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1 Introduction

Lack of public spending on maintenance (as opposed to “new” investment)

has been a recurrent problem in many developing countries. According to

the World Bank (1994, p. 1), technical inefficiencies in roads, railways,

power, and water in developing countries caused losses equivalent to a quar-

ter of their annual investment in infrastructure in the early 1990s. Increasing

maintenance spending would therefore help to reduce power losses, telephone

faults, and so on, and increase the productivity effects of public capital on

private production. Thus, to the extent that maintenance expenditure af-

fects the durability, as well as the quality, of public capital, it may stimulate

growth. Hulten (1996) argued forcefully indeed for paying more attention to

the quality of infrastructure capital in the growth process; and Calderón and

Servén (2004) found a link (albeit weak) between indicators of infrastructure

quality and the rate of economic growth in a cross-country study.

Analytical studies focusing on the growth effects of maintenance expen-

diture are scarce and include contributions by Rioja (2003a, 2003b) and

Kalaitzidakis and Kalyvitis (2004).1 In Rioja (2003a), the quality of in-

frastructure and the share of public expenditure on maintenance are linearly

related, and the depreciation rate of public capital is constant over time.2

Thus, increasing maintenance outlays raises the productivity of all inputs

used in the production process. In Rioja (2003b), the depreciation rate is

1Some recent research has also focused on the role of maintenance expenditure in busi-
ness cycles. Collard and Kollintzas (2002), for instance, developed a model in which they
distinguish between labor input devoted directly to production, and labor input devoted
to maintaining and improving or scrapping existing capital. Firms first decide the total
number of work hours and then how to allocate workers between production and capital
maintenance.

2He also assumes, more controversially, that the share of public capital in private
production increases with the share of public spending on maintenance.
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endogenous and assumed to depend on both the amount of maintenance

spending and “usage,” as measured by the stock of private physical capital.

Maintenance therefore increases the durability of capital; that is, it serves to

maintain its effectiveness, rather than raising its efficiency. In both papers

reallocating funds from new infrastructure to maintenance can increase the

growth rate. Kalaitzidakis and Kalyvitis (2004) developed a model in which

the durability of public capital in infrastructure (as measured by its rate of

depreciation) is also endogenous and depends on its usage as well as the level

of maintenance expenditure. They show that changes in both the level of

total expenditure (or, equivalently, the level of taxation) and the share of

spending on maintenance affect the steady-state growth rate.

These studies suffer from several limitations. In Rioja (2003b) for in-

stance, maintenance expenditure is financed only through domestic resources

(tax revenue), whereas new public investment is financed solely through for-

eign transfers. As a result, the key issue of the joint determination of the

optimal shares of new investment and maintenance spending in total govern-

ment expenditure, and potential trade-offs between these components, can-

not be addressed. Trade-offs between total infrastructure spending and other

components of government outlays (such as the provision of education ser-

vices) cannot be addressed either, despite the obvious importance of the issue

if growth depends also on the accumulation of human capital. By contrast,

the model developed by Kalaitzidakis and Kalyvitis (2004) does account ex-

plicitly for an overall financing constraint on government expenditure, and

therefore captures potential trade-offs between components. However, it ab-

stracts entirely from consumption decisions and uses a Tobin’s q approach to

determine private capital accumulation. As a result, they do not account for

the possibility that distortionary taxes may affect the growth rate through
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their impact on consumption and savings decisions. Moreover, they do not

derive an explicit expression for the growth-maximizing share of spending on

maintenance.

This paper contributes to the existing literature on maintenance expendi-

ture and growth in several ways. I develop an endogenous growth framework

in which maintenance expenditure not only increases the durability of public

capital, as in Rioja (2003b) and Kalaitzidakis and Kalyvitis (2004), but also

raises the efficiency of infrastructure. Given the focus on maintenance, public

infrastructure is naturally treated as a stock, as for instance in Arrow and

Kurz (1970), Futagami, Morita, and Shibata (1993), Glomm and Ravikumar

(1997), Baier and Glomm (2001), Turnovsky (1997, 2000), and Marrero and

Novales (2005).3 However, there are several differences between these mod-

els and the framework developed here. For instance, Glomm and Ravikumar

(1997), and Marrero and Novales (2005), assume that private capital depre-

ciates fully each period. Given that they also take returns to scale to be

constant in production (as I do here), the economy is always on a balanced

growth path. In contrast, transitional dynamics are explicitly studied in the

present setting, as in Futagami, Morita, and Shibata (1993). In addition,

I also discuss the impact of maintenance spending by the public sector on

the private capital stock. The key idea here is that maintaining the quality

of (public) roads, for instance, enhances the durability of trucks and other

means of transportation used by the private sector to move labor and goods.

With a more reliable power grid, electrical equipment may last longer. This

extension, as it turns out, has important implications for the determination

of optimal policies.

3Note that in Arrow and Kurz (1970), production is assumed to exhibit diminishing
returns to scale with respect to public and private capital, in contrast to the subsequent
literature.
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The remainder of the paper is organized as follows. Section II presents

the basic framework, which assumes that maintenance expenditure affects

only the depreciation rate of public capital. Section III determines the bal-

anced growth path, whereas Section IV examines the transitional dynamics

and steady-state effects associated with a budget-neutral reallocation of tax

revenues from new infrastructure to maintenance. Section V determines the

optimal (growth-maximizing) tax rate and share of tax revenues allocated

to government spending on infrastructure investment and maintenance. As

shown in an early contribution by Barro (1990), if public infrastructure ser-

vices derive from flow expenditures, the optimal rate of spending (or, equiv-

alently, taxation in his setting) is equal to the elasticity of output with re-

spect to these services. A similar result obtains when the flow of services is

produced by the stock of public capital (see Futagami, Morita and Shibata

(1993)), or when it is produced by a stock-flow combination (see Tsoukis and

Miller (2003)), in the absence of maintenance costs.4 The analysis examines

whether the presence of maintenance expenditure alters the optimal alloca-

tion and discusses why it differs from the Barro rule. The basic framework

is then extended in Section VI to consider the case where maintenance ex-

penditure also affects the depreciation rate of private capital. Section VII

summarizes the main results of the paper and compares them with those

derived in some of the recent contributions cited above. The final section

discusses some possible extensions of the analysis.

4As shown by Turnovsky (1996), however, if private investment is subject to adjustment
costs that fall with public services, the positive impact of government spending on growth
will be more pronounced than in Barro’s rule. The rule will underestimate the optimal tax
(and spending) rate.
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2 Basic Framework

Consider an economy populated by an infinitely-lived representative house-

hold, who produces and consumes a single traded good. The good can be

used for consumption or investment. The government invests in infrastruc-

ture and spends on maintenance. It balances its budget continuously, by

levying a flat tax rate on output.

2.1 Production Structure

Output, Y , is produced with private capital, KP , and the effective stock of

public infrastructure capital, eKG, using a Cobb-Douglas technology:5

Y = (eKG)
αK1−α

P , (1)

where α ∈ (0, 1), KG is the physical stock of public capital, and e its effi-

ciency . Thus, production exhibits constant returns to scale in both factors.6

For simplicity, the flow of infrastructure services is assumed to be directly

proportional to the effective stock of public capital, which is non-rival and

non-excludable. Similarly, KP denotes both the stock of private capital and

the flow of services that it provides.

Efficiency is a concave function of the ratio of public spending on main-

tenance, M , to the stock of public capital:

e = (
M

KG
)χ, (2)

where χ ∈ (0, 1).
5In what folllows, time subscripts are omitted for simplicity, and a dot over a variable

is used to denote its time derivative.
6See Eicher and Turnovsky (1999) for a discussion of the relation between the existence

of a balanced growth path and the assumption of constant returns to scale in production
in endogenous growth models.
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Private capital depreciates at the rate δP ∈ (0, 1); the change in KP is

thus given by

K̇P = IP − δPKP , (3)

where IP denotes gross private investment. For the moment, δP is taken as

given.

2.2 Household-Producer

The infinitely-lived representative household-producer maximizes the dis-

counted stream of future utility

max
C

U =

Z ∞

0

lnC exp(−ρt)dt, (4)

where C is consumption and ρ > 0 the discount rate.7

The household’s budget constraint is

C + IP = (1− τ)Y, (5)

where τ ∈ (0, 1) is the tax rate on output.
The household chooses its consumption path so as to maximize the present

value of utility, taking as given the depreciation rate of the private capital

stock, the tax rate, and the effective stock of public capital. Using (1), (3),

and (5), the current-value Hamiltonian for problem (4) can be written as

H = lnC + λ[(1− τ)(eKG)
αK1−α

P − δPKP − C],

where λ is the co-state variable associated with constraint (5). Let s ≡
(1 − α)(1 − τ) ∈ (0, 1). From the first-order condition dH/dC = 0 and

7The log specification for instantaneous utility is adopted for simplicity; see Agénor
(2005a) for the more general CRRA case. As in that paper, the analysis could also be
extended to account for government-provided utility-enhancing services.
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the co-state condition −dH/dKP = ρλ − λ̇, optimality conditions for this

problem are given by

1/C = λ, (6)

λ̇ = λ[ρ+ δP − s(eKG/KP )
α], (7)

together with the budget constraint (5) and the transversality condition

lim
t→∞

λKP exp(−ρt) = 0. (8)

Equations (6) and (7) can be combined to give

Ċ

C
= s(

eKG

KP
)α − ρ− δP . (9)

2.3 Government and Public Capital

The government invests in infrastructure capital, IG, and spends on mainte-

nance. As noted earlier, it collects a proportional tax on output.8 Thus, the

government budget constraint is given by

IG +M = τY. (10)

Investment in infrastructure and spending on maintenance are both con-

stant fractions of tax revenue, υG and υM :

IG = υGτY, M = υMτY, (11)

with υG, υM ∈ (0, 1). The government budget constraint can thus be rewrit-
ten as

υG + υM = 1. (12)

8See Hung (2005) for a discussion of the role of seigniorage in models of growth with
public investment, and Marrero and Novales (2005) for an examination of lump-sum tax-
ation.
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Using (11), the stock of public capital in infrastructure evolves over time

according to

K̇G = IG − δGKG = υGτY − δGKG, (13)

where δG is the rate of depreciation of public capital in infrastructure, which

is taken to depend negatively and linearly on the ratio of maintenance ex-

penditure, M , to the public stock of capital, KG:

δG = 1− θG(
M

KG
), (14)

where θG ∈ (0, 1).9 Thus, maintenance expenditure enhances the durability
of public infrastructure capital. In addition to being convenient analytically,

this specification has the property, as noted by Rioja (2003b), that if the

government spends nothing on maintenance (M = 0), public infrastructure

would depreciate entirely (δG = 1). However, it differs from the formulation

adopted by both Rioja (2003b, p. 2290) and Kalaitzidakis and Kalyvitis

(2004, p. 699), which assumes that the depreciation rate is a function of

the ratio of maintenance expenditure over output, rather than public capital.

The latter is, however, a more natural scaling variable, given that one would

expect maintenance needs to depend on the prevailing stock of capital, in-

dependently of usage. Regardless of the flow of cars, for instance, roads are

likely to deteriorate over time as a result of weather conditions. Similarly,

power grids need to be inspected and upgraded on a regular basis (even when

usage is low) to prevent losses.

9This restriction on θG is sufficient to ensure that δG ∈ (0, 1), as long as M/KG < 1,
as one would expect. Note also that a convex specification, which would require δ00G > 0,
would be much less tractable analytically.
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3 The Balanced Growth Path

The balanced growth path (BGP) can be determined as follows. First, using

(2) and (11), efficiency can be written as

e = (τυM)
χ(

Y

KG
)χ.

From (1), Y/KG = eαkα−1G , where kG = KG/KP . Substituting this result

in the above equation and rearranging yields

e = (τυM)
χ/ηk

−(1−α)χ/η
G , (15)

where η ≡ 1− αχ > 0.

The household budget constraint (equation (5)) can be rewritten as, using

(1) and (3),

K̇P = (1− τ)(
eKG

KP
)αKP − δPKP − C,

that is,
K̇P

KP
= (1− τ)eαkαG − δP − c,

where c = C/KP . Substituting (15) in this expression yields

K̇P

KP
= (1− τ)(τυM)

αχ/ηk
α(1−χ)/η
G − δP − c. (16)

Similarly, using (15), equation (9) can be rewritten as

Ċ

C
= s(τυM)

αχ/ηk
α(1−χ)/η
G − ρ− δP . (17)

From (11), (13), and (14), and noting that M/KG = τυMY/KG,

K̇G

KG
=

υGτY

KG
− δG = τ(υG + θGυM)(

Y

KG
)− 1,

that is, noting again that Y/KG = eαkα−1G and using (15),

K̇G

KG
= τ(υG + θGυM)(τυM)

αχ/ηk
−(1−α)/η
G − 1. (18)
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Combining equations (16), (17), and (18) yields10

ċ

c
= −α(1− τ)(τυM)

αχ/ηk
α(1−χ)/η
G + c− ρ, (19)

k̇G
kG
= [τ(

υG + θGυM
kG

)− (1− τ)](τυM)
αχ/ηk

α(1−χ)/η
G − 1 + δP + c. (20)

These two nonlinear differential equations in c and kG, together with the

initial condition kG,0 = KG,0/KP,0 > 0, and the transversality condition (8),

rewritten as

lim
t→∞

c−1 exp(−ρt) = 0, (21)

characterize the dynamics of the economy. The BGP is a set of functions

{c, kG}∞t=0 such that equations (19) and (20), the budget constraint (12),
and the transversality condition (21), are satisfied, and consumption and the

stocks of public and private capital, all grow at the same constant rate γ.

This is also the rate of growth of output, given the assumption of constant

returns to scale.11 Because consumption and the stock of private capital

grow at the same constant rate, the ratio c = C/KP is also constant in the

steady state; the transversality condition (21) is thus always satisfied along

any interior BGP equilibrium.

From (17) and (18), the steady-state growth rate γ is given by the equiv-

alent forms

γ = s(τυM)
αχ/ηk̃

α(1−χ)/η
G − ρ− δP , (22)

γ = τ(υG + θGυM)(τυM)
αχ/ηk̃

−(1−α)/η
G − 1, (23)

where k̃G denotes the stationary value of kG.12 As shown in the Appendix, the
10In deriving (20), note that −(1− α)/η = α(1− χ)/η − 1.
11The transversality condition (21) is satisfied along any interior BGP equilibrium be-

cause consumption and the stock of private capital grow at the same constant rate, im-
plying that the ratio c = C/KP is also constant in the steady state.
12From (16), there is a third equivalent form, γ = (1− τ)(τυM )

αχ/ηk̃
α(1−χ)/η
G − δP − c̃.

However, given equation (A4) in the Appendix, this expression is identical to (22).
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economy is saddlepath stable in the neighborhood of the BGP. Moreover, the

BGP is unique under relatively mild conditions. Thus, the model is locally

determinate.13

The phase diagram in Figure 1 illustrates the adjustment process to the

steady state. The phase curve CC represents the combinations of c and kG

for which the consumption-private capital stock ratio is constant (ċ = 0),

whereas the phase curve KK represents the combinations of c and kG for

which the public-private capital stock ratio is constant (k̇G = 0). Both curves

are strictly increasing and strictly concave, but saddlepath stability requires

that the slope of KK be steeper than the slope of CC (see the Appendix).

The saddlepath is denoted SS and the initial BGP corresponds to point A.

4 Expenditure Shift toward Maintenance

Suppose that the government decides to permanently increase the share of

spending on maintenance, υM , while keeping the tax rate constant (dτ =

0). As a result of the budget constraint (12), the increase in maintenance

expenditure must be offset by a reduction in new investment in infrastructure,

that is, dυM = −dυG.
Figure 1 also illustrates the dynamics associated with this reallocation in

spending. As shown in the figure, both CC and KK shift to the left. The

spending shift therefore always reduces the steady-state value of the public-

private capital ratio. However, as shown formally in the Appendix, the net

effect on the steady-state value of the consumption-private capital ratio is in

13To ensure that δG > 0 in the steady state requires that 1− υMθGk̃
α−1
G > 0. This im-

poses, in principle, a restriction on the admissible value of k̃G, that is, k̃G > (υMθG)
1/(1−α).

But given that υM and θG are both less than unity, this condition is relatively easy to sat-
isfy. For instance, with υM = 0.1, θG = 0.3, and α = 0.2, the steady-state public-private
capital ratio must exceed 0.01.
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general ambiguous. The case illustrated in the figure corresponds to the one

where curve KK shifts relatively by more than curve CC; as a result, in the

new long-run equilibrium, the consumption ratio is lower. On impact, the

consumption-private capital ratio jumps downward, from point A to point

B. From then on, the adjustment path proceeds along the new saddlepath

S0S0, until the economy reaches the new long-run equilibrium at point A0.

The net effect of the reallocation of government spending on the growth

rate is also ambiguous. As can be inferred from (23) for instance, using (12),

sg
½

dγ

dυM

¯̄̄̄
dτ=0

¾
= sg

(
−(1− θG) + υ(

αχ

ηυM
− (1− α)

ηk̃G

dk̃G
dυM

¯̄̄̄
¯
dτ=0

)

)
,

where υ ≡ υG + θGυM .

Given that dk̃G/dυM
¯̄̄
dτ=0

< 0 (as noted earlier) and θG ∈ (0, 1), the sign
of the expression on the right-hand sign is indeed ambiguous in general. The

fundamental reason for this ambiguity is of course the fact that both compo-

nents of spending have a positive effect on the supply side: new investment

in infrastructure raises the stock of public capital, whereas higher spending

on maintenance increases both the durability, and the efficiency, of the ex-

isting stock of capital. Because both types of effect are growth enhancing, a

revenue-neutral shift in spending creates a trade-off. In the particular case

where θG = 1 (which corresponds to the “maximal” effect of maintenance

spending on the depreciation rate) the above equation show that the expen-

diture shift increases unambiguously the steady-state growth rate. Similarly,

the larger the efficiency effect (as measured by χ), the more likely it is that

the spending shift will increase the growth rate, as well as the steady-state

consumption ratio.
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5 Growth-Maximizing Policies

Before examining the allocation of spending, I first derive the optimal tax

rate, taking the allocation of spending as given (that is, dυM = dυG = 0).

From (22) and (23), setting dγ/dτ = 0 and solving yields the following result:

Proposition 1. The growth-maximizing tax rate is given by τ ∗ = α, as

predicted by the Barro rule.

Thus, despite the fact that maintenance spending has a positive effect on

the efficiency of public infrastructure–and thus the productivity of private

capital–as well as the durability of public capital, the optimal policy calls

for a tax rate that reflects only the elasticity of the effective public capital

stock in production, in line with the result established by Barro (1990).14

Consider now the case where the government sets optimally the share

of revenue allocated to maintenance, for a given tax rate (that is, dτ = 0).

Thus, from the budget constraint (12), dυG = −dυM . Using this restriction,
and setting dγ/dυM = 0 in (22) and (23) yields the following proposition:

Proposition 2. The growth-maximizing share of spending on mainte-

nance is given by

υ∗M =
χ

1− θG
. (24)

This solution is admissible as long as χ + θG < 1. Assuming that this

condition holds, Proposition 2 shows that the optimal share of spending on

maintenance is positively related (as could be expected) to χ, the elasticity

of the efficiency function with respect to maintenance. At the same time, a

higher response of the depreciation rate to spending on maintenance (that is,

14In a model without maintenance, Futagami, Morita, and Shibata (1993) proved that
the Barro rule holds if it is the stock of capital in infrastructure, rather than the flow of
infrastructure services, that affects production.
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an increase in θG) tends to raise the share of spending on that category. Put

differently, the more “effective” public spending on maintenance is in terms

of raising the durability of public capital, the higher should be the share of

tax revenues allocated to it.

6 Endogenous Private Depreciation

The foregoing analysis took the rate of depreciation of private capital, δP , as

given. I now consider the case where δP is endogenous and linearly related to

the ratio of government spending on maintenance, M , to the private capital

stock:

δP = 1− θP (
M

KP
), (25)

where θP ∈ (0, 1).15 As noted in the introduction, the view taken here is

that maintenance expenditure on public capital enhances also the durability

of private capital. With better roads, trucks used to move goods and workers

across different geographic regions may last longer. If maintenance spending

increases the reliability of publicly-provided sources of energy (such as elec-

tricity), machines and other equipment such as computers used by private

sector firms may break down less often; and so on. “Usage” (of public in-

frastructure) is therefore properly measured by the size of the private capital

stock.

The household continues to take the depreciation rate as given while

solving its maximization problem; the optimal solution path for consumption

is thus the same as before. Using (11), (25), and (15), it is straightforward

15This restriction on θP is, again, sufficient to ensure that δP ∈ (0, 1), as long as
M/KP < 1.
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to show that equations (16) and (17) now become

Ċ

C
= (s+ θP τυM)(τυM)

αχ/ηk
α(1−χ)/η
G − ρ− 1, (26)

K̇P

KP
= (1− τ + θP τυM)(τυM)

αχ/ηk
α(1−χ)/η
G − c− 1, (27)

whereas equation (18) remains the same. Combining equations (18), (26),

and (27) yields a dynamic system in c and kG, whose stability conditions

are essentially the same as before. I therefore omit mathematical details and

focus directly on growth-maximizing policies.

The steady-state growth rate γ is given by (23), as before, and the equiv-

alent form (26) with Ċ/C = γ and kG = k̃G. Setting dγ/dτ = 0 in these

equations with dυM = dυG = 0 yields, after some manipulations, the follow-

ing result:

Proposition 3. With maintenance spending also affecting the deprecia-

tion rate of private capital, the growth-maximizing tax rate is given by

τ ∗ =

½
1− αθP

1− α
υM

¾−1
α > α. (28)

This solution is admissible if the initial spending share on maintenance

is not too large. Assuming that this is the case, formula (28) implies that

the optimal tax rate is positively related to θP , the marginal effect of an

increase in maintenance spending on the depreciation rate of private capital.

This is in contrast with the previous result regarding θG, which was shown

to have no effect on τ ∗. Similarly, the higher the initial share of spending on

maintenance, the higher the optimal tax rate.

Solving as before for the growth-maximizing share of spending on mainte-

nance, for a given tax rate and imposing dυG = −dυM , leads to the following
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optimality condition:

υ∗M(αs+ θP τυ
∗
M)−

θP τυ
∗
M [1− α(1− χ)]

1− θG
− αsχ

1− θG
= 0, (29)

which corresponds to (24) with θP = 0. In general, however, with θP > 0,

this condition yields a quadratic form in υ∗M and an explicit solution is quite

murky. In particular, it cannot be proved that the resulting optimal value is

higher or lower than the value shown in (24) for an arbitrarily set value of

θP . Nevertheless, a graphical technique can be used to determine the impact

of θP on υ∗M–the issue of interest here.

The terms in equation (29) can be written as

G1(υ
∗
M) = υ∗M(αs+ θP τυ

∗
M), G2(υ

∗
M) =

αsχ

1− θG
+

θP τυ
∗
M

1− θG
Ω,

where Ω ≡ 1− α(1− χ). Thus, G1(υ
∗
M) is a convex function of υ

∗
M , whereas

G2(υ
∗
M) is a linear function of υ

∗
M . Both curves are shown in Figure 2.

Optimality requires G1(υ
∗
M) = G2(υ

∗
M), which is obtained at point A.

A rise in θP rotates curve G1(υ
∗
M) inward, whereas curve G2(υ

∗
M) shifts

upward. Whether the new equilibrium point, A0, corresponds to a higher

value of υ∗M depends on the relative shift in the two curves. Suppose that

θG = 0 for simplicity; it can then be shown that this relative shift depends

on whether the initial value of υ∗M is greater or lower than Ω. The higher

the value of χ, the more likely it is that Ω > υ∗M , and the larger the shift in

G2(υ
∗
M) relative to G1(υ

∗
M). Now, if θG is not zero, it is easy to verify that

the higher θG is, the more likely it is indeed that Ω > υ∗M , for a given value

of χ. The case Ω > (1− θG)υ
∗
M is the one represented in Figure 2; assuming

that the solution is admissible, it implies therefore the following proposition.

Proposition 4. Suppose that the effect of maintenance expenditure on

the efficiency and/or durability of the public capital stock is sufficiently high.
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Then the higher the marginal effect of maintenance spending on the depre-

ciation rate of private capital, the higher the growth-maximizing share of

spending on maintenance.

Intuitively, maintenance spending on public capital must be sufficiently

“productive” for an increase in the marginal effect of these outlays on the

rate of depreciation of private capital to lead to higher public expenditure

on maintenance.

7 Comparison with other Results

The foregoing discussion has established two main sets of results. First, if

maintenance spending affects only the depreciation rate of public infrastruc-

ture capital, the Barro rule (which relates the tax rate solely to the elasticity

of output with respect to public capital, α) is optimal, whereas the growth-

maximizing share of spending on maintenance depends only on the efficiency

parameter χ and the marginal effect on the depreciation rate. An important

feature of this solution is also that the marginal effect of maintenance on the

depreciation rate matters only if maintenance affects at the same time the

efficiency of public capital; if χ = 0, then υ∗M = 0, regardless of the value of

θG. Moreover, the optimal share of spending on infrastructure (υ∗G = 1−υ∗M)
does not depend on α, in contrast to the result established by Rioja (2003b,

p. 2292). Second, if maintenance spending enhances the durability of both

private and public capital, the Barro rule is sub-optimal, and the growth-

maximizing share of spending on maintenance depends in a complex way

on the structural parameters characterizing the production side, as well as

the tax rate. Nevertheless, if maintenance spending has a sufficiently strong

positive effect on efficiency and the depreciation rate of public capital, an
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increase in the marginal effect of maintenance on private capital, θP , will

reduce the optimal share of spending on infrastructure.

It is worth comparing these results with those derived by Kalaitzidakis

and Kalyvitis (2004). In their model, the depreciation rate of public capital is

also endogenously related to maintenance expenditure, but efficiency effects

are not accounted for and the depreciation rate of private capital is exoge-

nous. They found that the optimal tax rate is not independent of the uses to

which proceeds from taxation are put: the share of maintenance expenditure

in output affects positively the optimal tax rate. Moreover, in their model,

the Barro rule is sub-optimal. The reason, they argue, is that an additional

unit of new investment generates a need for additional spending on main-

tenance, in order to sustain the extra usage of the public capital stock and

maintain its durability.

The results established in the present paper are quite different from those

derived by Kalaitzidakis and Kalyvitis (2004). First, and more importantly,

the optimal tax rate does not depend on the share of spending on main-

tenance, if such spending affects only the durability of public capital. Put

differently, whether the services of an additional “effective” unit of public

capital are brought about by an increase in new investment (that is, a rise

in the stock of capital itself), or by an increase in spending on maintenance

(which improves either the durability or the efficiency of the existing stock),

does not matter from the point of view of setting the growth-maximizing tax

rate. The only parameter that matters therefore is the elasticity of output

with respect to the effective stock of public capital, α. Second, it is important

to account for the fact that the rate of depreciation of private physical capital

may depend also on public spending on maintenance. It is only when doing

so that the Barro rule can be shown to be sub-optimal, and that the growth-
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maximizing tax rate depends on the share of spending on maintenance (an

effect that can be rationalized along the lines suggested by Kalaitzidakis and

Kalyvitis (2004)). Moreover, the share of resources that should be allocated

to maintenance expenditure may depend positively not only on its marginal

effect on public capital, but also on it ability to enhance the durability of

the private capital stock. Neglecting this effect may result in a sub-optimal

allocation of resources toward new investment in infrastructure.

8 Extensions

This paper studied the optimal allocation of government spending between

investment in infrastructure and maintenance expenditure, in an endogenous

growth framework. This issue is important not only analytically but also

empirically: inadequate funding for infrastructure maintenance has been a

chronic problem in many countries in the developing world, resulting in rapid

decay of public capital, such as roads and power grids. At the same time,

many of these countries are now engaged in the design of infrastructure-led

growth strategies. Understanding, from a growth perspective, the trade-offs

involved in allocating resources between investment in infrastructure and

maintenance of public capital may thus provide useful guidelines for the

formulation of medium-term public expenditure programs in that context.

The main results of the paper were summarized in the previous section

and contrasted with those derived in some recent contributions. In lieu of

concluding remarks, it is perhaps worth examining in what directions the

analysis can be extended. First, the analysis could be modified to assume

that maintenance affects not only the durability of public capital but also its

quality, maintenance spending by the private sector could also be explicitly
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introduced in the model and determined as part of the optimization problem

solved by the representative household-producer. By accounting for the fact

that private spending on maintenance affects also the quality of the private

capital stock, it could be shown that optimal private spending on mainte-

nance may depend on the quality-adjusted public capital stock. With better

roads, for instance, the private sector would need to spend less on maintain-

ing trucks used for transporting goods. Thus, an additional channel would

be introduced for a positive growth effect of an increase in public spending

on maintenance: by reducing the need for private sector spending on main-

tenance, more resources can be allocated to private capital accumulation.

Second, more general specifications could be introduced to relate the de-

preciation rate to maintenance expenditure, and to account for the fact that

congestion (excessive usage of public goods) may affect not only the mar-

ginal productivity of public capital in private production (as recognized in

several recent studies, such as Turnovsky (1997)) but also the durability of

public (and private) capital. For instance, the depreciation rate could be

assumed to be a convex function of the ratio of public capital to output, in

addition to the share of spending on maintenance. A related issue would

then be to explore how the model can be used to determine optimal user

charges to cover maintenance costs (taking into account congestion effects),

simultaneously with the determination of the growth-maximizing allocation

of public spending and within the context of the overall government budget

constraint. Determining sustainable mechanisms to finance outlays associ-

ated with infrastructure maintenance remains indeed a major challenge for

governments in the developing world. As far as I know, this perspective on

user charges and congestion effects has not yet been explored in any depth.

Finally, in the present model, it was assumed that both maintenance
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expenditure and investment are financed domestically. An alternative is

to follow Rioja (2003b) and Chatterjee and Turnovsky (2005) and assume

that domestic tax revenues are used to finance maintenance expenditure (as

well as other productivity-enhancing services, such as education and health),

whereas “new” investment is financed in part (rather than exclusively, as

assumed by Rioja (2003b)) by international donors. This approach would be

particularly relevant to discuss growth and poverty reduction strategies in

low-income developing countries in the current international context, where

(as noted earlier) large increases in public investment in infrastructure, fi-

nanced by foreign aid, have been called for to spur growth. The “optimal”

level of aid could therefore be derived as part of the government’s maximiza-

tion problem.
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Appendix
Stability Conditions and Uniqueness

The dynamic system consists of equations (19) and (20), which are re-
peated here for convenience:

ċ

c
= −α(1− τ)(τυM)

αχ/ηk
α(1−χ)/η
G + c− ρ, (A1)

k̇G
kG
= [

τυ

kG
− (1− τ)](τυM)

αχ/ηk
α(1−χ)/η
G − 1 + δP + c, (A2)

where υ ≡ υG + θGυM = 1− (1− θG)υM < 1.
To investigate the dynamics in the vicinity of the steady state, this system

can be linearized to give∙
ċ

k̇G

¸
=

∙
a11 a12
a21 a22

¸ ∙
c− c̃

kG − k̃G

¸
, (A3)

with the aij given by a11 = c̃, a21 = k̃G, and

a12 = −
α2(1− χ)

η
c̃(1− τ)(τυM)

αχ/ηk̃
α(1−χ)/η−1
G < 0,

a22 = −[
(1− α)υ

ηk̃G
+ (1− τ)

α(1− χ)

η
](τυM)

αχ/ηk̃
(1−χ)/η
G < 0,

where x̃ denotes the stationary value of x. c is a jump variable, whereas kG
is predetermined. Saddlepath stability requires one unstable (positive) root.
To ensure that this condition holds, the determinant of the Jacobian matrix
of partial derivatives of the dynamic system (A3) must be negative, that is,
a11a22 − a12a21 < 0, or equivalently, −a12/a11 < −a22/a21. It can be verified
that this condition always holds. Curve KK in Figure 1 is therefore steeper
thanCC. The slope of the saddlepath SS, which is given by κ ≡ −a12/(c̃−ν),
where ν is the negative root of the system, is positive.
From (A1), setting ċ = 0 yields

c̃ = ρ+ α(1− τ)(τυM)
αχ/ηk̃

α(1−χ)/η
G . (A4)

Substituting (A4) in (A2) with k̇G = 0 yields the implicit function

F (k̃G) =

½
τυ

k̃G
− (1− α)(1− τ)

¾
(τυM)

αχ/ηk̃
α(1−χ)/η
G −1+δP +ρ = 0. (A5)
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To show that the BGP is unique, note first that from (A5),

Fk̃G
= −

½
(1− α)τυ

ηk̃G
+

α(1− α)(1− τ)(1− χ)

η

¾
(τυM)

αχ/ηk̃
(1−χ)/η−1
G < 0.

Thus, F (k̃G) cannot cross the horizontal axis from below. Now, suppose
that ρ+ δP > 1; then F (0) > 0. Given that F (k̃G) is a continuous, monoton-
ically decreasing function of k̃G, there is a unique positive value of k̃G that
satisfies F (k̃G) = 0. From (A4), there is also a unique positive value of c̃.
Equations (A4) and (A5) can be used to determine the steady-state ef-

fects of a revenue-neutral increase in the share of spending on maintenance
expenditure on c̃ and k̃G, as discussed in the text. Specifically, using the im-
plicit function theorem, it can be established that a rise in υM , compensated
by a reduction in υG, has a negative effect on k̃G and, from (A4), on c̃ as
well. Indeed, dk̃G/dυM = −FυM/Fk̃G

; given that, as shown above, Fk̃G
< 0,

sg(dk̃G/dυM) = sg(FυM ). In turn, FυM is equal to, in the “neutral” case
where dυM + dυG = dτ = 0,

FυM |dτ=0 =
∙
αχ

ηυM

½
τυ

k̃G
− (1− α)(1− τ)

¾
− τ(1− θG)

k̃G

¸
(τυM)

αχ/ηk̃
α(1−χ)/η
G ,

that is, using (A5) to substitute for the first term,

FυM |dτ=0 =
αχ(1− δP − ρ)

ηυM
− τ(1− θG)

k̃G
(τυM)

αχ/ηk̃
α(1−χ)/η
G .

As noted earlier, to ensure that F (0) > 0 requires imposing ρ + δP > 1;
thus, the first term in this expression is negative. The second is also negative,
given that θG < 1. Thus, FυM |dτ=0 < 0; a budget-neutral increase in υM
unambiguously lowers the steady-state value of k̃G.
From the steady-state condition (A4),

sg
½

dc̃

dυM

¯̄̄̄
dτ=0

¾
= sg

(
χυM

αχ/η−1 + (1− χ)k̃
α(1−χ)/η−1
G

dk̃G
dυM

¯̄̄̄
¯
dτ=0

)
,

which is in general ambiguous. If χ is sufficiently small, the expression on
the left-hand side will be unambiguously negative, and dc̃/dυM |dτ=0 < 0, as
illustrated in Figure 1.
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To show that in that case c jumps downward on impact, note that the
equation of the saddlepath is

c = c̃+ κ(kG − k̃G), (A6)

where κ is defined above. From (A6), the impact effect of a budget-neutral
rise in υM on the consumption-private capital ratio is, given that kG cannot
change instantaneously,

dc0
dυM

¯̄̄̄
dτ=0

=
dc̃

dυM

¯̄̄̄
dτ=0

− κ
dk̃G
dυM

¯̄̄̄
¯
dτ=0

, (A7)

which can be shown to be negative.
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Figure 1
                    Revenue-Neutral Shift from Infrastructure Investment
                                      to Maintenance Expenditure
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Figure 2
                              Optimal Share of Spending on Maintenance
                                  with Endogenous Private Depreciation
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