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Abstract

In this work we discuss a series of calculations for the *H e nucleus which have been motivated
by the coupled cluster method. For pedagogical reasons we restrict ourselves to the case of pure Wigner
nucleon-nucleon interactions. All numerical work is done in the standard harmonic oscillator basis and
with an exact treatment of the centre-of-mass motion. Particular emphasis is placed on elucidating
the meaning of the coupled cluster wave function and its coordinate-space representation, as well as

the relation with a variational-like use of the coupled cluster ansatz.

1. Introduction

Since the original proposal of Coester and Kiimmel {1,2] a large amount of work has
been carried out within the framework of exp(S) or coupled cluster (CC) theory. A full
description of CC theory may be found in the article of Kimmel, Lihrmann and Zabolitzky
[3] that has become a classical reference in this field. On the other hand, in order to acquire
a flavour of the wide domain of applications and the success of CC theory it is suggested that
the reader consult the recent pedagogical review given in Ref. [4].

In spite of the many well-recognized successes of CC theory, it is still perhaps true
that many of its underlying features remain obscure. As is often the case in many-body
theories, the basic ansatz is rather simple. Its physical content is quite clearly established
in its starting form for the wave function. However, when going to practical applications,
simplicity is lost. The algebraic details of applying the underlying formalism tend to make
the theory more and more obscure. Of course, this should be expected, given the richness
and rather universal applicability of the CC ansatz. To quote a particular example, the
SU B(2) approximation, i.e., considering only 2p— 2k excitations, in an infinite medium gives
for the basic two-body amplitude a non-linear integral equation which contains not only

Condensed Matter Theories, Volume 5 253

Edited by V.C. Aguilera-Navarro
Plenum Press, New York, 1990



Table 1. The ground-state energy of the *He nucleus using the MTV interaction, and as
obtained by means of various theoretical methods.

Method Reference | g.s. energy (MeV)
Green Function Monte Carlo [10] -31.31+0.2
Coupled Cluster [11] —31.36

ATMS (Amalgamation of two-body corr...) [12] -328< E<-31.3
Jastrow full Euler-Lagrange variational [13] —31.35
Jastrow variational second-order [14] —31.19 4 0.05
Hyperspherical harmonics (8] -31.22 < E < -30.48
Yakubowsky equations [15] ~29.6
Configuration interaction (10%w) space [16] —18.31

such individual contributions as the RPA terms, with Pauli exchanges, the various ladder
contributions (hh, pp and ph), the particle and hole potential insertions, among other terms,
but also the self-consistent union of all such terms iterated simultaneously [5].

The aim of this work is to present with clarity the underlying structure of the CC
wave function, as well as to study the characteristics of the energies obtained by solving the
CC equations. In order to expose these essential features it is convenient to deal with a rather.
simplified problem. We found particularly adequate for this purpose the study of the 4He
nucleus where the nucleons interact by means of Wigner-type two-body potentials.

Ignoring the spin and isospin dependence of the two-body interaction undoubtedly
means moving relatively far away from the real physical structure of He. For example, we
know that the physical nucleon-nucleon interaction has a very impbrta.nt tensor component.
Nevertheless, the advantages of working in these simplified conditions are considerable. First
of all, we may view the *He nucleus under these circunstances as a system of four bosons,
with a fully space-symmetric ground-state wave function. This will permit the determination
of exact reference or benchmark values, by means of Monte Carlo integration of the many-
body equation [6]. In addition, all of the ensuing Fock algebra will deal with bosonic (i.e.,
obeying commutation relations) creation and anihilation operators.

The second reason is of a didactic character. Our four-nucleon system will be simple
enough to permit its study in both Fock and coordinate space. In this manner we will be
able to show explicitly the way CC theory describes the nuclear wave function in coordinate
space. In turn, this will permit us to connect CC theory with such other theories as the
Jastrow variational theory [7] or the hyperspherical harmonics integro-differential equation
method [8], which are entirely described in coordinate space.

The last motivation for dealing with this simplified problem is the existence of a -
large amount of work for the 4He using the MTV potential of Malfliet and Tjon [9] , and
employing both many-body and few-body methods, with which we may compare. A selected
set of results concerning the *He nucleus with MTV forces is shown in Table 1.
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2. Nucleon-nucleon interactions

We have considered four different forms for the two-body nucleon-nucleon interaction
which between them cover a wide range of complezity. We use this word in the common
many-body sense, i.e., interactions with a strong repulsion at short distances are considered
complez, whereas interactions without core or a quite small one are said to be simple. Our
aim is then to show the performance of CC theory over as wide a range of problems as our
simple model permits.

The simplest potential we use was introduced by Malvin Kalos [17] in a pioneering
paper on the application of stochastic methods to quantum systems. It is a fully attractive
interaction given by

Vi = —72.2exp{—(r/1.191555)%)}, 6))

and it is included here largely for historical reasons.

Our second potential in order of increasing complexity is the Wigner part of the Brink
and Boeker B1 interaction [18],

VB = 389.5exp{—(r/0.7)?} — 140.6 exp{—(r/1.4)%}, (2)
which has received very much attention in nuclear structure calculations.

The above two interactions are effective interactions, which have no direct relation
with two-body nucleon-nucleon scattering data. We have also considered two other realistic
interactions, namely the Wigner part of the $3 interaction of Afnan and Tang [19],

Vs = 10003 — 163.35¢™ 105" _ 8308 _ 9] 506" _ 11 5704 (3)
and the already-mentioned MTV interaction [9],
Vamrv = 145827 exp(—3.117)/r — 578.18 exp(—1.55r)/r. 4)

These last two potentials correspond to the Wigner part of interactions fitted to the £ = 0
two-body phase shifts and to the deuteron binding energy. In each of equations (1-4) the
potential is measured in MeV and the internucleon distance r is measured in fm. In order
to fix all details of our calculations, we also note that our value for the nucleon mass m has
been chosen so that A2/m = 41.5 MeV fm?2.

With the exception of the MTV potential, all of the other interactions are combina-
tions of gaussians. Given that we will work exclusively in the harmonic oscillator basis, all cal-
culations regarding these gaussian interactions can be carried out by means of semi-numerical
algorithms. In addition to speeding up the computations, our corresponding calculations will
be free of most numerical approximation errors.

3. An irritating question: the centre-of-mass spuriosity

In a light system, like 4He, the quantum mechanical description may be explicitly
written down in terms of a set of intrinsic, translationally-invariant coordinates, such as the
Jacobi set of coordinates. The price that has to be paid is that to impose the Bose or the
Fermi statistics one has to translate simple nucleon exchange permutations into some much
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more complicated transformations among the intrinsic coordinates. On the other hand, in CC
theory, as well as in shell-model the?ry, all states are most readily expressed in terms of the
individual nucleon coordinates, referred to some external origin, and because of this the wave
function is not translationally-invariant. It is possible to insert by hand some constraint to
remove the spurious centre-of-mass coordinate [20], or even to try to remove it optimally [21].
Nevertheless, both of these two approaches will result in tying all of the nucleon coordinates
together, thereby converting the calculation of matrix elements of one- or two-body opera.tors
into a calculation which mvolves all of the nucleon coordinates.

There is, however, a special case where the effects of the spurious centre-of-mass
coordinate may be removed without paying the heavy price of an intrinsically A-body de-
scription. It corresponds to wave functions constructed in a shell model with single particle
wave functions from within a harmonic oscillator potential. It is well-known that such a
suitably (anti)symmetrized non-interacting many-body harmonic oscillator wave functions
(HOW F) in which the single particle levels are filled up in order of increasing energy, so that
a new major shell is only started when all lower energy shells are completely filled, factorizes
into the product of two terms, one depending only on the centre-of-mass (CM) coordinate
R = Y ;r;/A, and the other depending only on internucleon distances

A
Yrowr(r1,.ra) = Tom(R) [] ¥(ri — R), (5)

=1
with the centre of mass being in the Qs state of a scaled harmonic oscillator. This factorization
property permits us to work directly with ¥ zowF, and all spurious contributions due to Yo s
may be removed quite easily at the end of the calculations. In this way one can still work
with the individual nucleon coordinates, rather than with the much more complicated and

less symmetric (under permutations) intrinsic coordinates.

Unfortunately, this property is in general lost when considering the 1p— 1k, 2p — 2h,

. states which are necessary to describe the physical correlations induced in the system
by the interparticle forces. There is still a way of removing the spurious CM effect but
which is very costly in terms of computational effort [22]. It necessarily involves considering
the full space corresponding to a given number of excitation quanta in top of the model
non-interacting HOW F. In other words, it corresponds to considering all np — nh states
with a total harmonic oscillator energy less than or equal to a given energy Ny..fiw. The
disadvantage of this approach is that many of the states which result after the diagonalization
of the hamiltonian matrix are not physical, because they correspond to excitations of the
centre-of-mass. Moreover, the dimension of the space grows very rapidly with N,,,, [16,23].

We have found a method which produces factorizable wave functions, i.e. which
maintains the centre of mass in the Os state. For simplicity of presentation we concentrate on
the present *He case to discuss the technicalities. The starting state is the non-interacting
HOWF in a (0s)* configuration,

Uo = (47 (af)*|0) - (®
where the subindex 0 represents the Os orbital. Excitations with respect to ¥o which main-

tain the basic factorization and preserve the symmetry of the wave function must correspond,
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in coordinate space, to at least two-body operators depending only on relative coordinates,
i.e., something like S = 3=, §(r;)- We note furthermore that S(ri;) depends only on
the distance between particles ¢ and j in order to maintain the zero angular momentum of
the starting wave function. The Fock representation of this operator will be of the type
S=3 E,]k, S’,Jua,a aia;, where each of the indices represents the three quantum numbers
necessary to label the single particle wave functions, namely {ném}. The symmetnzed am-
plitudes S;jx1 correspond formally to the matrix element

Sijut = (i(r1)$5(r2) + $i(r1)di(r2)| S (r12) |0k (r1)i(72)) /2.

The important point here is the strong simplifications which arise in our specific H e problem:
thus k and [ must correspond to 0s states, and 7 and 7 must couple to zero angular momentum.
Finally, when transforming ¢;(r;)$;(r2) to centre-of-mass and relative coordinates, the centre
of mass must remain in the 0s state. Putting all of these constraints together, there results
for the operator S the form

S= ngsn El(no 000|7; £n;£0)[a},, x af, ,I° ao ao, (7)
where the amplitudes {S,} are arbitrary. For a given value of n one has to consider all
possible sets of indices {n;n; €} which are compatible with the restriction implied in the
Brody-Moshinsky bracket » = n; + n; + £. A given value of n thus corresponds to 2nfiw
excitation energy and there is hence only one 2p — 2h state with this energy which respects

the restriction of zero angular momentum, while maintaining the Os centre-of-mass motion.

We also note that in eq. (7) there appear also terms where n; =n,n; =0 and £ =0,
as well as n; = 0, n; = n and £ = 0, which effectively correspond to 1p — 1A excitations. So,
even if we started from a (formally) two-body operator, we have ended up with a mixture of
1p — 1h and 2p — 2h operators. Finally, this discussion could also be extended in principle
to consider 3p — 3k and 4p — 4h excitations from ¥y, but for present purposes we restrict
ourselves to the 1p — 1h and 2p — 2h excitations considered above.

4. Translationally-invariant coupled cluster theory (TICC)

Standard coupled cluster theory assumes for the ground-state wave function the gen-
eral form
¥ =exp{S1+ 52+ S3+-.-}¥o, (8)

where each S, corresponds to np — nh excitations with respect to some suitable model or
reference state ¥g. We have shown in the previous section that this ansatz will spoil the
centre-of-mass factorizability property and that at least operators S; and Sz must appear
in a special combination. Restricting ourselves to SUB(2) approximation, i.e. only up to
2p — 2h operators, our TICC ansatz will be

with S given by eq. (7). Given that *He has only four particles, eq. (9) is equivalent to

¥ =(1+S+5%/2)¥,, (10)
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and the question now arises as to wether the quadratic terms will also respect the factorization
property. The answer is that they do not, and that the TICC ansatz must be correspondingly
modified by adding a normal-ordering prescription to the exponential of the operator, namely

Y7100 =: exp{S} : ¥o. (11)

A particular way of checking this statement is to examine the coordinate representation of
Yrice, as will be described in detail elsewere [24]. One has to project over the Fock space
field operators [25], and after various Brody-Moshinsky transformations there results the
expression

"
‘I’TICC(rll‘zl';;r.;)— 3{1+225 2.7: (T,J)+2 ZS S 2.7: (T,J)fm(’l'kl)}e o? p=1 3/2

n i<j nm i<j ( )
12

where

Fa(r) = {(2 T 1),,}‘/21:(1/2’(012#/2) (13)

and where LY/ %(z) is the usual associated Laguerre polynomial. The last term in the curly
bracket of eq. (12) has to be understood in a special way, namely the pair {kl} repre-
sents the remaining two particles once the pair {ij} has been selected. This wave function
is not normalized althoug it does obey the so-called intermediate normalization condition,
{¥ol¥T10c) = 1. Finally, in these equations we have assumed a harmonic oscillator pa-
rameter a = (mw/k)/2. We note in addition that the quantities F(r) represent a relative
n, s-wave motion for the pair of particles.

The equation equivalent to (12) but in terms of Fock operators is

Uricc = (4) 2 {(a})* + 123 50 ad ol + 123 5,5 }[0), (14)
with
Q= > (n0000[n;£n;£0)al , x al ,]°. (15)
nin;¢l

In conclusion, the SUB(2) ansatz for a translationally-invariant coupled cluster the-
ory of “He has three kinds of terms. The first is the non-interacting harmonic oscillator
ground state corresponding to the first term inside the curly brackets in eq. (12). Then we
have terms with only one function 7, corresponding to the excitation of a pair of particles
in all possible ways to a state with relative = and £ = 0 motion, and finally there are other
terms in which one pair is excited to n,£ = 0 and the other to m,£ = 0. The unknowns of
the problem are the c-number coefficients {S,} which have to be determined by solving the
Schrédinger equation.

The problem is thus reduced to solving a set of non-linear algebraic equations for the
coefficients {S,} and the energy eigenvalue. There is however another way of viewing eq.
(12) which consists of introducing a two-body correlation function

9(r5) =Y Sn Falri), (16)
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in terms of which we may rewrite the wave function as

6
¥rice = 5 {1+2)0(r5) +2 ) a(r)atra)} exp{ o’ Tor3/2).  (17)
<7 <3 14
In this form we have only an unknown function g(ri;) to be determined. For this function
" it is possible to write down an integro-differential equation following the CC evaluation
method [26] or by means of an Euler-Lagrange variational approach, as in the case of Jastrow
correlations [13], or, finally, by following a method similar to the hyperspherical harmonics
method of describing nuclei [8]. Actually, if the quadratic terms were omitted from eq.
(17) we would have a form for the trial wave function very similar to the one used in the
hyperspherical harmonics theory (e.g., see eq. (5) of ref. [27]). For present purposes we
have decided to work in the harmonic oscillator basis, by using directly egs. (12) or (14). In
the first case the calculation were carried out by using specific properties of the generating
function of the associated Laguerre polynomials. In the second option, eq. (14), we have
simply used standard shell-model machinery. Details of the calculations will be published
elsewhere [24].

There are several ways of actually using the parametrization given by eqgs. (12, 14)
which we briefly mention. The first is to consider the linear approximation in which the terms
quadratic in the coefficients {5, } are neglected. By minimization of the resulting expectation
value (¥rrcc|H|¥Tice)/{¥Ticc|¥TIce) with respect to the set of coefficients {S,} we will
end up with a matrix eigenvalue problem. This is equivalent to a configuration-interaction
calculation using a selected set of basis states. The calculations performed in this way will
be referred as LTICC, L standing for linear.

Secondly, we may determine the amplitudes {S,} in the standard coupled cluster
way, i.e. by projecting the Schridinger equation for the full wave function eq. (14) onto the
uncorrelated state (a})*|0) and onto our special 2p — 2k states Q, af, a}|0). Once a maximum
value for » = Ny,4, has been assumed, we will thereby end up with n,,,- + 1 non-linear
equations involving the ground-state energy E and the unknown amplitudes {S,}. This
method will be referred to as TICC, namely the standard, translationally-invariant coupled

cluster approach.

Thirdly, once the amplitudes {S,} have been determined as above, we can compute
the expectation value of the hamiltonian with the already known approximate wave function.
This method will be referred to as (TICC). The difference between this way of determining
the energy and the TICC form gives a measure of the goodness of the coupled cluster

approximation.

Fourthly and lastly, one may generalize egs.(12, 14) by the formal replacement of
SnSm — Cpm, so that the amplitudes of the quadratic terms are no longer tied to the
amplitudes of the linear terms. This is again a configuration-interaction calculation with a
larger basis space than in the LTICC approach. This kind of calculation will be referred to
as the QTICC method, with @ standing for quadratic. .

The four approaches have been mentioned in order of computational complexity. For
example, at fmer = 29, which corresponds to 58fiw excitation, the first method requires
the computation of 30X30 matrix elements, whereas the QT ICC requires the calculation of
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Table 2. The ground-state energy in MeV of *He for the four interactions considered. The
results shown correspond respectively to a variational calculation with respect to the oscillator
parameter @ in an uncorrelated wave function given by eq. (6) (HOW F), linear CC theory
(LTICC), standard coupled cluster theory (TICC), diffusion Monte Carlo (DMC) and the
Jastrow variational method (JAST ROW). The asterisks indicate results not fully converged.

METHOD
POTENTIAL | HOWF | LTICC | TICC DMC JASTROW
Kalos —23.15 | —28.74 | —28.79 | —29.25+ 0.05 —-29.11
Bl —28.16 | —37.80 | —37.85 | —38.5+0.10 —36.44
S3 —5.89 | —25.29% | —25.47* | —26.9+ 0.20 —24.29
MTV —6.40 | —26.77* { —27.06% | —31.5+0.20 —29.48

465 x 465 matrix elements. In any case, these numbers are still very much smaller than the
dimensions corresponding to a full configuration interaction calculation [23] in the complete
Nmesfiw Space.

5. Results and discussion

The results of our calculations are shown in Tables 2 and 3, and in Figures 1 and 2.
The two figures analyze the convergence of the LTICC calculation in terms of the number
of basis states and also in terms of the harmonic oscillator parameter a. We were very
surprised by the results displayed in these two figures, as well as the equent plots for
Fig. 1 in the case of the other three interactions. In order to get convergence it is necessary
to go up to nmay ~ 15 for the mild interactions (K and Bl), but even 4, = 30 is not
high enough to get a stabilized result for either the $3 or the MTV potentials. Naive (and
unjustified) extrapolations to n — co suggest that the ground-state energy will reach values
around —26 MeV for 53 and around —28 MeV for MTV. Unfortunately we could not go
even further in our calculations, because it was already necessary at an appreciably lower
level to move to quartic precision (128 bits) in order to avoid rounding errors associated with
the Laguerre polynomials of correspondingly high orders. In other words, it is clearly not
appropriate to work in the harmonic oscillator basis for these model problems. Instead it
would have been more convenient to work directly in the coordinate representation. The
second property to be stressed is the dependence of the energy on the harmonic oscillator
parameter . We have shown only the case of the 53 interaction (see Fig. 1) where there is
only a small region around the minimum which can be considered flat. The same happens
in the case of the MTV interaction, and also in the case of the smooth interactions K and
B1, even if in these two cases the flat region is wider. The usual received wisdom in such
generalized shell-model calculations is that one expects the results to be independent of the
basis, once convergence is reached, but this is clearly not the case for our results. In other
words, the 3p— 3k and 4p—4h states which are lacking in our calculation must be responsible
for making the comparable plots to those of Fig. 1 flat. Formulated in yet a different way, it is
dangerous to extract conclusions about the relative importance of various clusters unless the
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Table 3. The ground-state energy in MeV of *He for the three interactions of gaussian shape.
The calculations correspond to the quadratic configuration-interaction method (QTICC),
coupled cluster theory (TICC), and the expectation value of the energy for the coupled
cluster wave function ((TICC)). In these calculations ny.z = 12 so the S3 results are very
far from convergence.

METHOD
POTENTIAL | QTICC | TICC | (TICC)
Kalos —28.873 | —28.791 | —28.802
B1 —-37.193 | ~37.178 { —37.182
S3 —20.216 | —20.186 | —20.193

proper harmonic oscillator parameter is used. We note that the two main conclusions coming
from the analysis of Figs. 1 and 2, namely the need for very large bases, and the residual
dependence on the harmonic oscillator parameter, are by no means exclusive to our coupled
cluster approach. They also apply to more general configuration-interaction calculations.

The numerical results of our calculations are also shown in Table 2. The column
labelled HOW F corresponds to the optimal value for a (0s)* configuration, and the LTICC
and TICC columns correspond respectively to the linear and to the general translationally-
invariant coupled cluster calculation. The results are compared with the exact (within statis-
tical errors) results of a diffusion Monte Carlo calculation (column DM C) [24,28] and with
the results of a variational calculation for a simple trial Jastrow function depending on three
parameters [28]. We see from this Table that the dominant contribution to the energy comes
from the linear part of the coupled cluster wave function, the contribution of quadratic terms
being a rather small fraction of 1 MeV. Focussing attention on our fully converged results,
we observe that we are less than 1 MeV from the exact results, thus indicating that 2p — 2h
excitations are by far the most important contribution to the correlated wave function.

Finally, Table 3 is concerned with the goodness of the coupled cluster form of solving
the Schrédinger equation. In this Table we show in the column labelled QTICC the results
computed as discussed at the end of the preceeding Section, i.e., by decoupling the quadratic
terms from the linear terms, and diagonalizing the hamiltonian in our special 2p — 2k and
4p — 4h basis with pairs of particles coupled to zero a.nglﬂa.r.momehi‘um. In addition, the
third column labelled (TICC) corresponds to first performing the standard coupled cluster
theory (with translation invariance incorporated, as in column TJCC) and then taking the
expectation value of the energy for the wave function so determined. These three columns
should in principle be the same in the case of an exact calculation in which no truncations
in the coupled cluster basis are made. Actually they are very close, the difference being
less than 0.1 MeV, and this clearly implies that the SUB(n) truncation scheme is a very
appropriate one. We note that the calculations needed to compute this Table are much more
time-consuming than the corresponding calculations shown in Table 2. For this reason, we
could not compute with such a very large value of 7,4z, being only able to reach the value of
12. However, the same behaviour was observed at smaller values of 7,42 50 that one should
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Figure 1: The convergence of the
LTICC method for the S3 interaction
as a function of the harmonic oscillator
parameter « for different values of 7,45
The curves are labelled by the value of
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Figure 2. The convergence of the

LTICC calculations in terms of 7,4¢
for the four interactions considered.
The harmonic oscillator parameter is
the optimal value (for nmer =~ 30) in

Nmagz- each case.

not expect singnificant changes at the higher values of nq, needed to attain fully converged
results.

The main conclusion of our work is that for this light system the most important part
of the wave function may be written in the form {3";; f(:;)}[(0s)*). This form is very similar
to that used in the hyperspherical harmonics approximation. Furthermore it corresponds to
2 configuration-interaction calculation in a special basis and it is also equivalent to a small-
correlation expansion of the Jastrow form. Thus, we see rather clearly that all of these
theories are very efficient to describe light systems like #He. Conversely, the very slow
an rather non-uniform approach to convergence of all of our calculations in the harmonic
oscillator basis, even when carried out to such virtually unprecedently high levels of excitation
energy as the 607w reported here must cause grave concern about the efficacy of the standard
implementations of the nuclear shell model which aim to go beyond an effective-interaction
level of approximation.
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