Iz=o • (26)

where S.;.(z) '" dS/dz. When 11/1> and (~I are the exact ground eigenstates of
H = Hta .a), the usual coupled set of nonlinear NCCM equations for the
coefficients {Sn}'

n -S S
(0 Ia e He 10> = 0 ; n = 1.2•...• (27)

which follows immediately from the Schr-odinger equation (1). now simply
correspond to the stationarity condition Ic.f'., Eq, (4»),

- n I8H/8Qn = (d/dz) Htz.dzdz + $' (z l) z=O = 0 ; n ~ 1 • (28)

in terms of the NCCM average-value functional H = H(Sn.Qn)'

remaining NCCMequations for the coefficients {Qn}'

Similarly. the

I -S t n SI(0 Qe [H. (a) le 0> = 0 ; n = I.Z •...• (29)

correspond to the stationarity condition.

- n8H/8Sn = Q(d/dz)(H(z.d/dz + S' (z)).z IIz=O o ; n ~ 1 . (30)

The CI and ECCM stationarity equations may be comparably expressed. It is
clear from the above discussion that it will be useful to study the analytic
properties of the various functions F'(z), S(Z), Q(z), L(z) and ~(z) at the
exact ground-state stationary point and in its vicinity. In order to make
further progress it is simplest to treat a specific example.

5. EXAMPLE: THE ANHARMONIC OSCILLATOR

We now consider the anharmonic oscillator model. corresponding to
Eqs. (1) and (6) with

2K
Vex) = ~AX • K = 2.3.... . (31)

If we write Flz) == exp(-~zz)f(z). Eq. (14) shows that the function f'(z)
satisfies the differential equation.

(
d ) 2K ZK+

1
[( d ) ]dz f'(z) = -A- !dZ - z Z + Eo fez) (32)

By using Eq, (17) and the fact that the ground-state wavefunction I/I(x) is
real, positive, and of even parity. we see easily that fez) is an even entire
function of z which is real and positive on the real axis. Equation (32)
shows that in the asymptotic region where r = Iz I 7 ce, there are 2K
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qualitatively different solutions,

n v
f (n) (z) -7 explbe z ) ; n -K+1, ... , K ,

(33)

and hence that fez) is an entire function of order v. The normalizability of
the ground-state wavefunction ",(x) implies from Eqs. 05a) and (16) that the
product expl -I z 1z) 1Hz) 1 z is integrable over the whole complex plane. Hence,
for real x and y, we have 1 f'(x + iy) 1 -7 00) as y -7 ±oo. Thus, for example, in
the first quadrant, ° :s ar-gfz) < ~1l, of the complex plane, only the K
asymptotic branches of Eq. (33) with n = 0,1, ... , K-l are permitted, and in
the fourth quadrant, -~1l < arglz) :s 0, only the K branches with n = 0,-1,
-Ks-l. By matching the various branches, using the usual WKB arguments, one
can show that the actual asymptotic behaviour is given by,

f'(z) -------7 A exp[b(±z)vj , 1 argl rz l 1 < ~1l .r -7 00
(34)

In order to investigate the analytic behaviour of the CCM function Slz.) =
In F(z), we are also interested in the zeros z of Hz), Hz ) = 0. Similarm m
WKB arguments to those used above show that on the imaginary axis the
asymptotic solutions of Eq. (34) in the left and right half-planes are of
equal magnitude and can generate an infinite sequence of zeros on the
imaginary axis, with asymptotic positions at zm = ±iym' where

Ym ~ [~ sec(~K)]I/Vml/V . (35)

It also seems probable that an of the zeros lie on the imaginary axis.

In order to examine the analytic properties of the NCCM function Q(z), we
may use the representation of Eq. (23). It is easy to show that ",(x) can be
analytically continued into the complex plane where it is an entire function
of order K+l. One may then use its asymptotic behaviour in Eq. (23) to show
that Q(z) is also ~~1 entire function of order K+1, with asymptotic behaviour
Q(x) - expl -kvA 1xl), where k is a constant, as 1x 1 -7 00. Equation (23) also
shows that o(z) has no zeros on the real axis.

We may now use the Hadamard decomposition theorem and the fact that f'Iz)
is an entire function of order 1 < v < 2, to yield the representations,

where the product and sum run over the infinite sequence {zm} of zeros of

f'(z). It is now immediately clear, for example, that the state Seat) 1 0) is
not normalizf.ble within the ·Hilbert space. One consequence is that the CCM
operator Sea ) cannot simply be reckoned to be an operator which generates
"small" correlations in some suitably defined perturbative sense, even when
one might naively intuit that this is possible (e.g., in the case of small
coupling constants, i\). By comparing Eqs. (19) and (36), and recalling that
f'(z) = f(-z), and hence that S(Z) = S(-z), we find

1 -zn
S = _1 (5 - -2 L z , n ~ 1 .zn 2 n,l n m

m
(37)

Equation (35) shows that the sum in Eq. (37) is convergent for all n ~ 1, and
that the coefficients for high n are determined only by the two zeros, =.
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say, closest to the origin.

asymptotically geometric,

Thus, if z
1

ip, the sequence becomes

n+i(-I) -2n
S2n ~ --n--P (38)

Turning now to the ECCM funct~on L(Z), another consequence of the
non-normalizability of the function Sea ) I 0> is that formal expressions such
as those in Eq. (25) must be handled with extreme caution. For example, the
infinite sum for trn is easily seen to be formally divergent. Among the

several techniques that may be applied to give an interpretation to these
divergent or ill-defined (non-unique) expressions, we mention that Fourier and
Borel resummation methods may respectively be applied to the def init.iong (ISb)
and (lSc) of the general scalar product of the arbitrary functions (f I and
Ig> of Eq. (8). For example, in the latter case we may write

t Joo.1I -w t
(0 If(a)g(a ) I0> = dw e (0 If(a)gB(wa ) I0> ,

o
(39)

where the integration variable w is in the direction of the unit vector 11 -
exptie) with I ip I ( rc/2 , and where

is the Borel transform of gtz) given by Eq. (8).

Such techniques may now be employed to evaluate the ECCM function E(z),
calculated in terms of its first derivative from Eq, (25) as,

I za t
L' (z) = (0 Q(a)e S' (a ) I0) = Q(d/du)S' (u+z) Iu=O ' (41)

in which the multi-valued function S(z) has been replaced by its single-valued
first derivative S' (z). Thus, given that the Borel transform of the function
g(z) = lI(z-c) is gB(z) = -c -lexp(z/cl, and that for an arbitrary entire

function f'(z) one has the simple relation,

t t
f'(a) exp(l:;a ) = exp(Ea )f(a+l:;) , (42)

where I:; is an arbitrary constant, we find the important relation,

1 1 Joo.1I -w
(01f(a)-t-10) = -c dw e f(w/c) ,

(a +c ) 0

(43)

for a class of functions f'(z). The direction of integration must be chosen so
that the integral converges. Within the half-plane Iargtn) I ( rc/2 there may
be several disjoint sectors in which this occurs, in which case the scalar
product would not be uniquely defined.

We may now apply Eq. (43) to Eq. (41), with Slz) given by the
representation of Eq. (36). The asymptotic behaviour· of the entire function
Q(z) and the distribution of the poles of S' (z) land see Eq. (35») together
imply that the function E(z) does not have a unique representation. Upon
expansion, each such solution does however lead to precisely the same
(divergent) sum of Eq. (25). The existence of such a multiplicity of
solutions must ultimately be caused by the nonlinear CCM decomposition of the
original linear Schrodinger- eigenvalue problem. On the other hand, it is
still possible to impose such physical constraints as that the ground-state
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wavefunction I/J(x) be real and of even parity (which imply in turn that in
Eq. (25) the coefficients (Jn are both real and non-zero only for n even), in

order to construct a unique L(Z).

We omit the somewhat involved details of the remammg derivation and
quote only the result, in terms of the odd function Rlx) defined, for x E IR,
as

Rlx) - (5' (x) - ~sgn(X)L exp(-xzm) ,
rn

(44)

where o(x) is the Dirac delta. From the asymptotic distribution of the zeros
{zm} of Ftz) from Eq. (35), it is clear that Rlx) is to be understood as a

generalized function or distribution, in the usual Schwartz sense. Thus, the
sum in Eq. (44) is formally divergent and needs to be interpreted. The sum is
first partitioned into terms which are analytic in either the upper or lower
complex x-plane, and the function Rlx) is then defined in terms of the
boundary values of these sectionally holomorphic functions on the real axis.
In this way, we derive our final expressions for Slz) and L(Z) in terms of
their first derivatives as,

. S' (z) = (' dx Rtx) sinhlxz l , L' (z) = fOdx p(x) sinhtxz)
00 -00

(45)

where p(x) ;;; R(x)Q(x). Equivalently, we have that S(z) and L(Z) are even
functions with non-vanishing coefficients,

1 JOO zn-r 1 JOO zn-i
Szn = (2nl! dx R(x)x. ,(J2n = (2nl! dx p(x)x ,

-00 -00
(46)

given in terms of the moments of the respective distributions Rlx l and p(x).
It is clear that whereas L(Z) is defined via Eq. (45) as an entire function,
Sf z) is only similarly defined in an infinitesimal region around the origin
and on the imaginary axis, from where it may, however, be analytically
continued.

6. ARBITRARY EXPECTATION VALUES: A GENERATING FUNCTION

We turn finally to the question of calculating the exact ground-state
expectation value of an arbitrary operator in terms of either set of complete
CCM coefficients, namely {Q ,S } for the NCCMand {(J ,;;. } for the ECCM. To be

n n n n
spe'tific, let If> consider an arbitrary operator in normal-ordered form, n =
n(a .a) ;;; :n(a .a):; Its expectation value,

t t
11 :; <n(a t .a) = <0 IQ(a)e+Sl a )n(a t ,aleS(a ) I0> , (47)

may then be given in terms of a generating function A(u,v) as follows,

(
B B) uat vafi = n Bu'Bv A(u,v)lu=v=o ; A(u,v) ;;; <e e >. (48)

By making use of Eq, (42), we readily derive the relation,

Alu, v) ;;; <0 I Q(a+u) exp [Jo~WS' (a+w)] 10> .

By expanding the exponential as a power series, by
representation of Eq. (45), and by using the relation

(49)

using the
(42), it is

explicit
then a
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simple matter to prove the respective NCCM and ECCM parametrizations of the
expectation-value generating function,

A(u,v) 00 1 n [fOO ( vXi 1)]L •. n dx. Rtx.) ~ Q(u
n=On. i=l -00 1 1 Xi

+ X
1

+ ... + X )
n

(50a)

00 1 n[oo
L •. n Idx.

n=O n'i=l 00 1

vx.

p(Xi)(e x:-I)]

(SOb)

By using the expansions (20) and (24) together with Eq. (46), it is clear
that Eqs. (48) and (50) now permit an expansion of the average-value
functional in either the NCCMform 1i = 1i(S ,Q ) or the ECCMform 1i = 1i(IT,;;: I.n n n n
In both cases we have infinite-order multinomials of the respective sets of
coefficients. On the other hand Eqs. (50a) and (SOb) represent closed-form
expressions for 1i as a functional of only two functions, namely 1i
nIR(x),Q(x)] for the NCCMand 1i = 1ilp(x),~(xJl for the ECCM. For some proper
classes of these two pairs of functions, the integral expressions from
Eqs. (48) and (50) are clearly convergent, whereas by contrast the convergence
properties of the expansions in terms of the respective coefficient are far
from clear. On the other hand, these expansions may be given a diagrammatic
representation in the usual way, and it is clear that their precise linking
and connectivity properties are a direct reflection of the more well-known
linked (L) and double-linked (DLl expansions for the NCCM and ECCM
average-value functionals of an arbitrary operator D, that have been described
more fully elsewhere,2,4,6 and which may be given in the respective operator
forms,

00

D = L 4<0 I Q(DSn)L10>
n=on.

(5Ia)

(SIb)

As a specific illustration we consider, for example, the
proportional to ITITCi Ci in the ECCM expansion of the expectation

t 2 4 2 4
«a )2a2>, which we denote by ':I, say. From Eq. (50) we have

terms
value

uat 2 fOO () ~(u+x )-~(x )
<e a > = dX

1
xlP Xl ell

-00

(52)

Obviously the terms ':I arise from the second term in Eq. (52). By expanding
out the exponential in the integrand, and keeping terms of order u2, we find
that the terms ':I of interest arise from the term,

(53)
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In particular, Eq. (46) shows that the terms '!J aris~ from the terms in the
integrand of Eq. (53) proportional to x 3X or x x. The three terms in

1 2 1 Z
braces in Eq. (53) lead to three contributions labelled (a), (b) and (c)
respectively with specific numerical values 96k.0"0";;. ;;., where k

12424 a
Equation (53) also shows that the connectivity propertieskb = 24, kc = 64.

of the associated
where the diagram
to itself obtained

8,

diagrams are as shown in Figs. (Ia) - (Ic)
(c) should also include an (unshown) "exchange
by reconnecting the line joining ;;. to 0"2 2

reconnecting anyone of the

respectively,
contribution"
so that it

connecta jr to 0" and simultaneouslyZ 4
0" to 0" so that it connects jr to 0".4 4 4 2

7. DISCUSSION

lines joining

It should be clear from the above discussion that we have succeeded in
achieving a complete algebraization of the CI and CCM parametrizations and
their various important properties, by utilising the holomorphic
representations for our model field theories in their respective Bargmann
Hilbert spaces. Most particularly, the abstract topological linking
requirements related to the vertex structure of the corresponding tree
diagrams associated with their respective expansions, have been especially
illuminated. It should be emphasized that although we have illustrated the
techniques by reference to the anharmonic oscillator problem, many of the
final results of Sees. 5 and 6 are much more general. This is especially true
of the form of the holomorphic representation of the CCM amplitudes in terms
of the distribution of zeros for the CI wavefunction Flz) [and see Eq. (45)],
and the corresponding form of the generating function for arbitrary
expectation values [and see Eq, (50)].

We have shown how the linked-cluster amplitudes {Sn} and {cr n} may be

represented as the moments of certain Schwartz distributions, which themselves
depend on the distribution of the zeros of the holomorphic wavefunction Ftz).

a b c

Fig. 1. Diagrammatic representation of some terms in the ECCM expansion of
the expectation value «a )2a2>.
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Whereas the amplitudes {S } decrease asymptotically as a geometric series, the
n

amplitudes {(1' } decrease much more rapidly in the same large-n limit. This
n

has the consequence that their practical calculation is extremely difficult.
In turn, this difference in the asymptotic behaviour of the two sets of
amplitudes is itself a consequence of the fact that the ECCM function L(z) is
a holomorphic function, whereas its NCCMcounterpart S(z) is nonanalytic since
it has an infinite number of branch points.

In practical implementations of the CI method or either version of the
CCM, one must approximate. In each case, the natural truncation scheme is the
so-called SUB(N) hierarchy in which the respective infinite amplitude
expansions (in the appropriate configuration space) of the fundamental
operators described in Eqs. (Za) - (2c), are truncated at the level where the
set-index k contains no more than N single-particle (or single pairs of
particle-hole) labels. For our simple model field theories considered here,
the otherwise infinite expansions of Eqs. (16), (19), (20), (24) and (25) are
simply curtailed as finite Nth-order polynomials. The potentially hazardous
nature of these truncations is now easy to see. Thus, we know that as
Iz I -7 00, the asymptotic behaviour of Hz) is as given in Eq. (34), where v < 2
for the anharmonic oscillator models. Nevertheless, in the NCCM
representation, for example, Hz) is replaced in the SUB(N) approximation by a
function F (z) whose asymptotic behaviour is proportional to exp (S ZN) as

(N) N t
Iz I -7 co, Clearly, the corresponding approximated wavefunctions F(N)(a ) I0)

are no longer normalizable if N ) 2. Hence, such NCCMapproximation schemes
automatically involve excursions out of the usual Hilbert space.

Similarly, whereas the exact NCCM parametrization requires the function
S(Z) to satisfy Eq. (28) for all n, namely to satisfy the condition that the
function H(z) == H(z,d/dz + S' (z) be a constant (= E ) everywhere, the SUB(N)o
approximation merely requires that its first N derivatives vanish at the
origin. Thus, H(z) is ultimately represented in the SUB(N) approximation by a
finite-order polynomial, and it is clear that although the behaviour near the
origin may be very well represented, the asymptotic behaviour is seriously in
error. Since the physically important region is in the immediate vicinity of
the origin, we may thus easily understand both why the SUB(N) scheme suffers
from such seemingly serious drawbacks as lack of normalizability, and yet can
be extremely accurate in practice, even at very low levels of the truncation
index N.

In conclusion, it is interesting to enquire how the formalism as
d!fveloped here for simple model field theories with a single entation toperator
a , might be extended to local continuum field theories where a -7 a (x). In
such cases the complex variable z must presumably be replaced by a complex
field zlx), and the holomorphic wavefunction F(z) and its zeros by a
corresponding wavefunctional Flzfx)] and its zero functions. Whether a
practical formulation of such concepts can be realized, remains a goal for the
future. In any case, we believe that the present work has already paved the
way to a deeper understanding of both formulations of the CCM.
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