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IN POLARIZABLE MEDIA

J. Arponen*, R.F. Bishop**, and E. Pajanne***
*Department of Theoretical Physics, Univer~ity of Helsinki

**Department of Mathematics, UMIST, Manchester
***Research Institute of Theoretical Physics

University of Helsinki

Abstract

The local polarization around a positron impurity is described by a
unitary operator, which defines a dynamical gauge field in interactio~ with
the particle. We study the relation of this gauge field to the elementary
collective excitations of the medium. We make contact with the generalized
coherent bosonization scheme recently introduced in the extended coupled
cluster theory, which suggests a definite parametrization of the polariza-
tion unitary operator in terms of a double similarity transformation. We
derive the exact equations for the wavefunction and for the CCM amplitudes
and show that they satisfy the conservation laws.

Introduction

The technique of pOSitron annihilation at low energies has in the last
3 decades become much used in studying the properties of condensed materials,
e.g. metals and their alloysl. In order to obtain a reliable interpretation
for the experimental findings it is of great interest to find a first-prin-
ciples theoretical description for the system composed of a positron, or
generally a charged impurity, embedded in an electron medium. Although there
exist rather advanced theoretical techniques e.g. for the case of a homoge-
neous electron gas, the extension of such formalisms to the general inhomo-
geneous case presents considerable difficulties. The two-component density-
functional theory2 (OFT) can be used to formulate the concept of the posi-
tron wavefunction3-~, but the theory still has problems of two kinds: 1)
There is no systematic way to go beyond the local density approximation
(LOA); 2) Since the DFT wavefunction (i.e. the Slater determinant of the
OFT orbitals) ~s not the true wavefunction, the amount of information,
which can be extracted, is rather limited.
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•
The problem considered in the present article has a very general nature.

It is a particular and relatively simple example of the field-theoretical
one-body problem. and the present treatment is accordingly strongly fleld-
theoretical in spirit. It was shown elsewheres and will be demonstrated
more thoroughly in the present article that the theory of an impurity par-
ticle in a polarizable medium can be formulated as a special kind of gauge
field theory. where one expresses the polarization of the electron medium
in terms of an internal gauge field A • Our approach will be applicable

~-not only to homogeneous electron systems. but also to the treatment of such
inhomogeneous problems as e.g. surfaces and the localization problem. as
well as to dynamical and transient problems.

The basic problem then consists of choosing a convenient parametriza-
tion describing the abstract internal gauge field operator and thus the
displacement or polarization of the medium. In this article we shall show
that a very convenient framework for the present problem is afforded by the
well known coupled cluster method (CCM). which has been developed by Coester.
KUmmel and coworkers in a series of fundamental papers6

-
S
• We shall use the

extended variational version of the CCM (ECCM)9-10. which allows e.g. a
consistent treatment of the dynamics and of the average values of physical
observables in terms of the linked-cluster quaSi-local subsystem correla-
tion amplitudes.

General definition of the impurity wave function

We start with a general formulation of the impurity wavefunction. For
the sake of simplicity we assume the interaction between the electron system
and the positron to be spin-independent and thus omit the spin of the posi-
tron. As in our previous article ( Arponen and PajanneS

). we define the
state of the whole system. consisting of a pOSitron embedded in the inter-
acting electron medium. to be

(1)

where b t is the positron creation field operator at the (three-dimen-rsional) position vector r. I~o> is the true ground state of the electron
system without the pOSitron. U(rt) is a unitary operator acting in the
electron Hilbert space and X(rt) can be interpreted to be the positron wave
function. because <~llbt b I~l> = Ix(rt)12.r r

In the coordinate-space representation the many-body wavefunction corre-
sponding to the state (1) is of the form ~(r;x1x2 ••·xN) x(r)~r(x1x2 ••.xN)'
where r is the positron coordinate and the {x.}.~1 N arE- the electron

1 1- ••••
coordinates, and the electron wavefunction Wr(x1x2~' .xN) is required to be
normalized for each r. Due to the strong screening correlations and elec-
tron density enhancement around the positron the electron wavefunction
Wr(x1x2 •.•xN) depends on the coordinate r in a crucial way, and therefore
X is to be understood as a quasi-wavefunction. In the independent particle
model (IPM) the r-dependence of Wr is ignored and the electron wavefunc-
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tion further represented as a Slater determinant, for which reason e.g. the
positron annihilation rate in metals becomes drastically underestimated.

Next we define the internal gauge field A (rt) = (Ao(rt),-A(rt»
jlthrough

A (rt) = iUt(rt)(a U(rt» •
jl jl

(2)

The covariant derivative D
]l

(Do,-D) will then read

D a - iA = a + ut(a U).u u u jl u

The time development of the state Ivi> is given by the usual Schrodin-
ger equation, which after premultiplication with b Ut(rt) can now berwritten as

[ 1-+ c eiatx(rt) Ivo> = - 2M D(r)2 - Ao(rt) - ZV (r) + Ut(rt)H U(rt)] x(rt)lvo> (4)

Here M and Z are the mass and the charge number of the impurity, VC is the
Coulomb potential operator (including the induced part) at the impurity
position, and He is the Hamiltonian of the interacting pure electron system.
Taking the scalar product of (4) with <vol, we get the Schrodinger equation
for X(rt)

1ia X(rt) = - [- V2
t 2M r - 2i~(rt)·V ] x(rt) + vtot(rt) X(rt).

r
(5)

The total potential felt by the positron, vtot, is

vtot(rt) = 2~ {<voIA(rt).A(rt)lvo> - iVr·~(rt)} - ao(rt)

- ZJd'x v(r-x)<volut(rt)pe(x)u(rt)lvo> + ze~ext(rt)

+ <volut(rt) He U(rt)lvo> • (6 )

In this equation vCr-x) = e2/4~£olr-xl is the Coulomb potential, peer) is
the total electron number density operator, and ~ext(rt) is the external
electrostatic potential. The third term in (6) is the interaction potential
ZVC of the impurity with the electron system, and finally, a (rt) =

u(ao(rt),-~(rt» is the average of the gauge field A
]l

(7)

The total potential in (6) looks formally simple. However, in reality
it is very complicated; besides containing terms that arise from interac-
tion with the unperturbed electron system, it also implicitly depends on
the wavefunction X itself, because the self-consistent polarization opera-
tor U(rt) is coupled to X by the requirement that the projections of equation
(4) to other states than Ivo> must also be satisfied. The equations (4)-(5)
thus form a coupled set of equations in which X depends on U and U depends
on X in an intricate fashion.
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Internal gauge field operator and path-ordered phase factor

From the definition in equation (2) we easily derive for the internal
gauge field operator A the following expression~

a A - a A - i [A .A ] ~ 0
~ v v ~ ~ v

(8)

or in component form

o and (9)

~ ~ ~V x A + iA x A O. (10)

As a side remark we should mention that in the relativistic non-Abelian
gauge field theories the gauge fields AA typically contain extra indices~(a) related to the group structure of an internal symmetry group. and the
commutator in equation (8) also involves the group commutator.

Furthermore. one can rewrite (2) to give a differential equation for
U(rt) :

~VU(rt) = iU(rt)A(rt) ( 11)

This can be integrated along some path in coordinate space to give U(rt)
as a path-ordered phase factor

m ~
U(rt) - P exp{-ifds-A(st)}

r
(12)

Here we have assumed that the impurity is localized in some finite region
of real space for which reason the operator U(rt) at any given time t can
be assumed to satisfy the boundary condition U(rt) ~ I as r ~ m.

Since the operator field U(rt) is unique by definition. it follows
that the integral in (12) cannot depend on the chosen particular path;
therefore e.g. integration around any closed path gives the identity opera-
tor I. Nevertheless. path ordering in expression (12) is vital. because we
cannot assume that the gauge field operators A(rt) commute with each other
at different points.

On the basis of equation (12). the unitary operator U(rt). as well as
the hermitean conjugate

{
r ~ ~ }Ut(rt) = P exp -i!ds-A(st)
m

can be considered as functionals of the abstract operator-valued gauge
field A • The functional dependence is local in time. but not in space.
Thus aIr the constituents of our theory. for example the potential vtot(rt)
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in the Schrodinger equation (5), are functionals of the gauge field A .
u

If the system experiences a nonzero classical external electromagnetic
field A (rt)em, we have to modify the above notation and write for the

Jl tottotal gauge field A
tot

A ~ A
u u

em
=A +eA,u u ( 13)

where +e is the positron charge (Z=1). Because the external field is now
just a c-number field we can transform equations (9)-(10) with the familiar
definitions for the magnetic induction Bern and electric field Eem to read
as

and (14 )

~ 1Atot + tot "[ tot _ tot]
at VAo - 1 s, ,A

--em- eE (15 )

If we consider external gauge transformations, which leave the external... ...
fields E and B invariant, we may assume the unitary operators U(rt) and
thus the internal gauge fields A invariant. Then these gauge transforma-

utions will be associated with the phases of the wavefunction X in standard
fashion.

Parametrization by expS theory using effective-action formalism

As one notices from equation (1) the definition of the state I~l>
contains the ground state of the interacting electron system I~o> modified
by the local deformation U caused by the impurity. The question now arises
as to what would be the optimal way to parametrize the internal gauge field
A that describes the polarization of the electron medium. One way to do

uthis systematically is to apply the ideas of the extended coupled cluster
method (EECM) of references9-11 to this system. We start by defining a ket-
state I~l> and a bra-state <~l' I for the system,

(16 )

( 17)

Here I~> is an independent particle model (IPM) state. The amplitudes Sand
S" depend explicitly on the point r, where the impurity is located. This
differs now from the previous definitions in equation (1) in the sense that
the amplitudes Sand S" are now assumed to give both the correlation between
the electrons as well as the local enhancement of charge around the positron.
This means that in the limit r ~ ~, i.e. far out of the positron, both S •
and S" (or more precisly, the components Si and S"i' see below) should
approach their values for the unperturbed electron system. Furthermore, we
have now, because the ECCM approach makes use of a double "similarity trans-
form exp(S)exp(-S"), a gauge field A that is defined as

u
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A
u

. S" -S S -S"Ie e a (e e )
u

S" -SIrie (a S)e - i(a S")
l.I 11 (18 )

which is generally no longer hermitean.

We point out that the particular choice in equations (16)-(17) corre-
sponds to definite gauge-fixing conditions for the internal gauge fields.
This comes from the fact that the operators Sand S" are genuine creation
and destruction operators and do not contain any c-number terms. Therefore
we have no freedom to impose further restrictions on the internal gauge..
fields such as e.g. the Coulomb-gauge condition V·<A> = O. One consequence
of the present. gauge-fixing parametrization is that the internal gauge
field necessarily appears e.g. in the definition of the positron current
(see next section) even if no external electromagnetic fields are present.
Because the similarity transformations are not unitary, the wavefunctions X
and X in this fixed internal gauge are not each other's complex conjugates.

The equations of motion for the positron wave function and for the
amplitudes Sand S" can be obtained in a concise9-11 manner by applying a
variational principle to the action functional

S"(rt) -S(rt)_ S(r't) -S"(r't)~ = JdtJd3rJd3r'<~le e X(rt)b [ia - H]bt x(r't)e e I~>
r t r'

A = A- 0 - Jdt fi H = <'i'l'IHI'i'I> (19)
The most convenient parametrization from the point of view of diagram

expansions involves a change from the original partial amplitudes {S.,S".}
I I

to new amplitudes {Oi'Oi}' and we write 9-11

S(rt) (20)

S"(rt) = fS".(rt)C ..• i
I I

(21)

Here C. and C.t are normalized even configuration operators, and the
I Iprimed sum means that at least one particle-hole pair is annihilated or

-created (i - 0). These new linked-cluster amplitudes 0i and 0i are now
(quasi)local fields in the configuration space and they are given in
terms of the amplitudes Sand S" (Arponen et al.lo-II)

S"<~IC.e sl~>
I

(22)

(23)

(24)

where w .. is the functionalJ-I
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(25)

We postpone the precise description of the index set {it and the summation
rules and, for the moment, keep the formalism completely general and thus
applicable to an arbitary medium. For the general calculation rules we m~st
refer to the original sources 10~11. Using the above definitions one can
now easily calculate the functionalJto,

.A- ° = ffdtd3r {iii + iixoo - iix L'~.o.} , where (26 )
J J

°o(rt) <if>IeS"S Iif>> - I'wi(rt)oi(rt) (27)

The functional deri vati ves of )I(- 0 with respect to the parameters are
0-*0 ix(rt) [ioo - iL'OjOjl+ X ,

ox(rt)

oA-o :.
[i00 iL'OjOjl --iX + - Xox(rt)

0-*0
iXXOi Hix +iX)(Oi - Si)+00. (rt)

1

oAo -iXXOi iCxx XX)Wi+ +
oOi(rt)

(28a)

(28b)

(28c)

(28d)

In the above equations and often later we have omitted the argument 1", which
is common to all the amplitudes 0., 0. and w .. The expressions above are

1 1 1_
formally local with respect to the space point 1", which appears just as an
external common parameter.

Average values of operators

Let us now present the average values of some operators of the theory
that will be needed later. We focus first on the positron density matrix,
for which we may write

i(rt)x(r't) K(r,r') where (29 )

K(r,r') <if>IK(r,r')Iif» , and (30)

K(r,r' )

[ r ~... l
E P exp -if dS'A(s)

1'"

From the fact that K(r,r) = 1 it follows at once that the impurity density
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is given by <b tb > = X(rt)x(rt). The true positron current density isr rnow obtained from the above equations

(31)

where d = iV K(r,r')1 ,r r=rfrom the polarization of the
fixing conditions.

<~IA(rt)I~>. The last term xxa/M arises
electron medium and from our specific gauge-

The positron kinetic energy <TP>. which is an interesting quantity
in positron physics, is found to be

1<TP> = -- Jd3r V·V < bt b > I2M r r' r r' r = r'

1 {_ -+[ __ ] ...• __ }= -- Jd3r VX-VX + in- (VX)X - X(VX) + n2 XX + ~ XX2M
Here the average of the gauge field, ti(rt), and the fluctuation of the
gauge field around its average, ~, are given as

"d(rt)

i r {WjVOj + (OJ - Sj)VOj and

<~11(rt).1(rt) I~> -<~IA(rt) 1~>2~(rt)

V .1/ , K(r,r') I - "d(rt)2r r r=r'

L'I'Li/Oi-VOj + L'I'[Oij + 2 L'LikOk+j] Voi-VOj

- I'I'[oi+j + I'I' 0i+k LkIOI+j] Voi-Voj• (34)

The quantity Si is defined in equation (24) and Lij is

As pointed out by Arponen et al.10 these coefficients (L..) have a well-_lJunderstood diagrammatic interpretation in terms of the o's.

The additional expectation values that one needs to calculate the
total potential of the positron vtot in (40a) are

(36)

e - e<H > = Jd3r x(r)x(r)<Hr> ,
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(38)

where we use the notation

<He> = <<I>leSII(r)e-S(r)He eS(r)e-SII(r) 1<1»
r

(39)

I S"(x) -Sex) e sex) -S"(X)1<<I>e e p (y)e e 0<1»

Equations of motion for the wave functions

The equations of motion for the wave functions X and X are straight-
forwardly obtained by writing down the stationary conditions for the action
functional in equation (19) with respect to the variations 6X and 6X •
Without going into details we only give here the resulting Schrodinger
equations, which are

iX(rt) 1 i ..• tot- - V2x(rt) - - a(rt)·VX(rt) + V (r-) x(rt), (40a)
2M M

-ix(rt) 1 - i ..• - -tot-- - V2x(rt) + - a(rt)·Vx(rt) + V (r) x(rt). (40b)
2M M

The total potential vtot is
tot i... (il2 + l:J.) e e

V (r) = - - V·a(rt) + ---- - ao(rt) - Zfd3y v(r-y)<p (y) ) + <H > ,
2M 2M r r

(41)

and vtot is identical with vtot, except for the change in sign of the
first term on the right-hand side of equation (41).

The total potential in (41) seems to contain the time-derivatives 0
and 0 through ao(rt) (cf. equation (38», but these can be eliminated
with the use of the respective equations of motion for 0 and 0 presented
in the following section (cf. equation (53» , and thus the Hamiltonians
appearing in the SchrodingerOequations (40a,b) for X and X are truly inde-
pendent of time derivatives. The problem at hand thus reverts to finding a
reasonable approximation for the sets of parameters {Oi'Oi}.

If we now combine the two equations (40) in an obvious way, and note
the definition in equation ( 31), we obtain the familiar continuity equa-
tion for the positron density pP - XX ,

o • (42)
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Equations of motion for the CCM amplitudes ° and °

The calculation of the equations of motion for the CCM amplitudes
proceeds analogously to the ideas presented in the previous section by
finding the stationary conditions for the action functional in (19) with
respect to variations oOi and OOj. In this case~ however, the needed func-
tional derivatives of H with respect to 0i and OJ are rather cumbersome,
although in principle straightforward to calculate. The variation oH can
be written in the following form

oH = fd3r jP(rt).oa(rt) + 1 fd3r pp(rt)o~(rt)
2M

- Zffd3rd3x pp(r)v(r-x)<ope(x) > + fd3r pP(r)<oHe > (43)
r r

Now we only have to express the var-ratrons oct, o~, <ope) and <oHe> in terms
of the variations 00. and 00. of the basic amplitudes and to use (43) in

1 1conjunction with the results in equations (28c) and (28d). Observing the
continuity equation (42), these two equations (28c,d) are written in the
form

~ ipP o . + 1[S. - 0.] 'V.jP (44)00. 1 1 1
1

oAo -ipP .: 'V.jP0. -iw. (45)
s 0i 1 1

In the actual calculations there will occur partial cancellations between
o~o and the first term on the right-hand side of equation (43), because
we find for the functional derivatives of this term :

o {fd3r jP.oa} = -iw.'V.jP + ijP.'Vo (47)
OOi 1 i

The equation of motion e.g. for the amplitude 0i is now obtained by
taking the functional derivative ofJtwith respect to 0i. Taking notice
of (43), (44) and (46) we finally have

, where (48 )

(49 )

where the various terms are given in (34), (36) and (37). What appears in
(48) is the convective time derivative

d
dt (50)
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which describes the time rate of change for an observer moving with the
positron. The positron velocity field is

jP( ) i Xy( r) = __ r_ = - V log ( X )
pp(r) 2M "

1 ...•
+-:-(J

M
(51)

Analogous to equation (48) we have for 0i •

P d - 6--ip - a = - Kdt i 60
i

We can use equations (48), (52) and (33) to eliminate the apparent time-
dependence of (Jo(rt) in Eq. (38) and obtain

(52)

1 -+P... 1 \' {_ 15K 15K(Jo(rt) = + -p J .(J - -p t: w. --- + (s. - 0i)p p 1 60
i

1 60i
which now guarantees that the Hamiltonians in equations (40a-b) are truly
independent of time derivatives. We stress that all the equations obtained
above are exact. To be able to calculate the functional derivatives of K,
we must further specify the Hamiltonian of the medium, as will be discussed
later on.

Connection to the Lee-Low-Pines transformation

In addition to the present impurity problem there exist many others,
like e.g. the polaron problem and the meson-nucleus system, which all have
typical common features. Therefore a method introduced for one problem
often can be applied also in the other cases. A particularly convenient
trick of transforming to the impurity rest coordinate system was introduced
for the polaron problem by Lee et al. (LLP)12. Two of the present authors
used this transformation earlier for "the probiem of a positron in an homo-
geneous electron gas13• The LLP transformation is performed by the unitary
operator

[ ...• "e -+P]ULLP = exp i(P - P )·r , (54 )

where pe is the total-momentum operator of the medium (electron gas),
rP the position operator of the impurity, and P is a constant vector, which
represents the total momentum of the translationally invariant eigenstate
of the total system. The main effects of this transformation are: 1) The
impurity coordinate rP becomes a "dead" variable and the impurity can be
regarded to be fixed at e.g. 1P= 0, 2) The Hamiltonian is reduced to
describe only the medium in the presence of the fixed impurity center, but
it obtains new recoil terms describing the impurity-induced interactions
between the degrees of freedom of the medium.

The Lee-Low-Pines transformation to the impurity-centric description
is a global one, and ~ssumes global translational symmetry. Looking
carefully at the equations of motion of the present article, it can be seen
that the representations (1) or (16)-(17) for the total wavefunction
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actually perform a local (or differential) LLP transformation in which no
global symmetry needs to be assumed. The transformed Hamiltonian is
essentially the K of equation (49), -and the term containing the fluctuation
A corresponds to the recoil terms. If the impurity density pp(r) = x(r)x(r)
is constant, it factorizes away from the equations of motion (48), (52) for
o and 0, and the impurity position parameter r remains a constant external
parameter. If, however, the density pP is not constant, like in the cases
of a real lattice, nonstationary state, or spontaneous trapping, new terms
containing VIOg(pP) arise in the equations for 0 ,0 from the variations
of the recoil term. These new terms cannot be obtained - at least easily -
by the global LLP transformation.

It is interesting to note that from the point of view of the medium
the positron enters only through the hydrodynamic variables pP and jP
describing classical average flow. The same is true in the opposite direc-
tion; the quantities affecting the impurity wavefunctions X, X can be
interpreted hydrodynamically to be due to the physical fields and fluctua-
tions describing the medium. The relative phases of the basic amplitudes
X,X or 0,0 are combined within each subsystem (i.e. the impurity vs. the
medium) into such physical quantities, which have classical meaning.

As indicated above, the differential LLP transformation is adequate to
describe spontaneous breaking of translational symmetry like in the case of
spontaneous trapping. There have been suggestions that pOSitron trapping
might occur in low-density electron gas, but to our knowledge the present
expectation is that it does not happen in the metallic density regime.

Generalized coherent bosonization and collective eigenmodes of the medium

Several authors have used the CCM to study the homogeneous electron
gasl~-19. The extended version of the theory (ECCM), however, has not yet
been applied to this problem, and therefore we shall remain rather sketchy
about the general formalism, and devote more attention to a few limiting
cases.

As is pOinted out in references 10-11, the exponential similarity
transformations of the ECCM theory can be regarded as a definite
bosonization scheme, where the guidelines are sought from a careful
analysis of the structure of perturbation diagrams. In contrast to the
conventional bosonization schemes (like e.g. the Sawada bosons 13,17),

which are based on isomorphisms of the Lie algebras, the ECCM bosonization
is rather aimed at entirely eliminating the quantal interactions of the
bosons to the ultimate extent that the bosons become classical in a
definite senselO-11

the
and

The collective eigenmodes are found by expanding the average value of
Hamiltonian in powers of 00.,00. around the stable ground state,

1 1by diagonalizing the leading (second-order) terms of the expansion. The
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result is formally a "Ginzburg-Landau" Hamiltonian

(55)

The deviations 00., &0. are linear functions of the normal-mode ampli-_ 1 1

tudes c1' C1 with coefficients that are given by the eigenvectors of the
dynamical matrixlO. The dynamics is still given by the equations

(56)

and the amplitudes C, C can be considered to be the average values of
ideal boson operators in the (bi-)coherent states of an ideal boson Hilbert
space.

The average values of all other operators can as well be expanded in
powers of C and C. It is obvious that the leading (quadratic) terms of H
determine the linear response of the system to arbitrary small perturbations.
The higher-order terms (CCC, CCCC, ••) are related to large perturbations
and non-linear phenomena. By the aid of the Poisson-bracket relations of
Ref. 10 it is easy to show that the above formalism exactly satisfies all
conservation laws not only in the linear but also in the non-linear regime.

Coming back to the pOSitron impurity problem, we find that the devia-
tions C and C become functions of the positron position r. For instance,
the electronic energy becomes

Assuming that the medium would be in its ground state in the absence of the
impurity, the amplitudes then behave, for a fixed index 1, as C1(r),C1(r) ~ 0
in the physical sense as r ~ 00. For an accurate description of the electron
density enhancement the higher-order terms of the Hamiltonian, however,
turn out to be important in the metallic density regime and at lower
densities1,5,13.

The role of the interaction (Vep) is vital, because it is the
driving term of the polarization of the medium; without it there would be
no r-dependence in the amplitudes o.(r) and o.(r), and the recoil ~

ellwould be simply zero, and (H ) - EO. The full expression

where a t, a are the electron field operators, gives rise to thex xdiagrams of Fig.1. Analogous diagram representations can be drawn for (He)
and the recoil term. In constructing such expressions it will be useful to
express the average value of a product of operators in terms of low-order
functional derivatives of the average values of the factorslO.
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Fig.1 The ECCM diagrams for the electron-positron interaction. The small
black triangle corresponds to the positron density factor x(r)x(r); the
dashed line is the Coulomb interaction, and the dotted lines are a mnemonic
showing that the amplitudes 0, 0 and L depend on r. The wavy lines denote
other possible electron-hole pairs.

Summary and discussion

The general formalism presented above is an exact description for the
positron motion in the polarizable medium. It satisfies the conservation
laws, like e.g. the continuity equation, and the total energy conservation.
For example, the slowing down of a fast positron in this picture takes
place through emission of "classical" dissipative wave motion, or elastic
waves, which disappear to infinity in a large system.

In the present article we have not considered specific approximations
to the exact equations. The simplest truncation, SUB19, would correspond to
the time-dependent Hartree-Fock approximation. This approximation becomes
exact in the uniform limit, which is the limit of high electron denSity.
The proper eigenexcitations are then the Sawada bosons, which in the low-
momentum regime can be treated classically and thus identified as the
generalized coherent bosons. The other interesting limit is that of low
electron density. The extreme case is the two-body problem where the ground
state is the bound positronium (Ps) atom. Also this case is accurately
treated by the SUB1 truncation. Now the non-linearity of the equations must
be fully considered in contrast to the uniform limit where the linear-
response treatment is essentially sufficient.

As was emphasized earlier, all the observable properties of the system
are in the ECCM method expressible through the quasi-local, linked-cluster
subsystem correlation amplitudes {o,o}, which amplitudes may be interpreted
as the average values of generalized coherent boson operators acting in a
fictious ideal boson Hilbert space. The formalism preserves all the micro-
scopic information in contrast to e.g. the denSity functional theory, where
the obtained DFT orbital functions do·not have close bearing to the true
correlated many-body wavefunction.

The present representation of the many-body wavefunction was shown
above to correspond to a local or differential form of the well-known
Lee-Low-Pines transformation into the impurity-centric coordinate system.
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As a consequence of this, the equations for the medium contain recoil
energy terms, which correspond to impurity-induced interactions between the
degrees of freedom of the medium. The advantage of a local description is
that it can be used in a conceptually simple way for translationally non-
invariant systems like e.g. real metals and localization problems.

The formalism leads to separate, but coupled equations of motion for
the impurity and for the medium. From the point of view of each of the
subsystems, i.e. the impurity and the medium, the other subsystem enters
only through classical or hydrodynamical variables. For the impurity system
the theory provides a hydrodynamically complete and consistent description,
in which all the conservation laws are fully satisfied.
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