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Abstract: The coupled cluster [or exp(S)] formulation of quantum many-body theory is
flrst extensively reviewed. It is then applied to the general problem of pairing corre-
lations within a many-fermion system. The method is illustrated by restricting ourselves
to the exact calculations that can be performed within the various generalized ladder
approximations. It is shown how the formalism provides an efficient and unified frame-
work in which to describe all aspects of pairing at the same level of approximation.
Possible extensions to deal with composite clusters of more than trIOparticles and to
incorporate the effects of the collective excitations, are sketched.

I,1. Introduction
i Many-body calculations on the scattering and
binding properties of constituent pairs of fermions
imbedded in a large, typically infinite, background
of identical particles, have historically played a
crucial role both in understanding the observed pro-
perties of many systems of condensed matter [IJ, and
also for developing and understanding the various
formulations of many-body theory itself. Furthermore,
bound pairs within the many-body medium serve as the
simplest example of the more general problem of the
existence and nature of bound clusters within many-
body systems, and the resulting effects of such
clustering on the macroscopic properties of these
systems.

To discuss pairing microscopically, the key ele-
ment in one type of formulation is some sort of
effective two-body scattering amplitude (G-matrix,
T-matrix, etc.). Although not open to direct physical
observation, such a pair amplitude is then usually
used in one of two ways; namely either as an effective
link with thermody~amic and average single-particle
behaviour [2J, or in microscopic perturbation theories
as a new lowest-order element in a useful if not vita 1
rearrangement of the perturbation series [3]. Proba-
bly the best known and most successful application of
such ideas was the identification of Cooper pairs [4]
as bound electron pairs within a many-electron system,
andxhe ir responsibi 1 ity for the phenomenon of super-
coriduct ivity.
, Pairing correlations within a many-body system
have most frequently been discussed within the context
of many-body perturbation theory for the (non-degener-
ate) ground-state energy. Such calculations have
largely fallen into two main types. On the one h~nd
there are those calculations using the time-indepen-
dent formalism, which can conveniently be represented
via the linked-cluster expansion of Goldstone [3J in
the diagrammatic langua~e of (time-ordered) Goldstone
diagrams. On the other hand there are the calculations
which employ time-dependent perturbation theory, which
usually start from the Green's function formalism of
Galitskii and Migdal r5], and which can in turn be
formulated in the diagrammatic language of (non-time-
ordered) Feynman diagrams. Relations between the two
approaches have been discussed by the present author
[6J, particularly at the level of their (different)
respective ladder approximations discussed more fully
below.

From the physical viewpoint, the existence of
bound or composite clusters of fermions within a many-
fermion system is of considerable importance, since
under suitable conditions any such even-numbered comp-
lexes (or composite bosons) may condense, leading to
a possible phase transition in 'the system. In this
context it is useful to recall the classification of
composite bosons by Kohn and Sherrington [7J into two
types. Thus, Type I comprise the complexes of an even
number of real fermions (particles) and/or an even
number of 'their corresponding holes; and Type II com-
prise the bound complexes of particle-hole pairs, more
generally known as collective or giant excitations.
Type I compOSite bosons are exemplified by 'He atoms
or Cooper pairs; while phonons, plasmons and the giant

,resonances in atomic nuclei are examples of Type II.
Kohn and Sherrington particularly stressed the impor-
tant point that when a system of Type I bosons con-
denses the resulting macro-state exhibits ordering in
momentum space or off-diagonal long-range order
(ODRlO) in coordinate space, which in turn leads to a
superfluid-like phase. Conversely, the condensation
of Type II bosons does not lead to ODlRO, but rather
there is a change of long-range order in coordinate
space (diagonal long-range order). Typical examples
are the condensation of the Type I Cooper pairs into
the superconducting phase; and the condensation of
Type II excitons in the so-called excitonic phase of a
photoexcited semiconductor, in wh ich the excited
electron-hole droplets become' unstable against the
formation of a coherent condensate of bound electron-
hole pairs (or excitons). Another, perhaps less fami-
liar, example of Type II condensation occurs in a cry-
stal when a macroscopic number of phonons undergo Bose
condensation into a single mode. This leads to a dis-
tortive phase transition of the crystal and the appear-
ance of a superlattice.

In this work we start from the premise that one
of the most interesting general problems ,in modern
quantum many-body theory is the interplay between, and
the mutual effects on each other of, the many-body
collective excitations and other collective aspects of
the system's behaviour on the one hand, with the 10l~-
lying single-particle; two-particle and few-particle
excitations on the other hand. In the above language,
one aspect of this problem is now cast as the inter-
play between the two types of composite bosons that
may co-exist in the many-fermion system. s+nce it is
also generally true that long-range interactions tend
to accentuate the collective excitations, whereas
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shiir:F"range-fnterilctions'tendto accentuate the few-
body excitations, the general problem can also be
interpreted in terms of the interplay between the
long-' and short-range correlations, both of which seem
to be present to a comparable degree in such real sys-
tems of interest as nuclear matter and liquid 3He.

One of the main aims of the work of which the
present paper forms an introductory part, is to imbed
the general problem just outlined in a many-body for-
malism which is both powerful and wide enough to
encompass all aspects of it, and wh ich we hope to
demonstrate is uniquely equipped to provide practical
solutions. The proposed formalism is the exp(S)
method as it was originally called or, to give it its
more modern name, the coupled cluster formalism (CCF)
of Coester and Kummel [8J. In the present work we
focus initial attention on.Type I pairing by formula-
ting the generalised particle-particle and/or hole-
hole "ladders" within the CCF. In later work we
intend to incorporate also all aspects of particle-
hole pairing (both the particle-hole "bubbles" or
"ring diagram" terms and the particle-hole "ladders"),
self-consistent self-energy effects for both the par-
ticles and the holes, exchange (antisymmetry) and'
other effects outlined below. The philosophy of the
present work is thus complementary to that already
forming the basis of a series of articles by the
present author and his co-author [9-11]. There, we
addressed essentially the same problems but initial
attention was focussed in the first paper [9J (here-
after referred to as I) on Type II pairing by first
formulating within the CCF the generalized partic1e-
hole "bubble" or "ring" terms. These terms are of
particular importance for example to the electron
correlations in the one-component Coulomb plasma (or
"electron gas"), and are responsible for the plasmon
modes. In a subsequent paper [lOJ, the full power of
the CCF was then brought to bear on the ground-state
(g.s.) correlations in the one-component Coulomb
plasma at low and metallic densities with remarkable
success. In fact, by comparison with the essentially
exact Green's function t~onte Carlo results for this
system, our results over the entire metallic den.ity
range were seen to be accurate to the 1% level and
gave what was probably the best available microscopic
description of this system. The present paper should
now be viewed as analogous for particle-particle and
hole-hole ladder terms to what was done in I for the
particle-hole bubble terms.

In Section 2 we give an essentially heuristic for-
mulation of the g.s. CCF, referring the reader to I
for details. The extension of the CCF to excited
states (e.s.) given by Emrich [12] is then sketched in
Section 3. A comparison and further discussion of the
9.S·: and e.s. CCF methods is given in Section 4. In
Section 5 we then discuss the formu lat ion of (Type II)
pairing correlations and composite pairs within the
CCF and outline the exact analytic results obtained
for a particular model interaction of interest. Fina-
lly we discuss in Section 6 what can be concluded from
these preliminary investigations, and allude to future
extensions of the work.

2. Ground-State Coupled Cluster Formalism
!
! We consider ~ system of N identical fermions

whose mechanics is governed by the nonrelativistic
Schrodinger equation with a hamiltonian consisting of
kinetic energies and two-body potentials V,

(1)

2.

where the operators a t are a set of fermion creation
operators for the complete and orthon.ormal single-
particle (s.p.) basis states [o > '" a TIO>, with 10>
the vacuum state. The quantities £aa represent the
s.p. kinetic energies, and the notation

la ••• a > '" la > ••• la >
I n 1 n

has been introduced for a direct product state. Fur-
thermore, the subscript A on the ket state denotes
explicit antisymmetrization (without nonnal ization),
namely P

Ia ••• a >A '" L ( - 1) a Ia ••• a >
I n P{a} 1 n

at .•• a t 10>
°1 . an (2)

where the sum extends over all (n!) permutations of
the indices a, ••• a and p. is the signature of
the permutation. n a

The usual starting-point for the g.s. CCF is a
formally exact decomposition of the exact many-body
g.s. Schrodinger equation,

HI'f> = EI'!'> (3)

in terms of a set of nonlinear coupled equations for
the so-called correlation amplitudes. The formalism
has already been discussed in some detail in I. In
terms of a suitable model, or uncorrelated, N~fermion
normalized wavefunction I~>, the (usual linked clus-
ter) CCF ansatz for the exact, correlated, N-fermion
g.s. wavefunction l'f> is made,

(4)

and we suppose only that I~> is such that it has a
non-zero overlap with I'!'>,and in particular we con-
sider I'!'>normalised to 1<1» by <~I'f> '" 1. Al-
though it is quite possible to start from more comp-
licated model states, we deal for present purposes
only with those of a single Slater determinant (or
"filled Fermi sea") form,

I~> = at ••. a t I0>
\\ \iN

(5)

Henceforth we use the standard notation that s.p.
labels v . indicate states "normally occupied" in lop>
and which1hence correspond in the usual terminology
with "hole states" when vacated; s.p. labels Pi ind-
icate states outside the Fermi sea (i .e., "normally
unoccupi ed" by reference to 1<1», or--,rpartic1e sta tes"
;:~eo;~rb:l~c~~~~:~~, and s.p. labels 0i (and S,y,o)

In an introductory work such as this, it is per-
haps useful to give a heuristic and pedagogical inter-
pretation of the particular exponential form (4). since
this is absolutely central to the whole CCF approach.
For such non-degenerate ground states considered here
as those of closed-shell atoms, for example, it seems
obvious that an important part of the electronic wave-
function is the Slater determinant I~> of occupied
states. The underlying physical picture here is of
course the extreme simplification of each electron
moving independently in a potential well produced by
the nucleus and the averaged motion of the other elec-
trons, which themselves move independently except for
the restrictions imposed by the Pauli principle. Due
to the Pauli principle each electron is in a different



S-.-p-:-eig~;rt;te (~~~~bital") of this mean potential,
and for the N-body g.s. in this extreme picture, we
envisage the N lowest s.p. states being filled from
below, as indicated in Fig.l(a), up to some Fermi
level of energy £F' which is just the st~te I~>. It

•
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Figure 1: Schematic representations of (a) the
filled Fermi sea state I~> and (b) a
correlated pair, (c) two independent
correlated pairs, and (d) a correlated
trip1et,.excited out of it.

is of course precisely this picture which forms the
basis of the well-known and successful Hartree-Fock
theory.

But of course this picture of the filled Fermi
sea is still far from complete, since the particles
will in general mutually interact and hence do not
move independently from each other. Having already
built the statistical correlations into I~>, we now
attempt to correct systematiCally for these extra
dYnamical correlations. The first correction one may
imagine is from two particles mutually interacting,
which thereby 1ift themselves 'out of the Fermi sea
into previously unoccupied orbitals, as illustrated in
Fig.1(b). This process is described by some operator
Swhich acts on the wavefunction I~> to produce
t~e wavefunction S21~>, which describes two parti-
cles outside the Fermi sea (and consequently two holes
inside it), and all remaining (N-2) particles in their
previous orbitals. Of course, it may also transpire
that two pairs of particles do this ca~leteZy inde-
pendentLy, as illustrated in "Fig.l(c). This process
is clearly described by applying the operator S2
twice, but with the proviso that we must include a
statistical weightirg factor (or multiplicity) of
(2!)-1 to avoid counting the pairs twice. This pro-
cess of independent pair excitation out of the Fermi
'sea may be continued to obtain a contribution
(m!)-lS2ml~> for the amplitude describing the simul-
taneous excitation of m independent pairs. \~ethus
get the total amplitude for the excitation of all pos-
sible numbers (including zero) of independent pairs as

I~5 ml~> = exp(5 )I~>
o m. 2 2

I Continuing in this way, we next imagine the simul-
taneous excitation of a correlated triplet of parti-
cles, as in Fig.l(d), which we describe by a contribu-
tion 5 1$> to the total exact wavefunction I~>·
Similarly there will be a contribution (n: )-1 S/I~>
from the simultaneous excitation of n independent.
correlated triplets. Next, and most importantly, we
can also imagine the simultaneous excitation from the
Fermi sea of rn..... pairs and n triplets. all indepen-

3.

dently of each other, with an amplitude
(m!n!)-lS2mS3nl~>. Here it is crucial to realise
that the ordering of the product of operators S2 and
S, is immaterial, since as a consequence of the ind-
ependence of the processes they describe, the opera-
tors commute. Summing over all possible values of m
and n then leads to the amplitude exp(S +S3) 1$>
to include the total effect of all pair ana triplet
excitations. Proceeding in this way with the excita-
tion of clusters of 4,5,··· N particles we arrive
at a wavefunction exp(S2+S3+'" +SN) I~>. .

And yet, even this is not quite the end of the
story. It may still occur that during the interac-
tion of any subset of particles only one of them is
finally lifted out of the Fermi sea, whereas the
others fall back inside. Any number of single parti-
cles may also thus be independently promoted out of the
Fermi sea. As before one is led to describe this
process by an operator exp(Sl)I~>, where 51 acts
on the state II> to produce a single "particle-hole"
excitation on top of it. It is of interest to note
that this particular case has a special interpreta-
tion provided by the well-known Thouless theorem
which states that the most general determinantal wave-
function I~'> not orthogonal to a given Slater
determinant I~> has the form I~'> = exp(SI) I~> for
some suitable choice of one-body operator SI' In
other words, the effect of al lowi nq single particles
to be independently elevated above the Fermi sea is
equivalent to changing the s.p. orbitals or "shell-
model basis states" that make up the Slater determi-
nant. One may even think of choosing the "best orbi-
tals" by a criterion which expresses that II> should
be as close as possible to the exact I~>. If we
choose for example to maximise the overlap integral
I<~I~>I, this fairly readily leads to the choice.
SI = O. Furthermore, if higher correlations are also
ignored (by setting S2 = S = .,. = 0), this "maxi-
mum overlap" condition for l.he s.p. orbitals becomes
equivalent to the Hartree-Fock theory, although more
generally the correlations induced by the operators
So with n > 1 also influence the optimal s.p. ba-
S1S thus defined. This discussion has some real
bearing on later approximation schemes. Thus in
general it is desirable to make I<II'!'>I large, or
what is the same, to make 5 small in some ill-
defined ~but intu~tively obvious sense. Although the
choice of I~> may be strictly irrelevant if one
includes aZZ higher correlations induced by the oper-
ators 5n with n = 2,3 ••.. N, this is not true
when one approximates. Clearly, the better is the
choice I~>, the better is likely to be a low order
approximation in terms of the operators Sn'

In any case we have obtained the natural exact
decomposition of the N-fermion wavefunction of Eq. (5),
together with a physical interpretation of both the
exponential form and the individual operators Sn'
From the discussion it is clear that the operators Sn
only have matrix elements between n-particle and
n-hole s.p. states, and hence have the form,

S - 1 ~ at ..• a t <p "'p IS Iv "'V >An - Cn,') 2 L p p n n np "'p 1 nIl
\J 1" •• vn

1 n (6)

Apart from using the exponential form of Eq.(4)
as its basis, the other most fundamental idea of the
CCF is to compute the operators S , or in practice
their matrix elements, directly. ?n this it funda-
mentally differs from such alternate methods as, for
example, the configuration-interaction (CI) method and,



to"i\"'iesserdegr-ee, the perturbation-theoretic methods.
The ~orm~r differs, and ultimately suffers, by using
comb1nat1ons of clusters instead of the clusters des-
cribed by the operators 5n themselves, with the
result that numerical instabilities arise for large
particle numbers N. The latter method depends by
contrast much more strongly on the smallness of some
effective coupling constant than does the CCF.

To exploit fully the concepts built into the CCF
one further technical trick is needed to avoid the '
mixing of "small" and "large" terms that otherwise
would so easily lead to numerical instabilities (of
the sort alluded to above in connection with the CI
method) even in exact calculations, and disastrously
wrong results in approximate calculations. We
attempt now to describe the physical ideas behind this
importan~ point. As N becomes large, the energy E
asymptot1cally scales as Na, for some positive
index a. (e.g. a = 1 for homogenous systems to
make. E an extensive variable; a = 713 for atoms,
as g1ven by Thomas-Fermi theory). This produces terms
that scale as Na in the g.s. 5chrodinger equation
(3) -- these are the" 1arge" terms above. But there
will also be other "microscopic" (or "small") terms
which are practically independent of N. That this
must be so can be intuited from the fact that for most
r~asonab~e inte~action hamiltonians, a given particle
w1ll typ ically mterac t wi tb only a few (i.e., a mi c-
roscop1C number of) immediate neighbours at a time.
(Admittedly the picture we have in mind here does
depend on the bulk phase of the system insofar as it
seems more appropriate, say, to a fluid than to a
solid.pha~e). Thus, al~hough s~mming up all energy
contrlbutlo~S from all 1nteract1ng clusters (in the
sense ~escr1bed .by.the.correlation operators, 5n)
must y1 e~d .~~ontr1 but ion of order Na, the dynami cs
of e~ch lnd1~1dual .cluster is governed in the main by
the 1nteract1ons w1th only relatively few others --
and hence in the equations of motion this must show up
as a "microscopi c" effect.
: The formal trick already mentioned that automa-
tically performs this separation of large and small
terms or, equivalently, removes the "unlinked terms"
is to write the 5chrodinger equation (3) in the equi~
valent CCF form

-s 5e _He 1<1» = E I <1» • (7)
The operator product on the left-hand side of Eq.(?)
has the we11-known expans ion in powers of S,
. -5 S 1
! e He =H+CH,5J+"'+-C"'C[H,S] S]···5]

n! "
(8)

inv'olving the repeated commutators of H once with S
an arbitrary number of times. For a given hamiltonian
~on~aini~g~ say, the sum of up to m-body potentials,
1~ 1S tr1v1al to see t~at the otherwise infinite expan-
510n (8) actually termlnates at the term involving at
most 2m 5-operators. When the S-operator is in turn
expanded into its n-body pieces 5n as in Eq.(4), the
mutual commutati vity of these pieces then immediately
imp~ies ~hat all remaining terms are "linked" (to the
h~m1ltonlan) and therefore microscopic, with the excep-
t10~ only of t~ose terms that contribute to the energyE ltself to Yleld equality with the right-hand side
of Eq. (7).

The CCF equations
solves are now readily
either the model state
n-ho le states,

+ •••

for the g.s. that one actually
found by projecting Eq.(?) onto

\<1» or onto those n-particle/

I<l>n{P. v l> _ at ••• a t a ••• a 1<1»
______ PL....._ ~~_"vn v 1

(9)

4.

built on it, with n ~ N. The states 1<1» and 1<1> >
clearly span the entire Hilbert space when n runsn
over 1 to N and when the labels p. and v· in
Eq.(9) run over the entire s.p. basis for pardcles
and holes respectively. Thus the resulting equations,

<<I> Ie-SHeS I!I>> E (lOa)

o n = 1. ••• • N. (lOb)

which are.just the g.s. coupled cluster equations, are
fully equ1valent to (and just a cluster decomposition
of) the g.s. N-fermion 5chrodinger equation. Further
evaluat~on of Eqs: (10) is straightforward although
algebra1cally tedlous. It has been discussed in some
detail in I, and the resulting equations for n = 1
and 2 have been explicitly derived.

The N equations (lOb) now represent a truly
mic~o~cop~c decomposition of the g.s. 5chrodinger
equatlon lnto a set of coupled equations which des-
cribe the dynamics of the n-body clusters for n = 1
"', N, in which the energy E and other macrosco~
pic terms never appear. The equations are int~insi-
cally nonl-inear as we have seen, and for the hami lto-
nian of Eq.(l) with pairwise interactions only, this
nonlinearity is expressed via powers of the matrix
elements of the'operators 5i no higher than the
fourth; Also, the structure of the nth equation
(for matrix ele~fints of Sn) is that it is coupled
to the other m equations for all m ~ n+2. By
formally iterating these equations in powers of the
~nt~r~ction potential, on~ ma~ immediately regain the
1nd1v1dual terms of the tlme-1ndependent perturbation
theory approach expressed in terms of the linked-
cluster expansion of Goldstone C3J. We st~ess however
that it is neve~ necessa~ for the actual solution of
our equations (10), and indeed the process may well
diverge in practice. Expressed differently, what the
CCF achieves in this'way is a rather natural grouping
of perturbation-theoretic terms (or Goldstone diag-
rams). While conceptually very simple, as we have
been ~t pains here to show, it is no surprise that
even.1n very low order cluster equations (truncated
as d1scussed below), the number of equivalent
Goldstone diagrams necessarily gro~ped together is
enormous -- in fact infinite, of course -- and, as
stressed above, not easy to otherwise intuit in
advance.

If it were possible to perform exact calculations,
one would of course never need to rely on the tech-
niques described here. The real power of the method.
becomes apparent however as soon as one needs to
approximate -- as one must ihevitably do in realistic
cases. The mere fact that the exponential form of
the wavefunction has real physical meaning, now read-
ily lends itself to approximation schemes based on the
phys t cs behind it rather than on mathematical conven-
ience or other such spurious reasons. For instance,
one may argue that for relatively "low-density" and/
or relatively "weakly-interacting" systems, only com-
paritively rarely do more than n mutually correlated
particles lift themselves simultaneously out of the
Fermi sea, where we have in mind that n may be as
low as 2 or 3. This results in the so-called
"natural" or SUBn approximation hierarchy in which
all Sm-operators with m > n are set to zero, and
the remaining n coupled equations (2.1Gb) are
solved as accurately as possible. This approach has
proven immensely successful for atomic and molecular,
and nuclear systems.

We point out here that even at the 5UB2 level
(to go bey?nd the SUBl level w~th SI = 0, say, and
the result1ng Hartree-Fock orbltals), an immense
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iiiiiciii-ntorphyslc-s-is--retained.For example, the SUB2
approximation contains as .d~astic sub~app~oximations.
to itself, such other fam111ar approxlmatlons as: (1)
the Bethe-Go1dstone approximation which sums the 50-
called particle-particle "ladder diagrams" that des-
cribe the scattering of two particles inside the many-
body medium; (ii) the analogous Galitskii ~pproxima-
tion which also includes all hole-hole and m1xed
particle-particle/hole-ho!e ladder terms .(~nd which is
further discussed in Sectlon 5); and (111) the
random-phase approximation. The SUB2 approximation
also contains terms which incorporate the effects on
the intermediate scattering states (in the above cases
for example) of the fact that the particles and holes
both move in the (self-consistent) potentials due to
the rest of the medium. Thus, also (iv) the whole
of the usual Brueckner-Bethe-Goldstone theory applied
so often to nuclear matter and finite nuclei, for
example, is imbedded in SUB2 approximation too. Fur-
thermore, the SUB2 approximation is richer even than
the fuLLy seLf-consistent uni?n of all of ~he above
approximations and effects: 1t also conta1~s classes
of (v) particle-hole ladder terms and (Vl) extra
exchange effects to preserve overa 11 antisymmetry .:
For further details however we must refer to the llter-
ature, and particularly to I. ~Jestress only that
SUB2 approximation contains all possible pairing cor-
relations, of the most general type, and the only
approximation made is of ignoring their ~oupling to
higher correlations, and hence to compos1tes of more
than two particles.

3. Excited-State Coupled Cluster Formalism
The g.s. formalism already described presumably

-may be employed not only for the g.s. but also for all
of those states with the same relevant quantum numbers
(or imposed syn~etry) as the g.s. that have non-zero
inner product with the model state .I~>. We no~e t~at
Eqs. (4) and (6) automatically provi de a norma lt zation
<~ I'1'> ,,1 (and since <~ I4:> " 1, hence <'!'I'!'> f 1) ..
To proceed, we may therefore with no loss of g~neral1ty
restrict ourselves to excited states 1'1'2,> wh ich are
orthogonal to both I~> and I'!'>. Emrich [12] has
then shown that an appropriate (linked) choice of
excited-s tate (e. s.) CCF wavefuncti on is,

(11 )

Iv ···V >A a ••• a .1 It v v
n 1

Each non-zero vector S (t) I~> is assumed to have a
non-zero inner product 'l.ith 1'1'$/' .

The forma 1 deri vation of the e.s , CCF equa tlons
is now again easily performed. The e.s. Schrodinger
equation,

(12)

with excitation energy Wt above the 9.S. energy E,
is first combined with its 9.s. counterpart (3), to
give

(13)

A similar procedure as in the g.s. case then leads to
the linked CCF e.s. equations,

5.

W <p "'p IS (t) I1. 1 n n

'Iv """V >A' (14)
1 n

using the notation of Eq. (9), as the counterparts of
the g.s. equations (lab). We note that equations (14)
take the form of a coupled set of linear eigenvalue
equations for the e.s. subsys ternamp 1itudes, ~Iith the
same (excitation energy) eigenvalue w

t
in each equa-

tion, and where the g.s. so lution 1S assumed already
known so that the g.s. correlation amplitudes are in-
put to Eqs. (14).

Just as in the g.s. case, the e.s. Eqs. (14) also
have to be truncated to be useful in practice. As an
obvious extension of the g.s. SUBn scheme, for example,
we mention only the SUB(m,n) scheme where the n lowest
g.s. equations (lab) and the m lowest e.s. equations
(14) are solved in the approximation that the operators
S (t) and Skare set to zero for all k a 1.m+k n+

4. Further Discussion of the CCF
Continuing the discussion of the last Section, an

obvious point that arises inlmediately is the choice of
"compatible" (m.n) pairs. For example, one would like
to know a priori whether for a given n, higher values
of m in this SUB(m,n) scheme necessarily lead to better
approximations. Such questions are difficult to answer
without further information. Very recently, it has
however been shown [13] that by imbedding the theory
of linear response within the CCF, a set of exact "sub-
sum rules" can be derived. These are essentially clus-
ter decompOSitions of the more well-known energy-
weighted sum rules for the moments of the u~ual dynamic
liquid structure function, and it is shown 1n Ref. ~13]
how they can be used as a bridge between the otherwlse
essentially disparate g.s. and e.s. formalisms presen-
ted above. Work is currently in progress to explolt
these new tools.

At this point, we recall that the only restric-
tions (and differences) imposed on the g.s. and e.s.
formalisms are (i) <~I'I'> f 0, and (ii) <~I'!'f>" O.
We have never demanded that I~> be approximate y
9iven by I~>, i.e. that the matrix elements of the
S -operators are small, although as already observed
i~ Section 2, the g.s. calculation is likely to con-
verge best if this is true. It is important to note
that 1'1'> need not in fact be the true ground state
of the system. The state If> may be any state for
which <~I~> happens to be nonzero for the particular
model state I~> chosen as starting-point. This is a
simple but important point for our present purposes,
since the calculation of the true g.s. may well turn
out to be more complicated than for some other exact
state I'!'>. Similarly, it may al~o transpire th~t cer-
tain ex~ited states are more readlly calculated 1n the
form stt) If> of Eq. (11) for I'!'> not the true g.s.
but some other exact state. In general, of course. t t
will not be known whether the state If> calculated
as in Section 2 with a given I ~>, is indeed the true
g.s. or not. In such cases, Emrich [12] has observed
that one can use the e.s. formalism of Sectio~ 3, and
particularly Eq. (14), to seek for states I'!'tt» with
"negative excitation energy" (ol1. < 0). That such
states arise in the e.s. rather than the g.s. forma-
lism, is purely an artefact of our initial state I,'~,
and we shall henceforth call them "de-excited states".

It is clear from the above description that the
many-body states generated by our formalism will depend
quite crucially on the choice of zero-order state I~>.



,-----------"--- --and indeed this choice will affect whether the given
exact state is to be generated by the g.s. or e.s.
formalism, as we have just seen. The choice of I¢>
will also be bound up in practice with the realization
that the whole scheme is likely to work best when the
matrix elements of the Sn-operators are small. In
turn, the best choice of I¢> will depend not only on
the system but on which particular phaoe is under con-
sideration. This point has been particularly stressed
and well-illustrated by Zabolitzky [14J. Thus in infi-
nite systems we can define (at least) such four differ-
ent phases as solid, fluid, superfluid, and clustered.
The first three of these are familiar, whereas examples
of the clustered phase are the low-density phase of
liquid 4He which comprises droplets of several 4He
atoms forming a fluid, or the low-density alpha-matter
phase of nuclear matter wherein the nucleons bind into
(alpha-particle) 4-composites, which form a fluid.

In general, for given density, it is not known
beforehand which phase is energetically favoured to be
the true g.s., and indeed this is one of the primary
questions for a full many-body treatment. Usually one
simply makes either an explicit or an implicit assump-
tion. For example most calculations on nuclear matter
simply use from the outset that the true g.s. is expec-
ted to be homogeneous (translationally-invariant), and
hence use plane-waves as the s.p. basis for I¢>. On
the other hand, if we were interested to calculate the
solid phase, it would make much more sense to start
with a zero-order state I¢> which incorporates the
localization at lattice sites of the particles, since
this is such a distinguishing and important feature of
this' phase. In this case one could use localized s.p.
states [15J centred on the sites of a particular lat-
tice chosen a pripri, as being an intuitively obvious
starting point. If, on the other hand, one persisted
in approximating a solid by starting from the plane-
wave I¢> more appropriate to the fluid, it seems
likely that not only would one get much larger Sn
amplitudes but also, because the solid is archetypical
of a system with long-range order, that if the implied
many-body correlations are not present in I¢> from
the outset then also one would need to include Sn-
operators with much higher values of n to build up
these correlations. In general of course one may cal-
culate the (g.s.) energy starting with both choices of
I¢>, but there is no good theoretical reason why
either calculation should necessarily exhibit instabi-
lity against the other phase even if that other phase
is of noticeably lower energy. Against this pessimis-
tic view however are the very precise calculations on
the one-component Coulomb plasma ("electron gas") [lOJ
which employ the fluid, plane-wave I¢>, and yet even
in "SUB2 approximation give a g.s. energy at least
qualitatively appropriate to the \~igner crystal phase.
In this case we imagine that even though the state
I~> is bound to have the same symmetry, namely
translation-invariance, as j¢> and hence also to be
a momentum-eigenstate, then although our calculation
cannot break this symmetry it does "next best" and
produces an "amorphous solid" (or "liquid crystal")
phase.

It is worth pursuing this question of symmetries
further. In most cases the zero-state I¢> will vio-
late some symmetries. For example, any determinant
I¢> built out tif s.p. states which are not plane waves,

will got be an eigenstate of the linear momentum opera-
tor ~. But on the other hand we know that the repre-
sentation of Eq. (4) is in prinCiple an exact one
and hence eigenstates of both P and H must be
obtainable in this way. In principle this is achieved
by also imposing the condition,
: -S+ S +! __, !LJ~_J~.>_-=-p l¢> __I (15)
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but in practice the series for S in Eq. (4) is
curtailed, and Eq. (15) cannot then be imposed exactly.
A similar condition to (15) may also be imposed for
any other exact symmetry of the phase in question.

On the other hand, this violation of symmetries
by model states I¢> can be put to very good effect.
In general, if I¢> is not an eigenfunction of some
symmetry operator 0 that commutes with H, it must
be a linear superposition of such eigenfunctions, and
such wavefunctions often have components which well
reproduce the effects of high order correlations. A
well-known example of this is the famous BCS wave-
function which includes the effects of Cooper pairing,
and gives a very successful zero-order explanation of
superfluidity, although it does not conserve particle
number. This (symmetry-violating) determinant has in
turn been used in the CCF by Emrich [16] as a new
model state I¢> for a more refined theory of super-
fluidity.

In summary, it is often possible to simulate
higher-order correlation effects with a given starting
determinant I¢>, by a new choice of determinant
I¢'> (which will often violate certain symmetries of
the hamiltonian) which acts as a vacuum for,a new set
of creation and destruction operators (a')' and a '.
In this case the correlations S' in theaexact wav~-
function I~> = exp(S') I¢'> may now be "smaller",
such that a low-order truncation is permissible,
whereas in the original basis one needed to go to much
higher orders for a good description of this particular
phase. As we have already observed, we will in general
produce in the g.s. CCF, only the g.s. of a given phase
correspondin~ to the symmetries or properties of the
particular i¢> chosen, and the only way to produce
the true g.s. is to calculate for all possible phases,
and to determine which has minimum energy for given
density. But to do this requires a knowledge about
all possible phases, and it is therefore of crucial
importance to search for other possible phases. There
are two distinct ways of doing this. One is to search
for new zero-order starti ng wavefuncti ons I ~>, per-
haps by seeking new solutions of the (generalized)
Hartree-Fock equations [17], which may violate certain
symmetries. The other, which we now stress,is to look
for a given I¢> and given g.s. CCF solution for
"de-excited" states in the e.s. CCF as already men-
tioned, which are compatible in approximation with the
g.s. input. We report very briefly below on some
preliminary calculations of this kind.

5. Pairing Correlations and Bound Pairs
We now wish to bring together the discussions of

Sections 1 and 4 by focussing particular attention
within the CCF on the problem of pairing and composite
pairs within a many-fermion system'. From previous
discussions it seems clear that we should thereby lose
nothing by working in the SUB(2,2) approximation in
the language of Section 3. Furthermore, since we are
primarily interested in new phases, the discussion of
Section 1 leads us to focus primary attention on
Type I (particle-particle and/or hole-hole) pairing.
Thus, starting from the SUB2 approximation for S"
we now retain only those terms responsible for genera-
ting the complete sum of ladder diagrams for two-
particle/two-hole scattering in the many-body medium,
i.e. the particle-particle (pp), hole-hole (hh) and
mixed pp-hh ladders. This leads to what ~e call the
complete ladder (CLAD) equation, completely equivalent
to the Galitskii approximation of the two-body Green
function in the time-dependent perturbation theory
approach.

The CLAD approximation in the g.s. CCF may be



formanY-a-rrTved--a:Ctiykeeping only the first two terms
on the right-hand side of the otherwise exact Eq. (2.10)
of I for 52' and otherwise keeping only the (bare)
kinetic energies for the hole-energy terms given by
Eq. (2.11) of I in the left-hand side of Eq. (2.10)
of I. In our compact notation, the basic CLAD equa-
tion may then be written as
I

e <p P 15 Iv v >A = - <p p IV(1+S )Iv v >A
012212 12 212 (16)

-i L <P P Is Ivv'>A<vv'IV(1+5 )Iv v>Av,v' 1 2 2 2 1 2

(17)- EO
V

1

- EO
V

2

In order to work from the fluid-phase as starting-
point, we also choose 1$> to be made of plane-wave
s.p. orbitals in the usual way. With an obvious .
momentum-labelling of the s.p. states, Eq. (16) may be
represented diagrammatically by Fig. 2, where the terms
(a) - (e) which arise from the right-hand side of

(\'~)If~II("·~) ~ I V ~Y J H·Ha-t1I li tl(b=-f.lV-- JL~+60+l0+~J
(a) (b) (e) (d) (e)

iFigure 2: Diagrammatic representation of the
CLAD equation for 52' The dashed
represents the bare potential V,
eo is given by Eq. (17).

g.s.
1ine
and

Eq. (16) correspond respectively to diagrams (a), (d),
(m), (n) and (0) of the full SUB2 equation of Fig. 1
of l. We note again only that the diagrams are "time-
ordered" in the sense of Goldstone perturbation theory,
and that s.p. lines with arrows pointing upwar-ds
(downwards) are to be strictly associated with particle
(hole) states respectively. It is clear by straight-
forward iteration that in the form expressed by Fig. 2,
the diagrams (c) and (d) taken individually generate
respectively the complete sets of ladder diagrams for
pp and hh scattering in the many-body medium. 5imilar-
1y the quadratic term of diagram (e) generates the
mixed pp-hh ladders. The ana,lC).gousequation for the
e .s. correlation operator 5?fI, which now carries as
excitation+index the (exactly conserved quantum number)
momentum q, is very similarly written down from
Eq. )14) in the CLAD-truncated SUB(2,2) s(~~eme (wi:i-J
51 '"0 by momentum conservation, and SI q = 0 -:OJ
flat for the CLAD sub-approximation), or, most simpiy,
by exploiting the "{g-e} synme trization" of Emrich
[12] .
: In the momentum representation, Eq. (16) is a non-
linear integral equation. It has been found possible
to solve both it and its e.s. analogue exactly in
SUB(2,2) and CLAD approximation, for the simple model
where the two-body potential operator takes the form
V = 1Ig><gl of a one-tenn, 5-wave, separable potential.
The solution in many ways is rather similar to the
analogous RPA solution reported in I for a local
potential, although the details are far too complex to
discuss here and will be reported elsewhere rlSl. We
emphas ise . only that the various types of composite or
bound (Type I) pairs within the many-body medium now
manifest themselves very naturally within the g.s. CCF
as "virtual (de-)excitations" in the exact 9.5. solu-
tion for 5•. These (de-)excited states are then also
s~:.~.e_xpl~2.~ly_~_~he exact e.s. solution, where their

7.

'wavefunctions within these approximations can be exactly
solved for. In the 9.S. CCF the (de-)excited Type I
pair states show up "virtually" as poles in the suitably
analytically-continued matrix elements of 57.' in comp-
lete analogy to the plasmon (Type II) pole observed in
the 9.s. CCF in random-phase approximation, and as dis-
cussed in I in great detail.

Without going into the analytic details of the
solutions, we report only the qualitative nature of the
results obtained. We find that the CCF does indeed
provide, even in·this simple CLAD approximation, an
efficient and unified framework in which to describe
all aspects of Type I pairing. In particular we find
in this single calculation: (i) a possible free bound
pair (for sufficiently attractive potentials; e.g. the
deuteron in the nuclear matter case) and its gradual
approach to "dissolution" as the density is increased;
(ii) the possible appearance of a second bound pair of
predominantly hole-like quasiparticles above a lower
critical density (for given total pair momentum);
(iii) the unstable but bound resonant pairs that can
exist for densities above a comparable upper critical
density at which the two.previous real bound pairs
have "dissolved"; and (iv) Cooper pairs. Even though
each of these composite pairs leads to a new "condensed-
pair phase" of lower energy for appropriate densities,
the so-ca 11ed g.s. CCF buiIt here on the p1ane-wa ve 19>
leads only to the fluid-like state of uncondensed par-
ticles. The various composite pairs materialize in
the e.s. CCF as (negative energy) (de-)excited states.
Thus, types (i) and (ii) above lead to the clustered
phase of, for example, deuteron matter as a low-density
phase of nuclear matter; type (iii) leads to the
(unstable) continuation of the clustered deuteron-
matter phase into the density range where the fluid
phase is not yet energetically favoured (at this level
of approximation); and type (iv) leads to the super-
fluid phase.

6. Conclusions and Future Developments
From the above results, it is clear that a judi-

cious and compatible choice of g.s. and e.s. CCF approxi-
mations can indeed lead to the possibility of new phases,
starting from a given (in this case, fluid-like) model
state I~>. The e.s. formalism shows how to obtain
single composite pair states of lower energy than the
g.s. obtained in the same approximation. In order to
exploit fully the power of the method one should as a
next step start with a new model state 10'> which
exploits these composite pairs so obtained. Thus, for
example, for the type (iv) Cooper pairs, one could for
1$'> use the usual BCS state, as discussed in Ref.[16].
Similarly, for the deuteron clustered phase of nuclear
matter, one should now build up a new I~'> from the
composite pairs of types (ii) and (iii) already found.
This step has not yet been done but we hope to do so
in the future.

Also of interest is to extend the CLAD calcula-
tions here to a full SUB(2,2) approximation, and
thereby to examine the interference on the Type I
composite pairs reported here of the so-far neglected
remaining terms in the full SUB(2,2) equations, some of
which are themselves largely responsible for the Type
II pairs or collective excitations.

Finally, we are also interested in extending the
present approach to at least a qualitative enquiry into
the analogous various possibilities of bound three- and.
four-body clusters, and the consequent possible con-
densed phases associated with them.
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