THE COHOMOLOGY OF PRO-p GROUPS WITH A POWERFULLY EMBEDDED SUBGROUP

Pham Anh Minh* and Peter Symonds

Abstract

We calculate the cohomology of a pro-p group with an extendable and almost powerfully embedded subgroup.

We consider the mod- p cohomology of p-groups and pro- p groups with an almost powerfully embedded subgroup satisfying an extendibility condition. The result has a strikingly simple form.

If G is a pro- p group for some prime p we say that a closed, normal, finitely generated subgroup, N, is almost powerfully embedded if:

- $[G, N] \subset N^{p}$ for $p>2$;
- $[G, N] \subset N^{2}$ and $[N, N] \subset\left(N^{2}\right)^{2}$ for $p=2$.

Where N^{p} denotes the closure of the subgroup of N generated by p-th powers of elements of N.
Let $\Omega_{1} N$ denote the subgroup of N generated by elements of order p. We say that N is Ω-extendable in G if $\Omega_{1} N$ is central in G, so in particular is an elementary abelian subgroup, and if also there is a central extension $E \rightarrow \tilde{G} \rightarrow G$, where $E \cong \Omega_{1} N$ and every non-trivial element of $\Omega_{1} N$ is the image of an element of \tilde{G} of order p^{2}. (So every torsion free group is extendable.)

For any closed normal subgroup $M \subset G$ we define $\Phi_{G}(M)=[G, M] M^{p}$.
Note: It follows from [4, 3.1 and 3.8] that the subgroups defined above are closed, indeed all but the last are open. Also every element of N^{p} is a p-th power and $\Omega_{1} N$ is finite.

Denote by $H^{*}(G)$ the cohomology of G with coefficients in \mathbb{Z} / p (the Galois or continuous cohomology if G is infinite, see [11]), and by $\beta: H^{*}(G) \rightarrow H^{*+1}(G)$ the Bockstein homomorphism. Our main theorem is the following consequence of Theorem 3.13.
Theorem. Let G be a pro-p group and N an almost powerfully embedded subgroup, Ω-extendable in G. Then there exist elements $z_{i}^{(1)}, \ldots, z_{d}^{(1)}$ of $H^{2}\left(G / \Phi_{G}(N)\right), z_{1}, \ldots, z_{k}$ of $H^{2}(G)$ such that
(i) $H^{*}(G) \cong H^{*}\left(G / \Phi_{G}(N)\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k}\right]$;
(ii) $z_{1}^{(1)}, \ldots, z_{d}^{(1)}$ classify the extension

$$
(\mathbb{Z} / p)^{d} \cong \Phi_{G}(N) / \Phi_{G} \Phi_{G}(N) \rightarrow G / \Phi_{G} \Phi_{G}(N) \rightarrow G / \Phi_{G}(N)
$$

(iii) z_{1}, \ldots, z_{k} restrict to a basis of $\beta H^{1}\left(\Omega_{1}(N) \cap N^{p}\right)$.

We also give several partial converses, which give group theoretic information when the cohomology has the form given above. Our basic computational tool is the spectral sequence argument of Proposition 2.4. Finally, in section 4, we calculate the Bocksteins up to an error term which vanishes if the extension is itself extendable.

This problem was investigated by Weigel [13], who considered the case when p is odd and $N=G$ and also by Browder and Pakianathan [2], who considered the case when $N=G$ is uniform and also required

[^0]$p \geq 5$. The latter authors also considered the Bocksteins. In all cases the key spectral sequence argument is similar.

1. Regular Sequences

A regular sequence in ring R is a sequence of elements a_{1}, \ldots, a_{n} such that for each $i=1, \ldots, n, a_{i}$ does not annihilate any non-trivial element of $R /\left(a_{1}, \ldots, a_{i-1}\right)$.

Recall the definition of the Koszul complex over R. Given a sequence of elements a_{1}, \ldots, a_{n} in the centre of $R, K=K_{R}\left(a_{i}, \ldots, a_{n}\right)$ is the the free R-module on certain symbols, which we can take to be monomials $x_{i_{1}} \ldots x_{i_{r}}$ in the symbols x_{1}, \ldots, x_{n} such that $i_{1}<i_{2}<\cdots<i_{r}$ (so no squares occur). It is graded by the degree of the monomial. The differential $d_{r}: K_{r} \rightarrow K_{r-1}$ is the R-linear map defined by

$$
d_{r}\left(x_{i_{1}} \ldots x_{i_{r}}\right)=\sum_{j=1}^{r}(-1)^{j+1} a_{i_{j}} x_{i_{1}} \ldots \hat{x}_{i_{j}} \ldots x_{i_{r}} .
$$

If a_{1}, \ldots, a_{n} is a regular sequence of central elements of R then it is well known that the homology of the associated complex is just $R /\left(a_{1}, \ldots, a_{n}\right)$ in degree 0 and 0 elsewhere.

It is tempting to identify K with the exterior algebra over R on x_{1}, \ldots, x_{n}, and indeed this makes K into a differential graded algebra, but the algebra structure is not part of the definition.

If $2 R=0$ there is a slight variation on this theme, which we will need. Let $J=J_{R}\left(a_{1}, \ldots, a_{n}\right)$ be the free R-module on all monomials in x_{1}, \ldots, x_{n}, again graded by the degree, and define $d_{r}: J_{r} \rightarrow J_{r-1}$ by the same formula as before.

We identify J with the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ and it becomes a differential graded algebra. Now we consider J as a module over $R\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. We do this because $d_{2}\left(x_{i}^{2}\right)=0$ and hence d is linear over $R\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$.

But as an $R\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$-module, $J \cong R\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] \otimes K$ (even though this is not compatible with any multiplicative structure) and so has homology $R\left[x_{1}^{2}, \ldots, x_{n}^{2}\right] \otimes R /\left(a_{1}, \ldots, a_{n}\right) \cong R /\left(a_{1}, \ldots, a_{n}\right)\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. We record this as:

Lemma 1.1. Let a_{1}, \ldots, a_{n} is a regular sequence of central elements in a ring R. Then:
(1) $H_{*}\left(K_{R}\left(a_{1}, \ldots, a_{n}\right)\right) \cong R /\left(a_{1}, \ldots, a_{n}\right)$,
(2) If $2 R=0$ then $H_{*}\left(J_{R}\left(a_{1}, \ldots, a_{n}\right)\right) \cong R /\left(a_{1}, \ldots, a_{n}\right)\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$.

We now provide some regular sequences in the mod- p cohomology of a finite p-group. We shall use the following notation. Let $R=C_{p^{r_{1}}}\left(e_{1}\right) \times C_{p^{r_{2}}}\left(e_{2}\right) \times \cdots \times C_{p^{r_{k}}}\left(e_{k}\right)$ be an abelian p-group, with $C_{p^{r_{i}}}\left(e_{i}\right)$ the cyclic group of order $p^{r_{i}}$ generated by e_{i}.

For each $1 \leq i \leq k$, let $x_{i} \in H^{1}\left(C_{p^{r_{i}}}\left(e_{i}\right)\right) \cong \operatorname{Hom}\left(C_{p^{r_{i}}}\left(e_{i}\right), \mathbb{Z} / p\right)$ correspond to the homomorphism that takes e_{i} to 1 and let $y_{i} \in H^{2}\left(C_{p^{r_{i}}}\left(e_{i}\right)\right)$ be a generator. It is well known that

$$
H^{*}\left(C_{p^{r_{i}}}\right)= \begin{cases}\mathbb{Z} / 2\left[x_{i}\right] & \text { for } p=2 \text { and } r_{i}=1, \\ \Lambda\left[x_{i}\right] \otimes \mathbb{Z} / p\left[y_{i}\right] & \text { otherwise. }\end{cases}
$$

We identify $H^{*}(R)$ with $H^{*}\left(C_{p^{r_{1}}}\left(e_{1}\right)\right) \otimes H^{*}\left(C_{p^{r_{2}}}\left(e_{2}\right)\right) \otimes \cdots \otimes H^{*}\left(C_{p^{r_{k}}}\left(e_{k}\right)\right)$ under the Künneth isomorphism and identify x_{i} and y_{i} with their images in $H^{*}(R)$.

Let $\lambda^{*}(R)$ denote the subalgebra of $H^{*}(R)$ generated by the x_{i} (this need not be an exterior algebra if $p=2$) and set $\lambda(R)=\lambda^{2}(R)$ for brevity. Let $B(R) \subset H^{*}(R)$ be the subspace generated by the y_{i}. Note that $B(R)$ can be characterized as the image of $H^{2}(R ; \mathbb{Z})$ in $H^{2}(R)$. Also $B(R)$ contains the image of the Bockstein map from $H^{1}(R)$, but is not equal to it unless R is elementary abelian. We record the following elementary consequences:

Lemma 1.2. (i) $H^{2}(R)= \begin{cases}\lambda(R)+B(R) & \text { always } \\ \lambda(R) \oplus B(R) & \text { if } p>2 \text { or } p=2 \text { and each } r_{i} \geq 2 \\ \lambda(R) & \text { for } p=2 \text { and } r_{1}=1 .\end{cases}$
(ii) y_{1}, \ldots, y_{k} is a regular sequence in $H^{*}(R)$. Furthermore, given elements $\gamma_{1}, \ldots, \gamma_{k}$ of $\lambda(R)$, the sequence $y_{1}+\gamma_{1}, \ldots, y_{k}+\gamma_{k}$ is regular in $H^{*}(R)$, provided that $p>2$, or $p=2$ and $\min \left(r_{1}, \ldots, r_{k}\right)>1$.

Define $H^{+}(G)$ to be the ideal of $H^{*}(G)$ consisting of elements of positive degrees.
Proposition 1.3. Given a central extension of p-groups

$$
0 \xrightarrow{\theta} A \rightarrow G \rightarrow K \rightarrow 1
$$

with $A \cong(\mathbb{Z} / p)^{m}$, we have:
(i) If A is contained in the Frattini subgroup of G, then $\operatorname{Im}\left(H^{2}(G) \xrightarrow{\text { Res }} H^{2}(A)\right) \subset B(A)$.
(ii) If there exist elements z_{1}, \ldots, z_{m} of $H^{2}(G)$ and $\gamma_{1}, \ldots, \gamma_{m} \in \lambda(A)$ such that either $\left.z_{1}\right|_{A}, \ldots,\left.z_{m}\right|_{A}$ is linearly independent in $B(A)$, or $p>2$ and $\left.z_{1}\right|_{A}-\gamma_{1}, \ldots,\left.z_{m}\right|_{A}-\gamma_{m}$ is linearly independent in $B(A)$, then z_{1}, \ldots, z_{m} is a regular sequence in $H^{*}(G)$.

Proof. (i) was given in [10, Proposition 1.5]. We now prove (ii). Let $i_{A}: A \rightarrow A \times G, i_{G}: G \rightarrow A \times G, f:$ $A \times G \rightarrow G$ be defined by $i_{A}(a)=(a, 1), i_{G}(g)=(0, g), f(a, g)=\theta(a) g, a \in A, g \in G$. Since A is central, f is a homomorphism of groups. Note that $\left(f \circ i_{A}\right)^{*}\left(\operatorname{resp} .\left(f \circ i_{G}\right)^{*}\right)$ is just the restriction (resp. identity) map on cohomology. So, for $1 \leq i \leq m$,

$$
f^{*}\left(z_{i}\right)=\left.z_{i}\right|_{A} \otimes 1+1 \otimes z_{i} \bmod H^{+}(A) \otimes H^{+}(G)
$$

We now use the argument similar to that of [1, Proof of Theorem 1.1]. The special form of $f^{*}\left(z_{i}\right)$ induces for $1 \leq i \leq n$ a homomorphism of algebras

$$
f_{i}^{*}: H^{*}(G) /\left(z_{1}, \ldots, z_{i-1}\right) \rightarrow H^{*}(A) /\left(\left.z_{1}\right|_{A}, \ldots,\left.z_{i-1}\right|_{A}\right) \otimes H^{*}(G) /\left(z_{1}, \ldots, z_{i-1}\right)
$$

Let y be a non-trivial element of $H^{*}(G) /\left(z_{1}, \ldots, z_{i-1}\right)$. We now show that $z_{i} y$ is non-trivial, by claiming that $f_{i}^{*}\left(z_{i} y\right)$ is non-trivial.

Write $f_{i}^{*}(y)=\sum_{s \geq 0} v_{s}$ and $f_{i}^{*}\left(z_{i} y\right)=\sum_{s \geq 0} w_{s}$ with v_{s}, w_{s} in

$$
\left(H^{*}(A) /\left(\left.z_{1}\right|_{A}, \ldots,\left.z_{i-1}\right|_{A}\right)\right)^{s} \otimes H^{*}(G) /\left(z_{1}, \ldots, z_{i-1}\right)
$$

Then $v_{0}=1 \otimes y$ is non-trivial. Let s_{1} be maximal such that $v_{s_{1}}$ is non-trivial. It follows that, for $s_{2}=s_{1}+2, w_{s_{2}}=\left(\left.z_{i}\right|_{A} \otimes 1\right) \cdot v_{s_{1}}$. By Lemma $1.2($ ii $),\left.z_{1}\right|_{A}, \ldots,\left.z_{i}\right|_{A}$ is a regular sequence in $H^{*}(A)$. hence $w_{s_{2}} \neq 0$. Thus z_{1}, \ldots, z_{m} is then a regular sequence in $H^{*}(G)$.

2. Powerfully embedded subgroups and a cohomological characterization

Let P be a pro- p group and let N be a closed normal subgroup of P. Set $Q=P / N$ and denote by $\pi: P \rightarrow Q$ the projection map. Let A be an elementary abelian p-group of rank m and fix a basis a_{1}, \ldots, a_{m} of A. Regard A as a trivial Q-module, so

$$
H^{2}(Q, A)=\oplus_{i=1}^{m} H^{2}\left(Q, \mathbb{Z} / p\left\langle a_{i}\right\rangle\right)=H^{2}(Q)^{\oplus m}
$$

Pick an element $z \in H^{2}(Q, A)$. For every closed subgroup R of Q, denote by

$$
0 \rightarrow A \rightarrow R_{z} \xrightarrow{\pi_{R, z}} R \rightarrow 1
$$

the central extension of groups corresponding to the cohomology class $\left.z\right|_{R}=\operatorname{Res}_{R}^{Q}(z) \in H^{2}(R, A)$.
Let u_{1}, \ldots, u_{m} be the basis of $H^{1}(A)=\operatorname{Hom}(A, \mathbb{Z} / p)$, dual to that of A. We then have the projection map

$$
\left(u_{i}\right)_{*}: H^{2}(Q, A) \rightarrow H^{2}(Q), 1 \leq i \leq m
$$

and z can be expressed as $z=\left(z_{1}, \ldots, z_{m}\right)$ with $z_{i}=\left(u_{i}\right)_{*}(z)$.

Lemma 2.1. (i) All the $\operatorname{Inf}_{P}^{Q}\left(z_{i}\right)=0$ if and only if there exists a surjective homomorphism $\tau: P \rightarrow Q_{z}$ satisfying $\pi_{Q, z} \circ \tau=\pi$.
(ii) Let $R=C_{p^{r_{1}}}\left(e_{1}\right) \times \cdots \times C_{p^{r_{k}}}\left(e_{k}\right)$ be an abelian subgroup of Q. Then:
(iia) R_{z} is abelian if and only if $\left.z_{\ell}\right|_{R} \in B(R), 1 \leq \ell \leq m$;
(iib) let S be the maximal elementary abelian subgroup of R^{2}. Then $\left(S_{z}\right)^{p}=1$ if and only if $\left.z_{\ell}\right|_{R} \in \lambda(R), 1 \leq \ell \leq m$.

Proof. (i) Let $0 \rightarrow A \rightarrow P_{z} \rightarrow P \rightarrow 1$ be a group extension classified by the element $z=\operatorname{Inf}\left({ }_{P}^{Q}\left(z_{1}\right), \ldots\right.$, $\left.\operatorname{Inf}_{P}^{Q}\left(z_{m}\right)\right)$. There exists then a commutative diagram

If all the $\operatorname{Inf}_{P}^{Q}(z)=0$ then ρ is split, by σ say. Hence, by setting $\tau \circ \sigma$, we have $\pi_{Q, z} \circ \tau=\pi$.
Conversely, given τ, we get a splitting $P_{z} \rightarrow A$ by sending x to $\tau(\rho x) \mu(x)^{-1}$.
(iia) This is well known: see [3, IV 3 ex. 8$]$ or use the calculations in $\S 4$.
(iic) We have

$$
\begin{aligned}
\left(S_{z}\right)^{p}=1 & \Leftrightarrow|\langle x\rangle|=p, & & \text { for all } x \in S_{z} \\
& \left.\Leftrightarrow z_{\ell}\right|_{\langle y\rangle}=0, & & \text { for all } y \in S, 1 \leq \ell \leq m \\
& \left.\Leftrightarrow z_{\ell}\right|_{R} \in \lambda(R), & & 1 \leq \ell \leq m .
\end{aligned}
$$

We also have
Lemma 2.2. Suppose that R is an elementary abelian subgroup of Q. Then $\left(R_{z}\right)^{p}=A$ if and only if there exists a basis $b_{1}, b_{2}, \ldots, b_{m}, \ldots$ of R such that $\operatorname{Res}_{\left\langle b_{i}\right\rangle}^{Q}\left(z_{i}\right) \neq 0, \operatorname{Res}_{\left\langle b_{j}\right\rangle}^{Q}\left(z_{i}\right)=0,1 \leq i \leq m, 1 \leq j \neq i$.

Proof. If such a basis exists let \tilde{b}_{i} be an element of the inverse image of b_{i}. Then \tilde{b}_{i} has order p^{2} and $\left\langle\tilde{b}_{i}^{p}\right\rangle=\left\langle e_{i}\right\rangle$.

Conversely, if $\left(R_{z}\right)^{p}=A$ then every element of A is a p-th power of an element of R_{z} (R_{z} is powerful). Let \tilde{b}_{i} be such that $\tilde{b}_{i}^{p}=e_{i}, \tilde{b}_{j}=1, j>m$, and let b_{i} be the image of \tilde{b}_{i} in R.

Lemma 2.3. Consider the extension

$$
0 \rightarrow A \rightarrow Q_{z} \rightarrow Q \rightarrow 1
$$

discussed above and suppose that there is no non-trivial relation $q_{1} z_{1}+\cdots+q_{m} z_{m}=0$ with $q_{i} \in H^{1}(Q)$. Then the sequence

$$
H^{2}(Q) \xrightarrow{\operatorname{Inf}} H^{2}\left(Q_{z}\right) \xrightarrow{\text { Res }} H^{2}(A)
$$

is exact at the middle term.
Proof. The Lyndon-Hochschild-Serre spectral sequence for the extension has E_{2} term $H^{*}(Q) \otimes H^{*}(A)$. Note that $d_{2}\left(u_{i}\right)=z_{i}, 1 \leq i \leq m$ (see the remark after Proposition 2.4). Let $q=q_{1} u_{1}+\cdots+q_{m} u_{m}$ be an element of ker $d_{2}^{1,1}$, with $q_{1}, \ldots, q_{m} \in H^{1}(Q)$. Then $0=d_{2}(q)=-\left(q_{1} z_{1}+\cdots+q_{m} z_{m}\right)$ which implies $q_{1}=\cdots=q_{m}=0$, by the hypothesis. Therefore $d_{2}^{1,1}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}$ is injective and so $E_{3}^{1,1}=0$ and thus $E_{\infty}^{1,1}=0$.

This yields an exact sequence

$$
0 \rightarrow E_{\infty}^{2,0} \rightarrow H^{2}\left(Q_{z}\right) \rightarrow E_{\infty}^{0,2} \rightarrow 0
$$

and identifying the edge maps gives the result claimed.

Proposition 2.4. Suppose that A is contained in the Frattini subgroup of Q_{z} and that z_{1}, \ldots, z_{m} is a regular sequence in $H^{*}(Q)$. Then the inflation and restriction maps induce an isomorphism of rings

$$
H^{*}\left(Q_{z}\right) \cong H^{*}(Q) /\left(z_{1}, \ldots, z_{m}\right) \otimes \mathbb{Z} / p[B(A)]
$$

provided that one of the following conditions is satisfied:
(a) $H^{2}\left(Q_{z}\right) \xrightarrow{\text { Res }} B(A)$ is surjective;
(b) $\beta\left(z_{i}\right) \in\left(z_{1}, \ldots, z_{m}\right), 1 \leq i \leq m$;
(c) $\operatorname{ker}_{\operatorname{Inf}}^{Q_{z}}=\left(z_{1}, \ldots, z_{m}\right)$.

Proof. Let $\left\{E_{r}, d_{r}\right\}$ be the Lyndon-Hochschild-Serre spectral sequence corresponding to the central extension

$$
0 \rightarrow A \rightarrow Q_{z} \rightarrow Q \rightarrow 1
$$

Now $E_{2}=H^{*}(Q) \otimes H^{*}(A)$.
Assume that $p>2$ and that condition (a) holds. By considering the maps $B(A)=\operatorname{Im}\left(\right.$ Res : $H^{2}\left(Q_{z}\right) \rightarrow$ $\left.H^{2}(A)\right) \cong E_{\infty}^{0,2} \subset E_{2}^{0,2}$ we can find elements $\tilde{y}_{1}, \ldots, \tilde{y}_{m} \in E_{2}^{0,2}$ corresponding to $y_{1}, \ldots, y_{m} \in B(A)$ such that $d_{2}\left(\tilde{y}_{i}\right)=0$. Under the isomorphism $E_{2}^{0,2} \cong H^{2}(A)$ we find that $\tilde{y}_{i}=y_{i}(\bmod \lambda(A))$. Let $S=\mathbb{Z} / p\left[\tilde{y}_{1}, \ldots, \tilde{y}_{m}\right]$. Then $E_{2}^{0, *}=S \otimes \Lambda^{*}\left(E_{2}^{0,1}\right)$ and so $E_{2}=S \otimes \Lambda^{*}\left(E_{2}^{0,1}\right) \otimes H^{*}(Q)$.

But d_{2} vanishes on S, by construction, and thus d_{2} is $S \otimes H *(Q)$-linear. So $\left\{E_{2}, d_{2}\right\}$ is just the Koszul complex $K_{S \otimes H^{*}(Q)}\left(z_{1}, \ldots, z_{m}\right)$ of Lemma 1.1. Thus $E_{3}=S \otimes H^{*}(Q) /\left(z_{1}, \ldots, z_{m}\right)=E_{3}^{0, *} \otimes E_{3}^{*, 0}$.

Now E_{3} is generated as a ring by the \tilde{y}_{i} and $E_{3}^{*, 0}$ so, by the product structure, $d_{3}=0$ and $E_{4}=E_{3}$. Subsequently all the differentials are 0 for degree reasons and so $E_{\infty}=E_{3}$.

Let $\hat{y}_{i} \in H^{2}\left(Q_{z}\right)$ have image $\tilde{y}_{i} \in E_{\infty}^{0,2}$ and let $\hat{S}=\mathbb{Z} / p\left[\hat{y}_{1} \ldots, \hat{y}_{m}\right]$. Let $I^{*}=\operatorname{Im}\left(\operatorname{Inf}: H^{*}(Q) \rightarrow\right.$ $H^{*}\left(Q_{z}\right) \cong H^{*}(Q) /\left(z_{1} \ldots, z_{m}\right)$. Then we have a natural ring homomorphism $\phi: \hat{S} \otimes I \rightarrow H^{*}\left(Q_{z}\right)$. If we filter $\hat{S} \otimes I$ by $F^{p}(\hat{S} \otimes I)=\hat{S} \otimes I^{\geq p}$ and $H^{*}\left(Q_{z}\right)$ in the way that yields E_{∞} then ϕ is a homomorphism of filtered rings and induces and isomorphism of the associated graded modules. The filtration is finite in each degree, so ϕ must be an isomorphism. This concludes the proof in this case.

If condition (a) is not available then note that as u_{i} is transgressive, βu_{i} survives to E_{3} and $d_{3}\left(\beta u_{i}\right)=$ $-\beta z_{i}$ (see e.g. [9] and the remark below). Since $E_{3}^{3,0}=H^{3}(Q) /\left(H^{3}(Q) \cap\left(z_{1}, \ldots, z_{m}\right)\right)$, either of the conditions (b) or (c) implies that $d_{3}\left(\beta u_{i}\right)=0$. We set $\tilde{y}_{i}=\beta\left(u_{i}\right)$ and proceed as before.

If $p=2$ then E_{2} is just the complex $J_{H^{*}(Q)}\left(z_{1}, \ldots, z_{m}\right)$ of Lemma 2.1(2), so

$$
E_{3}=H^{*}(Q) /\left(z_{1}, \ldots, z_{m}\right)\left[u_{1}^{2}, \ldots, u_{m}^{2}\right] .
$$

Set $\tilde{y}_{i}=u_{i}^{2}\left(=\beta u_{i}\right)$. Then condition (a) implies that $d_{3}\left(\tilde{y}_{i}\right)=0$ for dimension reasons, and the rest of the proof is just as for p odd.

Remark. By projecting A onto its cyclic factors and comparing spectral sequences, it is easy to see that $d_{2}\left(u_{i}\right)=\lambda_{i} z_{i}$ for some non-zero $\lambda_{i} \in \mathbb{Z} / p$. In fact $\lambda_{i}= \pm 1$, see [6] or [5]. The sign appears to be sensitive to the sign convention used in constructing the double complex for the spectral sequence. Similarly with the formula $d_{3}\left(\beta u_{i}\right)= \pm \beta d_{2}\left(u_{i}\right)$.

From now on, assume that N is a closed normal and finitely generated subgroup of a pro- p group G. Recall (see e.g. [4, 4]) that N is powerfully embedded in G if $[G, N] \subset N^{2 p}$, that G is powerful if it is powerfully embedded in itself. When $p=2, N$ is almost powerfully embedded in G if $[G, N] \subset N^{2}$ and $[N, N] \subset\left(N^{2}\right)^{2}$ (which also implies $[N, N] \subset N^{4}($ see $[7])$). For convenience, we define almost powerfully embedded as powerfully embedded for $p>2$. As noted in [7], we have the following implications:
N powerfully embedded in $G \Rightarrow N$ almost powerfully embedded in $G \Rightarrow N$ powerful.
We quote two characterizations of powerfully embedded and almost powerfully embedded.

Proposition 2.5.

(i) ([4, Lemma 2.2(iv)]) If N is not powerfully embedded in G, then there exists a normal subgroup J of G such that

$$
\begin{aligned}
& N^{2 p}[N, G, G] \subset J \subset N^{2 p}[N, G] \\
& \left|N^{2 p}[N, G]: J\right|=p
\end{aligned}
$$

in other words, G / J is given by the central extension

$$
1 \rightarrow \mathbb{Z} / p \rightarrow G / J \rightarrow G / N^{2 p}[N, G] \rightarrow 1
$$

such that N / J is abelian of exponent $\leq 2 p$, but $N / J \not \subset Z(G / J)$.
(ii) ([7, Proposition 2]) Set $M=N^{p}[N, G], K=M^{p}[M, G], A=N / M, B=M / K . N$ is almost powerfully embedded in G if and only if the map induced from the p-power $A \xrightarrow{p} B$ is linear and surjective.

We now give some cohomological criteria for N to be (almost) powerfully embedded in G. Set $\widehat{G}=$ $G / N^{2 p}[N, G], \widehat{N}=N / N^{2 p}[N, G]$. We have
Theorem 2.6. The following are equivalent:
(i) N is powerfully embedded in G;
(ii) $\operatorname{Res}_{\widehat{N}}^{\widehat{G}}\left(\operatorname{ker} \operatorname{Inf}_{G}^{\widehat{G}}\right) \cap \lambda(\widehat{N})=\{0\}$.

Proof. Let N be powerfully embedded in G (so $N^{2 p}[N, G]=N^{2 p}$, as $[N, G] \subset N^{2 p}$) and let $0 \neq z \in \operatorname{ker}_{G}^{\widehat{G}}$. Consider the central extension

$$
0 \rightarrow \mathbb{Z} / p \xrightarrow{i} \widehat{G}_{z} \rightarrow \widehat{G} \rightarrow 1
$$

corresponding to z. By Lemma 2.1 (i), \widehat{G}_{z} is a homomorphic image of G, via τ. This implies $i(\mathbb{Z} / p) \subset$ $\tau\left(N^{2 p}\right)=\left(\widehat{N}_{z}\right)^{2 p}$. So $\left(\widehat{N}_{z}\right)^{2 p} \neq 1$. Therefore, by Lemma 2.1 (iic), $\left.z\right|_{\widehat{N}} \notin \lambda(\widehat{N})$.

Suppose now that N is not powerfully embedded in G. By Proposition 2.5, there exists a central extension

$$
0 \rightarrow \mathbb{Z} / p \rightarrow \widehat{G}_{w} \rightarrow \widehat{G} \rightarrow 1
$$

corresponding to an element $0 \neq w \in H^{2}(\widehat{G})$ such that \widehat{G}_{w} is a quotient of $G,\left(\widehat{N}_{w}\right)^{2 p}=1,\left[\widehat{N}_{w}, \widehat{G}_{w}\right] \neq 1$. It follows from Lemma 2.1 that $w \in \operatorname{Ker} \operatorname{Inf}_{G}^{\tilde{G}}$ and $\left.w\right|_{\widehat{N}} \in \lambda(\widehat{N})$.

We then have the following corollary, of which the case $p>2$ was given in [12, Theorem 5.1.6].
Corollary 2.7. The following are equivalent:
(i) G is powerful.
(ii) p is odd and the map induced from the inflation

$$
H^{1}(\widehat{G}) \wedge H^{1}(\widehat{G}) \rightarrow H^{2}(G)
$$

is injective, or $p=2$ and

$$
\operatorname{ker}\left(\operatorname{Inf}_{G}^{\widehat{G}}\right) \cap \lambda(\widehat{G})=\{0\}
$$

(iii) the map induced from the inflation

$$
\lambda(\widehat{G}) \rightarrow H^{2}(G)
$$

is injective.
Proof. Recall that G is powerful if and only if it is powerfully embedded in itself. Thus, by Theorem 2.6, G is powerful if and only if $\left(\operatorname{ker}_{\operatorname{Inf}}^{G}(\hat{G}) \cap \lambda(\hat{N})=\{0\}\right.$, so (i) \Leftrightarrow (iii). Note that, for $p \neq 2, \lambda(\widehat{G})=$ $H^{1}(\widehat{G}) \wedge H^{1}(\widehat{G})$ so (ii) is just a restatement of (iii).

If $p=2$, set $\tilde{G}=G / N^{2}[N, G], \tilde{N}=N / N^{2}[N, G]$. A characterization of powerfully embedded normal subgroup N of a 2-group G via the inflation $\operatorname{Inf}_{G}^{\tilde{G}}$ can also be obtained, as follows. First we prepare

Lemma 2.8. Let L be a central subgroup of a 2-group H, and let w be a cohomology class of H / L^{4} satisfying $\left.w\right|_{L^{2} / L^{4}}=0$. Then $w \in \operatorname{Im} \operatorname{Inf}_{H / L^{4}}^{H / L^{2}}$.

Proof. We may suppose that $L^{2} \neq 1$. Set $A_{1}=L / L^{2}, A_{2}=L^{2} / L^{4}, H_{1}=H / L^{2}, H_{2}=H / L^{4}, K=H / L$. A_{1}, A_{2} are then vector spaces over $\mathbb{Z} / 2$ and we have the central extensions

$$
\begin{array}{llll}
0 & \rightarrow A_{1} & \rightarrow H_{1} & \rightarrow K \\
0 & \rightarrow 1 \\
0 & \rightarrow A_{2} & \rightarrow H_{2} & \rightarrow H_{1}
\end{array} \rightarrow 1
$$

Let $z=\left(z_{1}, \ldots, z_{i}\right)$ be the cohomology class classifying the extension $0 \rightarrow A_{2} \rightarrow H_{2} \rightarrow H_{1} \rightarrow 1$. Since L is abelian, by Proposition 1.3 (ii), $\left.z_{j}\right|_{A_{1}} \in B\left(A_{1}\right), 1 \leq j \leq i$. Then $\left(\left(A_{1}\right)_{z}\right)^{2}=A_{2}$ and $\left.z_{1}\right|_{A_{1}}, \ldots,\left.z_{i}\right|_{A_{1}}$ are linearly independent in $B\left(A_{1}\right)$, by Lemma 2.2. It follows from Proposition 1.3 (ii) that z_{1}, \ldots, z_{i} is a regular sequence in $H^{*}\left(H_{1}\right)$. Hence, by Lemma 2.3, $\left.w\right|_{A_{2}}=0$ implies $w \in \operatorname{Im} \operatorname{Inf}_{H_{2}}^{H_{1}}$.

For $a \in \tilde{G}$ (resp. $b \in \widehat{G}$), define $N_{a}=\langle\tilde{N}, a\rangle$ (resp. $\widehat{N}_{b}=\langle\widehat{N}, b\rangle$).
Corollary 2.9. For $p=2$, the following are equivalent:
(i) N is powerfully (resp. almost powerfully) embedded in G;
(ii) for every non-zero element μ of $\operatorname{ker}\left(\operatorname{Inf}: H^{2}(\tilde{G}) \rightarrow H^{2}(G)\right),\left.\mu\right|_{N_{a}} \in B\left(N_{a}\right)$ for every $a \in \tilde{G}$ (resp. $\left.\left.\mu\right|_{\tilde{N}} \in B(\tilde{N})\right)$.

Proof. Let N be powerfully (resp. almost powerfully) embedded in G and let $0 \neq z \in \operatorname{ker}_{G}^{\tilde{G}}$. Consider the central extension

$$
0 \rightarrow \mathbb{Z} / p \rightarrow \tilde{G}_{z} \rightarrow \tilde{G} \rightarrow 1
$$

corresponding to z. By Lemma 2.1 (i), \tilde{G}_{z} is a homomorphic image of G. Since \tilde{N} is elementary abelian, $\left(\tilde{N}_{z}\right)^{4}=1$. As $\left[\tilde{G}_{z}, \tilde{N}_{z}\right] \subset\left(\tilde{N}_{z}\right)^{4}=1$ (resp. $\left[\tilde{N}_{z}, \tilde{N}_{z}\right] \subset\left(\tilde{N}_{z}\right)^{4}=1$), \tilde{N}_{z} is central (resp. abelian). Note that \tilde{N}_{z} is central iff N_{a} is abelian for every $a \in \tilde{G}$. By Lemma 2.1 (iia), it follows that $\left.z\right|_{N_{a}} \in B\left(N_{a}\right)$ for every $a \in \tilde{G}\left(\right.$ resp. $\left.z\right|_{\tilde{N}} \in B(\tilde{N})$).

Suppose now that N is not powerfully (resp. almost powerfully) embedded in G. From the proof of Theorem 2.6, there exists an element $w \in H^{2}(\widehat{G})$ such that \widehat{G}_{w} is a quotient of $G,\left(\widehat{N}_{w}\right)^{4}=1$ and $\left[\widehat{N}_{w}, \widehat{G}_{w}\right] \neq 1$ (resp. $\left[\widehat{N}_{w}, \widehat{N}_{w}\right] \neq 1$). By Lemma $2.1,\left[\widehat{N}_{w}, \widehat{G}_{w}\right] \neq 1$ implies that there exists $b \in \widehat{G}$ such that $\left.w\right|_{\widehat{N}_{b}} \notin B\left(\widehat{N}_{b}\right)$. So $\left.w\right|_{\widehat{N}^{2}}=0$, and $\left.w\right|_{\widehat{N}_{b}} \notin B\left(\widehat{N}_{b}\right)$ for some $b \in \widehat{G}$ (resp. $\left.w\right|_{\tilde{N}} \notin B(\tilde{N})$). Applying Lemma 2.8 with $H=\widehat{G}, L=\widehat{N}$ yields $w=\operatorname{Inf}_{\widehat{G}}^{\tilde{G}}(t)$ for some $t \in \tilde{H}^{*}(\tilde{G})$. Let a be the projection of b on \tilde{G}, then $\left.w\right|_{\widehat{N}_{b}} \notin B\left(\widehat{N}_{b}\right)\left(\right.$ resp. $\left.\left.w\right|_{\tilde{N}} \notin B(\tilde{N})\right)$ implies $\left.t\right|_{N_{a}} \notin B\left(N_{a}\right)$ (resp. $\left.\left.t\right|_{\tilde{N}} \notin B(\tilde{N})\right)$.

As \tilde{G} is a quotient of G, it follows from Lemma 2.1 (i) that $\operatorname{ker} \operatorname{Inf}_{G}^{\tilde{G}}$ contains t.
We then have
Corollary 2.10. For $p=2$, the following are equivalent:
(i) G is powerful;
(ii) $\operatorname{ker}\left(\operatorname{Inf}: H^{2}(\tilde{G}) \rightarrow H^{2}(G)\right) \subset B(\tilde{G})$.

Remark 2.10. Another proof of Theorem 2.6 (for p odd) and Corollary 2.9 (for N almost powerfully embedded in G) also follows from Proposition 2.5 (ii). Indeed, one can deduce that the statement (ii) in Theorem 2.6, together with $\left.\mu\right|_{\tilde{N}} \in B(\tilde{N})$ for $p=2$, is equivalent to the condition that the map $A \xrightarrow{p} B$ be linear and surjective.

3. Cohomology of pro- p Groups with powerfully embedded subgroups

Let N be a closed normal and finitely generated subgroup of a pro-p group G. Set $\Phi_{G}(N)=N^{p}[N, G]$. For $i \geq 1$, define recursively a sequence of closed normal subgroups $\Phi_{G}^{i}(N)$ of G as follows:

$$
\Phi_{G}^{1}(N)=N, \Phi_{G}^{i+1}(N)=\Phi_{G}\left(\Phi_{G}^{i}(N)\right) .
$$

It is clear that $\left[\Phi_{G}^{i}(N), \Phi_{G}^{j}(N)\right] \subset \Phi_{G}^{i+j}(N)$ and the p-power map induces a map $\Phi_{G}^{i}(N) \xrightarrow{p} \Phi_{G}^{i+1}(N), i, j \geq$ 1; also, $[G, N] \subset \Phi_{G}^{2}(N)$.

For $i \geq 0$, set $G_{i}=G / \Phi_{G}^{i+1}(N), A_{i}=A_{i}(N)=\Phi_{G}^{i}(N) / \Phi_{G}^{i+1}(N)\left(\right.$ with the convention that $\Phi_{G}^{0}(N)=$ $N)$. By [4, Proposition 1.16], $G=\underset{\longleftrightarrow}{\lim } G_{i}$, hence $H^{*}(G)=\underset{\longrightarrow}{\lim } H^{*}\left(G_{i}\right)$. Each A_{i} is a vector space over \mathbb{Z} / p and is central in G_{i}. We also have successive central extensions

Define $\ell=\ell\left(\Phi_{G}^{*}(N)\right)$ to be the largest integer s, if any, satisfying $\Phi_{G}^{s}(N) \neq 1$, or $\ell\left(\Phi_{G}^{*}(N)\right)=\infty$ otherwise (so $G=G_{\ell}$ if $\ell<\infty$). Denote by $\phi_{i, j}: G_{j} \rightarrow G_{i}$ and $\phi_{i}: G \rightarrow G_{i}$ the projection maps, $j \geq i$. For $1 \leq i$, let n_{i} be the dimension of A_{i} and let $\kappa_{i-1}=\left(z_{1}^{(i-1)}, \ldots, z_{n_{i}}^{(i-1)}\right) \in H^{2}\left(G_{i-1}\right)^{\oplus n_{i}}$ be the cohomology class corresponding to the central extension

$$
0 \rightarrow A_{i} \rightarrow G_{i} \rightarrow G_{i-1} \rightarrow 1
$$

We first have
Lemma 3.1. For every $1 \leq i \leq \ell-1$, no non-zero linear combination of the $z_{j}^{(i)}$,s belongs to $\operatorname{Im} \phi_{i-1, i}^{*}$.
Proof. Given $1 \leq i \leq \ell-1$, assume that z is a non-zero linear combination of the $z_{j}^{(i)}$, s with $z \in \operatorname{Im}$ $\phi_{i-1, i}^{*}$. Without loss of generality, we may assume that $z=\sum_{j=1}^{n_{i+1}} \lambda_{j} z_{j}^{(i)}$ with $\lambda_{1} \neq 0$. There exists then a basis $\left(e_{1}, \ldots, e_{n_{i+1}}\right)$ of A_{i+1} such that $\kappa_{i}=\left(z, z_{2}^{(i)}, \ldots, z_{n_{i+1}}^{i)}\right) \in H^{2}\left(G_{i}\right)^{\oplus n_{i+1}}$.

Since $z \in \operatorname{Im} \phi_{i-1, i}^{*}$, its restriction to A_{i} is 0 , by Lemma 2.1. Thus $\left\langle e_{1}\right\rangle$ is a factor of $\Phi_{G}^{i}(N) / \Phi_{G}^{i+1}(N)$, a contradiction.

Proposition 3.2. The following are equivalent:
(i) N is almost powerfully embedded in G;
(ii) $\left(\left(A_{1}\right)_{\kappa_{1}}\right)^{p}=A_{2}$; also, $0 \neq\left. z_{j}^{(1)}\right|_{A_{1}} \in B\left(A_{1}\right), 1 \leq j \leq n_{2}$, for $p=2$.

Proof. Suppose that N is almost powerfully embedded in G. By Lemma $3.1, z_{j}^{(1)} \neq 0,1 \leq j \leq n_{2}$. It follows from Theorem 2.6 (for $p>2$) and Corollary 2.9 (for $p=2$) that, for any non-zero linear combination z of the $z_{j}^{(1)}$'s, $\left.z\right|_{A_{1}} \notin \lambda\left(A_{1}\right)$ for $p>2$ and $\left.z\right|_{A_{1}} \in B\left(A_{1}\right)$ for $p=2$. There exists then a basis $e_{1}, \ldots, e_{n_{1}}$ of A_{1} such that $\left.z_{j}^{(1)}\right|_{\left\langle e_{j}\right\rangle} \neq 0,\left.z_{j}^{(1)}\right|_{\left\langle e_{i}\right\rangle}=0,1 \leq i \neq j \leq n_{2}$. Hence, by Lemma 2.2, $\left(\left(A_{1}\right)_{\kappa_{1}}\right)^{p}=A_{2}$.

Conversely, suppose that (ii) holds. If $p=2$, (i) also holds, by Corollary 2.9. Assume that $p>2$ and N is not powerfully embedded in G. From the proof of Theorem 2.6, there exists a non-zero linear combination z of the $z_{j}^{(1)}$,s such that $\left.z\right|_{A_{1}} \in \lambda\left(A_{1}\right)$. Arguing as in the proof of Lemma 3.1, there exists an element of A_{2} not belonging to $\left(\left(A_{1}\right)_{\kappa_{1}}\right)^{p}$, a contradiction.

For $i<j \leq \ell$ and for every element $\xi \in H^{*}\left(G_{i}\right)$, consider ξ as an element of $H^{*}\left(G_{j}\right)$ via the inflation $\operatorname{map} \phi_{i, j}^{*}$. We then have

Theorem 3.3. Let N be almost powerfully embedded in a p-group G. We have:
(i) for $1 \leq i \leq \ell-1,\left(\left(A_{i}\right)_{\kappa_{i}}\right)^{p}=A_{i+1}, n_{1} \geq n_{2} \cdots \geq n_{\ell}$, and the sequence $H^{*}\left(G_{i}\right) \xrightarrow{\phi_{i, i+1}^{*}} H^{*}\left(G_{i+1}\right) \xrightarrow{\text { Res }}$ $B\left(A_{i+1}\right)$ is exact;
(ii) for $1 \leq i \leq \ell-1, z_{1}^{(i)}, \ldots, z_{n_{i+1}}^{(i)}$ is a regular sequence in $H^{*}\left(G_{i}\right)$;
(iii) if $n_{1}=\cdots=n_{r}=d, 2 \leq r \leq \ell$, then
(iiia) the map $H^{2}\left(G_{i}\right) \xrightarrow{\text { Res }} B\left(A_{i}\right)$ is surjective, for $1 \leq i \leq r-1$;
(iiib) for $2 \leq i \leq r-1$,

$$
\begin{aligned}
H^{*}\left(G_{i}\right) & =H^{*}\left(G_{i-1}\right) /\left(z_{1}^{(i-1)}, \ldots, z_{d}^{(i-1)}\right) \otimes \mathbb{Z} / p\left[z_{1}^{(i)}, \ldots, z_{d}^{(i)}\right] \\
& =H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}^{(i)}, \ldots, z_{d}^{(i)}\right] .
\end{aligned}
$$

Proof. It follows from Proposition 3.2 that $\left(\left(A_{1}\right)_{\kappa_{1}}\right)^{p}=A_{2}$. As N is powerful, we also have $\left(\left(A_{i}\right)_{\kappa_{i}}\right)^{p}=$ $A_{i+1}, i \geq 2$, and $n_{1} \geq n_{2} \cdots \geq n_{\ell}$ (see e.g. [4, Theorem 2.7]). By Lemma 2.2 (and Proposition 3.2 (ii) for $p=2),\left.z_{1}^{(i)}\right|_{A_{i}}, \ldots,\left.z_{n_{i+1}}^{(i)}\right|_{A_{i}}$ satisfies the assumption of Proposition 1.3 (ii). So $z_{1}^{(i)}, \ldots, z_{n_{i+1}}^{(i)}$ is a regular sequence in $H^{*}\left(G_{i}\right)$. Therefore $H^{*}\left(G_{i}\right) \xrightarrow{\phi_{i, i+1}^{*}} H^{*}\left(G_{i+1}\right) \xrightarrow{\text { Res }} B\left(A_{i+1}\right)$ is exact by Lemma 2.3. (i), (ii) are then proved. (iii) is straightforward from (i), (ii), Lemma 2.3 and Proposition 2.4.

Remark 3.4. Theorem 3.3 also holds if G is a pro- p group.
Definition. Let N be almost powerfully embedded in G and let $d=d(N)$ be the minimal number of generators of N. Set $\ell=\ell\left(\Phi_{G}^{*}(N)\right), \Omega_{1}(N)=\overline{\left\langle x \in N \mid x^{p}=1\right\rangle}$.

- N is said to be uniform if $n_{i}=\operatorname{dim}_{\mathbb{Z} / p} A_{i}(N)=d$ for every $1 \leq i \leq \ell$. In such a case, N is also said to be almost uniformly embedded in G.
- N is called Ω-extendable in G if $\Omega_{1}(N)$ is central in G and there exists a central extension $0 \rightarrow Z \rightarrow \Gamma \rightarrow G \rightarrow 1$ classified by $z \in H^{2}(G, Z)$, with $Z=(\mathbb{Z} / p)^{r}, r=\operatorname{rank}\left(\Omega_{1}(N)\right)$ and $Z=\left(\Omega_{1}(N)_{z}\right)^{p}$ and Γ is called an $\Omega_{1}(N)$-extension of $G . G$ is Ω-extendable if it is Ω-extendable in itself.

Remark 3.5. 1. If N is almost uniformly embedded in G and if $\Omega=\Omega_{1}(N) \subset Z(G) \cap \Phi(N)$ with $d(\Omega)=d$, the Ω-extendable property of N in G is equivalent to the existence of elements u_{1}, \ldots, u_{d} of $H^{2}(G)$ satisfying $B(\Omega)=\left\langle\left. u_{1}\right|_{\Omega}, \ldots,\left.u_{d}\right|_{\Omega}\right\rangle$, by Lemma 2.2. Let $\left(w_{1}, \ldots, w_{d}\right) \in H^{2}(G / \Omega)^{\oplus d}$ be any cohomology class classified the extension $0 \rightarrow(\mathbb{Z} / p)^{d} \rightarrow G \rightarrow G / \Omega \rightarrow 1$, and let $\left\{E_{r}, d_{r}\right\}$ be the Lyndon-HochschildSerre spectral sequence corresponding to this extension. It follows from the proof of Proposition 2.4 that $B(\Omega) \subset \operatorname{Im} \operatorname{Res}_{\Omega}^{G}$ if and only if $d_{3}=0$, or, equivalently, $\beta\left(w_{i}\right) \in\left(w_{1}, \ldots, w_{d}\right), 1 \leq i \leq d$. So the Ω-extendibility of N in G is equivalent to the condition that $\beta\left(w_{i}\right) \in\left(w_{1}, \ldots, w_{d}\right), 1 \leq i \leq d$.
2. If N is almost powerfully embedded in the pro-p group G and $T=T(N)$ is the set of elements of finite order of N, then T is a normal subgroup of G (see [4], Theorem 4.20) and N / T is almost uniformly embedded in G / T. In such a case, $\Omega_{1}(N)=\Omega_{1}(T)$. Furthermore, as $N^{p^{k}}=\left\{g^{p^{k}} \mid g \in N\right\}$ ([4], Corollary 3.5), it follows that $N^{2 p} \cap T=T^{2 p}\left(N^{2} \cap T=T^{2},\left(N^{2}\right)^{2} \cap T=\left(T^{2}\right)^{2}\right.$ for $\left.p=2\right)$. So T is also almost powerfully embedded in G.
Examples. 1. If G is an pro- p group of finite rank then, by [4, Corollary 4.3], G contains a characteristic, open, uniform subgroup. If G is powerful then, by [4, Theorem 2.7], there exists a term $P_{i}(G)$ in the lower p-series of G which is uniform and powerfully embedded in G.
2. Let $D_{2^{n}}=\left\langle a_{n}, b_{n} \mid a_{n}^{2^{n-1}}=b^{2}=1,\left(a_{n} b_{n}\right)^{2}=1\right\rangle$ be the dihedral group of order 2^{n}. We then have a projection map $\varphi_{i j}: D_{2^{j}} \rightarrow D_{2^{i}}$ which maps a_{j} (resp. b_{j}) to a_{i} (resp. b_{i}), for $j \geq i$. Define $\mathbb{D}=\lim D_{2^{n}}$. Then $\mathbb{D}=\left\langle a, b \mid b^{2}=1,(a b)^{2}=1\right\rangle$ so that the projection map $\varphi_{i}: \mathbb{D} \rightarrow D_{2^{i}} \operatorname{maps} a$ (resp. \overleftarrow{b}) to a_{i} (resp. b_{i}), $i \geq 1$. It is clear that $\left\langle a_{n}\right\rangle$ is almost powerfully embedded, but not powerfully embedded, and Ω-extendable in $D_{2^{n}}$. Also, $\langle a\rangle$ is almost uniformly embedded in \mathbb{D}.

However, any cyclic subgroup of index 2 of a quaternion group Q of order 8 is powerfully embedded in Q, but not Ω-extendable in Q. Also, if M is the extraspecial p-group of order p^{3} and exponent p^{2} with $p>2$, then M is powerful, the center of M is powerfully embedded but not Ω-extendable in M.
3. Let n be an integer. For every $k \geq 1$, define $\Gamma_{n}(k)=\left\{A \in G L_{n}\left(\mathbb{Z} / p^{k+1}\right) \mid A=I_{n} \bmod \left(p^{k}\right)\right\}$. Then $\Gamma_{n}(k)$ with $k \geq 1$ for $p>2, k \geq 2$ for $p=2$ is uniform and Ω-extendable.

Corollary 3.6. If N is almost uniformly embedded in a p-group G with $d=d(N)$ and $\ell=\ell\left(\Phi_{G}^{*}(N)\right) \geq 3$, then, for $2 \leq j \leq \ell-1$,

$$
\begin{aligned}
H^{*}\left(G_{j}\right) & =H^{*}\left(G_{j-1}\right) /\left(z_{1}^{(j-1)}, \ldots, z_{d}^{(j-1)}\right) \otimes \mathbb{Z} / p\left[z_{1}^{(j)}, \ldots, z_{d}^{(j)}\right] \\
& =H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}^{(j)}, \ldots, z_{d}^{(j)}\right]
\end{aligned}
$$

Furthermore, if N is also Ω-extendable in G, there exist z_{1}, \ldots, z_{d} in $H^{2}(G)$ such that

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right] .
$$

Proof. By the first assumption, $n_{1}=\cdots=n_{\ell}=d$. The first equalities follows then from Theorem 3.3.
Suppose that N is also Ω-extendable in G. By Remark 3.5.1, there exist z_{1}, \ldots, z_{d} in $H^{2}(G)$ such that $\left.z_{1}\right|_{\Omega_{1}(N)}, \ldots,\left.z_{d}\right|_{\Omega_{1}(N)}$ is a basis of $B\left(\Omega_{1}(N)\right)$. Consider the central extension $1 \rightarrow(\mathbb{Z} / p)^{d} \rightarrow \Gamma \rightarrow G \rightarrow 1$ corresponding to $z=\left(z_{1}, \ldots, z_{d}\right)$. It follows that N_{z} is, in turn, almost uniformly embedded in Γ. The last equality follows then from the first part of the Corollary.

The above corollary can be generalized to the case where G is almost powerfully embedded in G (see Theorem 3.13 below).

Lemma 3.7. Suppose that N is almost powerfully embedded in a p-group G and $n_{i}>n_{i+1}$ with a given i.
(i) Let $a_{1}, \ldots, a_{j}, \ldots, a_{n_{i}}$ be elements of $\Phi_{G}^{i}(N) \backslash \Phi_{G}^{i+1}(N)$ satisfying:
(ia) $\phi_{i}^{*}\left(a_{1}\right), \ldots, \phi_{i}^{*}\left(a_{n_{i}}\right)$ is a basis of A_{i};
(ib) $\operatorname{ord}\left(a_{1}\right)=\cdots=\operatorname{ord}\left(a_{j}\right)=p<\operatorname{ord}\left(a_{k}\right)$, for $k>j$.
Then there exist elements $b_{j+1}, \ldots, b_{n_{i}}$ of $\Phi_{G}^{i}(N)$ such that, for $k>j$, ord $\left(b_{k}\right)=p, \phi_{i}^{*}\left(b_{k}\right)=a_{k}$. Precisely, for every $1 \neq x \in \Phi_{G}^{i}(N)$ satisfying $1 \neq x^{p} \in \Phi_{G}^{j}(N)$ with $j>i+1$, there exists $y \in \Phi_{G}^{j-1}(N)$ such that $(x y)^{p}=1$;
(ii) For every element a of order p of $\Phi_{G}^{i}(N) \backslash \Phi_{G}^{i+1}(N)$, there exists $\xi \in H^{+}\left(G_{i}\right)$ satisfying $\left.\xi\right|_{\left\langle\phi_{i}(a)\right\rangle} \neq$ 0 ; hence, as an element of $H^{+}(G), \xi \mid\langle a\rangle \neq 0$, ξ is nilpotent in $H^{+}(G)$ and $\xi \notin \operatorname{Im} \phi_{i-1}^{*}$.

Proof. (i) follows from [4, Proof of Theorem 4.5]. Set $b=\phi_{i}(a)$. Then $b \neq 1$. Pick an element w of $B\left(A_{i}\right)$ satisfying $\left.w\right|_{\langle b\rangle} \neq 0$ and set $\xi=\mathcal{N}_{A_{i} \rightarrow G_{i}}(w)$ with $\mathcal{N}_{A_{i} \rightarrow G_{i}}$ the Evens norm map. So $\left.\xi\right|_{\langle b\rangle}$ is not nilpotent. From the commutative diagram

since $H^{*}(\langle b\rangle) \xrightarrow{\text { Inf }} H^{*}(\langle a\rangle)$ is an isomorphism, it follows that $\left.\xi\right|_{\langle a\rangle} \neq 0$. So ξ is not nilpotent in $H^{*}(G)$ and $\xi \notin \operatorname{Im} \phi_{i-1}^{*}$.

We now have a sufficient and necessary condition for an (almost) powerfully embedded subgroup in G to be also (almost) uniformly embedded, as follows.

Corollary 3.8. Let N be (almost) powerfully embedded in a p-group G with $d(N)=d$ and $\ell\left(\Phi_{G}^{*}(N)\right)=$ $\ell \geq 2$. The following are equivalent:
(i) N is (almost) uniformly embedded in G;
(ii) $n_{2}=d$ and $\operatorname{Im} \phi_{1}^{*}=\operatorname{Im} \phi_{\ell-1}^{*}$.

Proof. (i) \Rightarrow (ii) follows from Corollary 3.6. Suppose that (ii) holds. If N is not uniform, then, by Lemma 3.7, there exist $j \geq 2, \xi \in H^{*}\left(G_{j}\right)$ such that $\left.\xi\right|_{A_{j}} \neq 0$ and ξ is not nilpotent in $H^{*}(G)$. This contradicts the fact that $\operatorname{Im} \phi_{1}^{*}=\operatorname{Im} \phi_{\ell-1}^{*}$ implies $0=\xi \in H^{*}(G)$. So N is uniform.

The next result gives a necessary and sufficient condition for an (almost) powerfully embedded subgroup to be also (almost) uniformly embedded and Ω-extendable in G.
Corollary 3.9. Let N be (almost) powerfully embedded in a p-group G with $d(N)=d$ and $\ell\left(\Phi_{G}^{*}(N)\right)=$ $\ell \geq 2$. The following are equivalent:
(i) N is (almost) uniformly embedded and Ω-extendable in G;
(ii) $n_{\ell}=d$ and there exist z_{1}, \ldots, z_{d} in $H^{2}(G)$ such that

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]
$$

and $\left.z_{1}\right|_{A_{\ell}}, \ldots,\left.z_{d}\right|_{A_{\ell}}$ is a basis of $B\left(A_{\ell}\right)$;
(iii) $n_{2}=d$, $\operatorname{Im} \phi_{1}^{*}=\operatorname{Im} \phi_{\ell-1}^{*}$ and there exist $z_{1}, \ldots, z_{d} \in H^{2}(G)$ such that $\left.z_{1}\right|_{A_{\ell}}, \ldots,\left.z_{d}\right|_{A_{\ell}}$ is a basis of $B\left(A_{\ell}\right)$;

Proof. For convenience, write $H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right)=H$. The implication (i) \Rightarrow (ii) follows from Corollary 3.6. Also, by Corollary 3.6 , (i) implies $n_{2}=d$ (as N is uniform), $\operatorname{ker} \phi_{1}^{*}=\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right)$, $\operatorname{ker} \phi_{\ell-1}^{*}=$ $\left(z_{1}^{(\ell-1)}, \ldots, z_{d}^{(\ell-1)}\right)$, hence

$$
\operatorname{Im} \phi_{1}^{*}=\operatorname{Im} \phi_{\ell-1}^{*}=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right)
$$

So (i) \Rightarrow (iii).
Suppose that (ii) holds. By Theorem 3.3 (i), $n_{1} \geq n_{2} \cdots \geq n_{\ell}$, so $n_{1}=\cdots=n_{\ell}=d$, hence N is (almost) uniformly embedded in G. As $B\left(A_{\ell}\right) \subset \operatorname{Im} \operatorname{Res}_{A_{\ell}}^{G}$, it follows from Remark 3.5.1 that N is Ω-extendable in G. So (i) \Leftrightarrow (ii).

Suppose that (iii) holds. By Corollary 3.8, N is (almost) uniformly embedded in G. The existence of the z_{i} 's shows that N is Ω-extendable in G.

The following is straightforward from Corollaries 3.6, 3.8 and 3.9.
Theorem 3.10. Let N be a normal subgroup of a p-group G with $d(N)=d$. The following are equivalent:
(i) N is uniformly (resp. almost uniformly, for $p=2$) embedded and Ω-extendable in G with $\ell\left(\Phi_{G}^{*}(N)\right) \geq 2$;
(ii) $n_{\ell}=d$ and there exists a system of linearly independent elements $\psi_{1}, \ldots, \psi_{d}$ of $H^{2}\left(G_{1}\right)$ satisfying:
(a) the inflation and restriction maps induces an isomorphism

$$
H^{*}(G) \cong H^{*}\left(G_{1}\right) /\left(\psi_{1}, \ldots, \psi_{d}\right) \otimes \mathbb{Z} / p\left[B\left(A_{\ell}\right)\right]
$$

and
(b) for every non-zero linear combination ψ of the ψ_{i} 's, either $p>2$ and $\left.\psi\right|_{A_{1}} \notin \lambda\left(A_{1}\right)$, or $p=2$ and $\left.\psi\right|_{\left\langle A_{1}, a\right\rangle} \in B\left(\left\langle A_{1}, a\right\rangle\right)$ for every $a \in G_{1}$ (resp. $\left.\psi\right|_{A_{1}} \in B\left(A_{1}\right)$).

We now have the following corollary, of which the last assertion is a celebrated theorem of Lazard ([8]).
Corollary 3.11. Let G be an infinite pro-p group and let N be a closed normal subgroup of G with $d(N)=d<\infty$. The following are equivalent:
(i) N is uniformly (resp. almost uniformly, for $p=2$) embedded in G;
(ii) There exists a system of linearly independent elements $\psi_{1}, \ldots, \psi_{d}$ of $H^{2}\left(G_{1}\right)$ satisfying:
(a) the inflation map induces an isomorphism

$$
H^{*}(G) \cong H^{*}\left(G_{1}\right) /\left(\psi_{1}, \ldots, \psi_{d}\right)
$$

and
(b) for every non-zero linear combination ψ of the ψ_{i} 's, either $p>2$ and $\left.\psi\right|_{A_{1}} \notin \lambda\left(A_{1}\right)$, or $p=2$ and $\left.\psi\right|_{\left\langle A_{1}, a\right\rangle} \in B\left(\left\langle A_{1}, a\right\rangle\right)$ for every $a \in G_{1}$ (resp. $\left.\psi\right|_{A_{1}} \in B\left(A_{1}\right)$).

In particular, if G is any finitely generated pro-p group, the inflation map $\operatorname{Inf}_{G}^{G / G^{p}[G, G]}$ induces an isomorphism

$$
\Lambda_{*}\left(\left(G / G^{p}[G, G]\right)^{*}\right) \cong H^{*}(G)
$$

if and only if G is uniform.
Proof. Suppose that (i) holds. It follows that, for every $i \geq 2, A_{i}(N)$ is uniformly (resp. almost uniformly, for $p=2$) embedded and Ω-extendable in G_{i}. By Theorem 3.10, for $i \geq 2$,

$$
H^{*}\left(G_{i}\right) \cong H^{*}\left(G_{1}\right) /\left(\psi_{1}, \ldots, \psi_{d}\right) \otimes \mathbb{Z} / p\left[B\left(A_{i}\right)\right]
$$

and the condition (ii b) of Theorem 3.10 is satisfied. Since $H^{*}(G)=\underset{\longrightarrow}{\lim } H^{*}\left(G_{i}\right)$, (ii) also holds.
Conversely, assume that (ii) holds. It follows that ker $\phi_{1}^{*}=\left(\psi_{1}, \ldots, \psi_{d}\right)$. By Theorem 2.6 and Corollary 2.9, N is powerfully (resp. almost powerfully) embedded in G. If $n_{1}>n_{2}$, Lemma 3.7 shows the existence of a non-nilpotent element of $H^{+}(G)$ not belonging to $\operatorname{Im} \phi_{1}^{*}$, a contradiction. Hence $n_{2}=n_{1}$. For $i \geq 2$, as $\operatorname{Im} \phi_{1}^{*}=\operatorname{Im} \phi_{i}^{*}, A_{i}(N)$ is uniformly (resp. almost uniformly, for $p=2$) embedded and Ω-extendable in G_{i}, by Corollary 3.9. So N is uniformly (resp. almost uniformly, for $p=2$) embedded in G.

Lemma 3.12. Let N be almost powerfully embedded in a p-group G. For $k \geq 1, a \in G, b \in \Phi_{G}^{i}(N)$,
(i) $\left[a, b^{p^{k}}\right]=[a, b]^{p^{k}} \bmod \Phi_{G}^{i+k+2}(N)$;
(ii) if $[a, b]=x y$ with $x \in Z(G), y \in \Phi_{G}^{j}(N)$, then $\left[a, b^{p}\right]=[a, b]^{p} \bmod \Phi_{G}^{j+2}(N)$;
(iii) if $\Omega=\Omega_{1}(N)$ is central and $\operatorname{ord}(b)=p^{2}$, then $[a, b] \in \Omega$.

Proof. (i) We prove by induction on k. Suppose that $k=1$. Applying [4, Chapter 4, Exercise 6] yields $\left[a, b^{p}\right]=[a, b]^{p} \bmod \Phi_{G}^{j}(N)$ with $j \geq i+3$ if p is odd or $i>1$. If $p=2$ and $i=1$, as $[a, b] \in \Phi_{G}^{2}(N)$ and N is powerful, $[[a, b], b] \in \Phi_{G}^{4}(N)$ (see [4, Chapter 2, Exercise 4]). So $\left[a, b^{2}\right]=[a, b]^{2}[[a, b], b]=$ $[a, b]^{2} \bmod \Phi_{G}^{4}(N)$.

Assume that the equality holds for $k \geq 1$. So

$$
\begin{aligned}
{[a, b]^{p^{k+1}} } & =\left([a, b]^{p^{k}}\right)^{p} \\
& =\left(\left[a, b^{p^{k}}\right] \bmod \Phi_{G}^{i+k+2}\right)^{p} \\
& =\left[a, b^{p^{k}}\right]^{p} \bmod \Phi_{G}^{i+k+3} \\
& =\left[a, b^{p^{k+1}}\right] \bmod \Phi_{G}^{i+k+3} .
\end{aligned}
$$

(ii) Without loss of generality, we may assume that $\Phi_{G}^{j+2}(N)=1$. Therefore, for every $g \in G,[[a, b], g] \in$ $\Phi_{G}^{j+1}(N) \subset Z(G)$; in particular, $[[a, b], g]=1$ if $p=2$ and $g \in N$ (see [4, Chapter 2, Exercise 4]). We then have

$$
\begin{aligned}
{\left[a, b^{p}\right] } & =[a, b][a, b]^{b} \ldots[a, b]^{p^{p-1}} \\
& =\prod_{m=0}^{p-1}[a, b]\left[[a, b], b^{m}\right] \\
& =[a, b]^{p} \prod_{m=0}^{p-1}\left[[a, b], b^{m}\right] \quad \text { since }\left[[a, b], b^{m}\right] \text { is central } \\
& =[a, b]^{p}[[a, b], b]^{p(p-1) / 2} \\
& =[a, b]^{p} \bmod \Phi_{G}^{j+2}(N) .
\end{aligned}
$$

(iii) Let j be the smallest integer with $[a, b] \in \Phi_{G}^{j}(N)$. As $\left(b^{p}\right)^{p}=1, b^{p}$ is central. By (ii), $1=\left[a, b^{p}\right]=$ $[a, b]^{p} \bmod \Phi_{G}^{j+2}(N)$. By Lemma 3.7 (i), $[a, b]$ is of form

$$
[a, b]=c x
$$

with $c \in \Phi_{G}^{j}(N) \cap \Omega, x \in \Phi_{G}^{j+1}(N)$. Applying (ii) yields

$$
\begin{align*}
x^{p}=(c x)^{p}=[a, b]^{p} & =\left[a, b^{p}\right] \bmod \Phi_{G}^{j+3}(N) \tag{ii}\\
& =1 \bmod \Phi_{G}^{j+3}(N)
\end{align*}
$$

since b^{p} is central.
Therefore $x^{p} \in \Phi_{G}^{j+3}(N)$. By Lemma 3.7 (i), x is of form $x=d z$ with $d \in \Phi_{G}^{j+1}(N) \cap \Omega, z \in \Phi_{G}^{j+2}(N)$, so $[a, b]=c d z$. Hence, by induction, it follows that $[a, b] \in \Omega$.

Suppose that N is almost powerfully embedded in a pro-p group G and $\Omega=\Omega_{1}(N)$ is central with $\Omega \not \subset \Phi(G)$. Write $\Omega=M \times L$ with $M=\Omega \cap \Phi(G)$. L is then a direct factor of G. Therefore, there exist subgroups K, N of G such that
(i) $G=K \times L, N=N_{1} \times L, \Omega_{1}\left(N_{1}\right)=M$;
(ii) N_{1} is almost powerfully embedded in K;
(iii) N is Ω-extendable in G implies that N_{1} is Ω-extendable in K.

Furthermore, L is elementary abelian and $H^{*}(G)=H^{*}(K) \otimes H^{*}(L)$. Hence, to consider the cohomology of pro- p groups G having an almost powerfully embedded and Ω-extendable subgroups N in G, we may suppose that $\Omega=\Omega_{1}(N)$ is central and is contained in the Frattini subgroup of G. We have
Theorem 3.13. Let N be almost powerfully embedded in a pro-p group G with $d\left(N^{p}\right)=d$. Set $\Omega=$ $\Omega_{1}(N), \Omega^{\prime}=\Omega \cap N^{p}, k=d(\Omega), k^{\prime}=d\left(\Omega^{\prime}\right)$. The following are equivalent:
(i) N is Ω-extendable in G;
(ii) Ω is abelian and there exist z_{1}, \ldots, z_{k} in $H^{2}(G)$ such that $\left.z_{1}\right|_{\Omega}, \ldots,\left.z_{k}\right|_{\Omega}\left(\right.$ resp. $\left.\left.z_{1}\right|_{\Omega^{\prime}}, \ldots,\left.z_{k^{\prime}}\right|_{\Omega^{\prime}}\right)$ is a basis of $B(\Omega)$ (resp. $B\left(\Omega^{\prime}\right)$) and

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k^{\prime}}\right]
$$

Proof.

Let T be the set of elements of finite order of N. By Remark 3.5, T is a closed normal subgroup which is almost powerfully embedded in G. So $\Omega=\Omega_{1}(T)$ and, by Lemma $3.7, d(T)=k$.

We prove (i) \Rightarrow (ii). Suppose that N is Ω-extendable in G. Consider the following cases:

- $N=T$ (so $d=k^{\prime}$). Set $\ell=\ell\left(\Phi_{G}^{*}(N)\right.$). We argue by induction on ℓ. If $\ell=2$, then, by Lemma 2.3 and Remark 3.5,

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]
$$

with $\left.z_{1}\right|_{\Omega^{\prime}}, \ldots,\left.z_{d}\right|_{\Omega^{\prime}}$ a basis of $B\left(\Omega^{\prime}\right)$; furthermore, by Remark 3.5 , there exist z_{d+1}, \ldots, z_{k} in $H^{2}(G)$ such that $\left.z_{1}\right|_{\Omega}, \ldots,\left.z_{k}\right|_{\Omega}$ is a basis of $B(\Omega)$. Assume that (i) holds for $\ell-1$ with $\ell>2$. As discussed above, we also assume that $\Omega \subset \Phi(G)$. Let $\Omega^{\prime \prime}$ be a complement of Ω^{\prime} in Ω. It follows that $\Omega^{\prime}=$ $\Omega / \Omega^{\prime \prime}=\Omega_{1}\left(N / \Omega^{\prime \prime}\right)$. Hence $N / \Omega^{\prime \prime}$ is Ω-extendable in $Q=G / \Omega^{\prime \prime}(*)$. By Lemma 3.12 (iii) (see also [13, Proposition 5.4 (a)]), $N^{\prime}=N / \Omega$ is almost powerfully embedded and Ω-extendable in $G^{\prime}=G / \Omega$; furthermore, $d\left(N^{\prime}\right)=d\left(\Omega_{1}\left(N^{\prime}\right)\right)=d$. Set $e=d\left(\left(N^{\prime}\right)^{p}\right)=d\left(\Omega_{1}\left(N^{\prime}\right) \cap\left(N^{\prime}\right)^{p}\right)$ and $R=G^{\prime} /\left(N^{\prime}\right)^{p}$. Since $\ell\left(\Phi_{G^{\prime}}^{*}\left(N^{\prime}\right)\right)=\ell-1$, it follows from the inductive hypothesis that there exist u_{1}, \ldots, u_{e} in $H^{2}(R)$ and $s_{1}, \ldots, s_{e}, u_{e+1}, \ldots, u_{d}$ in $H^{2}\left(G^{\prime}\right)$ such that, via the restriction maps, the images of $s_{1}, \ldots, s_{e}, u_{e+1}, \ldots, u_{d}$ (resp. $\left.s_{1}, \ldots, s_{e}\right)$ form a basis of $B\left(\Omega_{1}\left(N^{\prime}\right)\right)$ (resp. $B\left(\Omega_{1}\left(\left(N^{\prime}\right)^{p}\right)\right)$ and

$$
H^{*}\left(G^{\prime}\right)=H^{*}(R) /\left(u_{1}, \ldots, u_{e}\right) \otimes \mathbb{Z} / p\left[s_{1}, \ldots, s_{e}\right]
$$

By $(*)$, Lemma 2.3 and Remark 3.5, there exist z_{1}, \ldots, z_{d} in $H^{2}(Q)$ such that $\left.z_{1}\right|_{\Omega^{\prime}}, \ldots,\left.z_{d}\right|_{\Omega^{\prime}}$ form a basis of $B\left(\Omega^{\prime}\right)$ and

$$
\begin{aligned}
H^{*}(Q) & =H^{*}\left(G^{\prime}\right) /\left(s_{1}, \ldots, s_{e}, u_{e+1}, \ldots, u_{d}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right] \\
& =H^{*}(R) /\left(u_{1}, \ldots, u_{d}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]
\end{aligned}
$$

As $\Omega^{\prime \prime} \cap N^{p}=1$, ker $\left(H^{2}(Q) \xrightarrow{\operatorname{Inf}} H^{2}(G)\right) \subset \operatorname{Im} \operatorname{Inf}_{Q}^{R}$. There exist then u_{d+1}, \ldots, u_{k} in $H^{2}(R)$ and z_{d+1}, \ldots, z_{k} in $H^{2}(G)$ such that $\left.z_{d+1}\right|_{\Omega^{\prime \prime}}, \ldots,\left.z_{k}\right|_{\Omega^{\prime \prime}}$ form a basis of $B\left(\Omega^{\prime \prime}\right)$ and

$$
H^{*}(G)=H^{*}(R) /\left(u_{1}, \ldots, u_{k}\right) \otimes \mathbb{Z} / p\left[z_{d+1}, \ldots, z_{k}\right] \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]
$$

Since $H^{*}\left(G_{1}\right)=H^{*}(R) /\left(u_{d+1}, \ldots, u_{k}\right) \otimes \mathbb{Z} / p\left[z_{d+1}, \ldots, z_{k}\right]$ and $z_{1}^{(i)}=\operatorname{Inf}_{G_{1}}^{R}\left(u_{i}\right), 1 \leq i \leq d$, it follows that

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{1}^{(d)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]
$$

- $T \varsubsetneqq N$. By Remark 3.5.2, T is almost powerfully embedded in G. It follows from the above case that there exist $\varphi_{1}, \ldots, \varphi_{\ell} \in H^{2}\left(G / T^{p}\right), z_{1}, \ldots, z_{k^{\prime}}, \ldots, z_{k} \in H^{2}(G)$ such that

$$
H^{*}(G)=H^{*}\left(G / T^{p}\right) /\left(\varphi_{1}, \ldots, \varphi_{\ell}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k^{\prime}}\right]
$$

with $\left.z_{1}\right|_{\Omega^{\prime}}, \ldots,\left.z_{k^{\prime}}\right|_{\Omega^{\prime}}\left(\right.$ resp. $\left.\left.z_{1}\right|_{\Omega}, \ldots,\left.z_{k}\right|_{\Omega}\right)$ a basis of $B\left(\Omega^{\prime}\right)$ (resp. $B(\Omega)$).
Set $K=G / T^{p}$ and $M=N / T^{p}$. By [4, Theorem 4.20 and its proof], M is almost powerfully embedded in K. Denote by w the element of $H^{2}\left(K_{1}, A_{2}(M)\right)$ classifying the extension $0 \rightarrow A_{2}(M) \rightarrow K_{2} \rightarrow K_{1} \rightarrow 1$ and set $m=\operatorname{dim}_{\mathbb{Z} / p} A_{2}(M)$. Note that $A_{1}(M)$ is elementary abelian. There exists then an elementary abelian subgroup B of rank m of $A_{1}(M)$ such that $\left(B_{w}\right)^{p}=A_{2}(M)$. Let C be the preimage of B via the projection map $K \rightarrow K_{1}=K / C^{p}$. It follows that C is almost uniformly embedded in K. Hence, by Corollary 3.9 , there exist $\psi_{1}, \ldots, \psi_{m} \in H^{2}\left(K / C^{p}\right)$ such that

$$
H^{*}(K)=H^{*}\left(K / C^{p}\right) /\left(\psi_{1}, \ldots, \psi_{m}\right)
$$

Note that K / C^{p} is nothing but G_{1}. Each φ_{i} is then represented by an element ψ_{m+i} of $H^{2}\left(G_{1}\right)$. Therefore

$$
H^{*}(G)=H^{*}\left(G_{1}\right) /\left(\psi_{1}, \ldots, \psi_{m+\ell}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k^{\prime}}\right]
$$

As $\left(\psi_{1}, \ldots, \psi_{m+\ell}\right)$ is nothing but $\operatorname{Ker} \phi_{1}^{*}$, it coincides with $\left(z_{1}^{(d)}, \ldots, z_{d}^{(1)}\right)$. So (i) \Rightarrow (ii).
Conversely, suppose that (ii) holds. We need prove that Ω is central. Let G_{z} be given by the central extension

$$
0 \rightarrow(\mathbb{Z} / p)^{k} \xrightarrow{i} G_{z} \rightarrow G \rightarrow 1
$$

classified by $z=\left(z_{1}, \ldots, z_{k}\right) \in H^{2}(G)^{\oplus k}$. It follows that $\Omega_{1}\left(G_{z}\right)=i\left((\mathbb{Z} / p)^{k}\right)$ is central in G_{z}. Set $\Omega_{2}=\left\langle g \in G_{z} \mid g^{p^{2}}=1\right\rangle$. Then $\Omega=\Omega_{2} / \Omega_{1}\left(G_{z}\right)$. By Lemma 3.12 (iii), Ω is central.

We have the following corollary, of which the case $p \geq 5$ was given in [2, Theorem 3.16] and the case p odd in [13, Corollary 4.2], both in the finite case, when $n=k=d$.
Corollary 3.14. Let G be a powerful pro-p group with $d(G)=n$ and $d(\Phi(G))=d$. Set $\Omega=\Omega_{1}(G)$ and $k=d(\Omega)$. The following are equivalent:
(i) Ω is abelian and there exist y_{1}, \ldots, y_{k+d-n} in $H^{2}(G)$ and a basis x_{1}, \ldots, x_{n} of $H^{1}(G)$ such that

$$
H^{*}(G)= \begin{cases}\Lambda\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Z} / p\left[y_{1}, \ldots, y_{k+d-n}, \beta x_{d+1}, \ldots, \beta x_{n}\right] & \text { for } p>2 \\ \Lambda\left[x_{1}, \ldots, x_{d}\right] \otimes \mathbb{Z} / 2\left[y_{1}, \ldots, y_{k+d-n}, x_{d+1}, \ldots, x_{n}\right] & \text { for } p=2\end{cases}
$$

and $\left.y_{1}\right|_{\Omega}, \ldots,\left.y_{k+d-n}\right|_{\Omega},\left.\beta x_{d+1}\right|_{\Omega}, \ldots,\left.\beta x_{n}\right|_{\Omega}$ is a basis of $B(\Omega)$;
(ii) G is Ω-extendable.

Proof. The implication (i) \Rightarrow (ii) follows from Theorem 3.13. Suppose that G is Ω-extendable. Let N be a minimal subgroup of G satisfying $N^{p}=\Phi(G) . N$ is then a closed normal subgroup and powerfully embedded in G. Furthermore, N is Ω-extendable in G and $d(N)=d$. It follows that $\Omega / \Omega \cap \Phi(G)$ (resp. $\Omega \cap \Phi(G))$ is of rank $n-d$ (resp. $k+d-n$). By Theorem 3.13,

$$
H^{*}(G)=H^{*}(G / \Phi(G)) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k+d-n}\right]
$$

with $\left.z_{1}\right|_{\Omega \cap \Phi(G)}, \ldots,\left.z_{k+d-n}\right|_{\Omega \cap \Phi(G)}$ a basis of $B(\Omega \cap \Phi(G))$. Since $G / \Phi(G)$ is elementary abelian, (i) follows from Lemma 1.2 and Corollary 2.6.

Theorem 3.15. In the circumstances of Theorem 3.13, let Γ be an Ω-extension of G. Let U be a subgroup of $A u t(\Gamma)$ which preserves N, and let V be the image of U in $\operatorname{Aut}(G)$. Then, as V-modules, $H^{*}(G) \cong H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \otimes \mathbb{Z} / p\left[\Omega^{*}\right]$.

Proof. $H^{*}(G) \cong H^{*}\left(G_{1}\right) /\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right)$ is the image of inflation from G_{1}, so is preserved by V.
The linear span of z_{1}, \ldots, z_{k} is isomorphic to Ω^{*}. It is the kernel of inflation to Γ, so is preserved by V, hence so is $\mathbb{Z} / p\left[z_{1}, \ldots, z_{k}\right]$.

4. The Bockstein

This section is devoted to the study of the Bockstein homomorphism on $H^{*}(G)$ with G a pro- p group having an almost powerfully embedded subgroup N.

It is sometimes useful to be able to calculate with an explicit construction of group extensions. Let $A=C_{p^{r_{1}}}\left(e_{1}\right) \times \cdots \times C_{p^{r_{n}}}\left(e_{n}\right)$ and let U be an elementary abelian group of rank m, considered as a trivial A-module. Let $z=\left(z_{1}, \ldots, z_{m}\right) \in H^{2}(A, U)$ and let \tilde{z} be a representative normalized cocycle. Let $A_{\tilde{z}}$ be a group defined as follows. $A_{\tilde{z}}=U \times A$ as sets and the multiplication is given by

$$
(u, x) \cdot(v, y)=(u+v+\tilde{z}(x, y), x y)
$$

with $u, v \in U, x, y \in A$. If \tilde{z} is changed by the codifferential of a normalized cochain c then there is an isomorphism $A_{\tilde{z}} \rightarrow A_{\tilde{z}+c}$ given by $(u, x) \mapsto(u+c(x), x)$.

We choose $x_{i} \in H^{1}\left(C_{p^{r_{i}}}\left(e_{i}\right)\right)$ as in section 1 and denote by \tilde{x}_{i} the representing normalized cocycle. We specify $y_{i} \in H^{2}\left(C_{p^{r_{i}}}\left(e_{i}\right)\right)$ by the cocycle

$$
\tilde{y}_{i}\left(e_{i}^{t}, e_{i}^{s}\right)= \begin{cases}1 & \text { for } t+s \geq p^{r_{i}} \\ 0 & \text { for } t+s<p^{r_{i}}\end{cases}
$$

As before we also regard these elements as cocycles on A.
Lemma 4.1. If $z_{\ell}=\sum_{i=1}^{n} \alpha_{i}^{(\ell)} y_{i}+\sum_{1 \leq i<j \leq n} \lambda_{i j}^{(\ell)} x_{i} x_{j}$ then:
(i) If $r_{i}=1$ then $\beta x_{i}=y_{i}$,
(ii) $\left(u, e_{i}\right)^{p^{r_{i}}}=\left(\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(m)}\right), 1\right)$,
(iii) $\left[\left(u, e_{i}\right),\left(v, e_{j}\right)\right]=\left(u, e_{i}\right)^{-1}\left(v, e_{j}\right)^{-1}\left(u, e_{i}\right)\left(v, e_{j}\right)=\left(\left(\lambda_{i j}^{(1)}, \ldots, \lambda_{i j}^{(m)}\right), 1\right)$, where we define $\lambda_{i j}^{(\ell)}=$ $-\lambda_{j i}^{(\ell)}$ if $i>j$ and 0 if $i=j$.

Notice that these sets of equations are invariant under adding a coboundary to \tilde{z}.
Proof. Part (i) is an easy calculation with cocycles.
For (ii) one proves, by induction on s, that $\left(u, e_{i}\right)^{s}=\left(s u+\sum_{k=1}^{s-1} \tilde{z}\left(e_{i}, e_{i}^{s}\right), e_{i}^{s}\right)$. Now set $s=p^{r_{i}}$ and evaluate the explicit cocycles.

For (iii), note that $\left(u, e_{i}\right)\left(v, e_{j}\right)=\left(v, e_{j}\right)\left(u, e_{i}\right)\left(\tilde{z}\left(e_{i}, e_{j}\right)-\tilde{z}\left(e_{j}, e_{i}\right), 1\right)$. Now finish by evaluating $\tilde{z}\left(e_{i}, e_{j}\right)-\tilde{z}\left(e_{j}, e_{i}\right)$ using explicit cocycles.

Suppose now that

$$
A=C_{p^{r}}\left(e_{0}\right) \times C_{p}\left(e_{1}\right) \times \cdots \times C_{p}\left(e_{n}\right)
$$

be an abelian group with $r \geq 1$, and let $B=\left\langle e_{1}, \ldots, e_{n}\right\rangle$
Let Γ be given by the central extension

$$
0 \rightarrow(\mathbb{Z} / p)^{n} \xrightarrow{i} \Gamma \xrightarrow{\varphi} A \rightarrow 1
$$

corresponding to a cohomology class $\left(z_{1}, \ldots, z_{n}\right) \in H^{2}(A)^{\oplus n}$. Suppose that $i\left((\mathbb{Z} / p)^{n}\right) \subset \Phi(\Gamma)$, that $\varphi^{-1}(B)$ is almost powerfully embedded and Ω-extendable in Γ. By Lemma 2.2 and Theorem 3.3, the z_{i} can be chosen such that

$$
\left.z_{i}\right|_{\left\langle e_{j}\right\rangle}= \begin{cases}y_{i} & \text { for } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Since $\varphi^{-1}(B)$ is Ω-extendable in Γ, it follows from Theorem 3.13 that each βz_{i} belongs to $\left(z_{1}, \ldots, z_{n}\right)$, hence is of the form

$$
\begin{equation*}
\beta z_{i}=\sum_{\substack{k, \ell \\ \ell>0}} \alpha_{k \ell}^{(i)} x_{k} z_{\ell} \tag{1}
\end{equation*}
$$

with $\alpha_{k \ell}^{(i)} \in \mathbb{Z} / p, 1 \leq i \leq n$. We have
Lemma 4.2. For $1 \leq i \leq n, 0 \leq k, \ell \leq n$, we have $\alpha_{k k}^{(i)}=0, \alpha_{k \ell}^{(i)}=-\alpha_{\ell k}^{(i)}$ and

$$
z_{i}=-\sum_{k<\ell} \alpha_{k \ell}^{(i)} x_{k} x_{\ell} \bmod B(A)
$$

In other words, $\left[\left(0, e_{k}\right),\left(0, e_{\ell}\right)\right]=\prod_{i=1}^{n}\left(0, e_{i}\right)^{-p \alpha_{k \ell}^{(i)}}, 0 \leq k, \ell \leq n$.
Proof. Write

$$
\begin{equation*}
z_{i}=y_{i}+\sum_{0<\ell} \gamma_{0 \ell}^{(i)} x_{0} x_{\ell}+\sum_{1 \leq k<\ell} \gamma_{k \ell}^{(i)} x_{k} x_{\ell}+\gamma_{i} y_{0} \tag{2}
\end{equation*}
$$

with $\gamma_{s t}^{(i)}, \gamma_{i} \in \mathbb{Z} / p, 1 \leq i \leq n$. (Note that, for $p=2$ and $1 \leq k<\ell, \gamma_{k \ell}^{(i)}=0$ by Proposition 3.2, as $\varphi^{-1}(B)$ is powerful.) So

$$
\begin{equation*}
\beta z_{i}=\sum_{0<\ell} \gamma_{0 \ell}^{(i)}\left[x_{\ell} \beta\left(x_{0}\right)-x_{0} y_{\ell}\right]+\sum_{1 \leq k<\ell} \gamma_{k \ell}^{(i)}\left[x_{\ell} y_{k}-x_{k} y_{\ell}\right] . \tag{3}
\end{equation*}
$$

Also, from (1) and (2), we have

$$
\begin{align*}
\beta z_{i} & =\sum_{\substack{k, \ell \\
\ell>0}} \alpha_{k \ell}^{(i)} x_{k}\left[y_{\ell}+\sum_{0<s} \gamma_{0 s}^{(\ell)} x_{0} x_{s}+\sum_{1 \leq t<s} \gamma_{t s}^{(\ell)} x_{t} x_{s}+\gamma_{\ell} y_{0}\right] \\
& =\sum_{\substack{k, \ell \\
\ell>0}} \alpha_{k \ell}^{(i)} x_{k} y_{\ell}+\sum_{\substack{k, \ell \\
\ell>0}} \sum_{0<s} \alpha_{k \ell}^{(i)} \gamma_{0 s}^{(\ell)} x_{k} x_{0} x_{s}+\sum_{\substack{k, \ell \\
\ell>0}} \sum_{1 \leq t<s} \alpha_{k \ell}^{(i)} \gamma_{t s}^{(\ell)} x_{k} x_{t} x_{s}+\sum_{\substack{k, \ell \\
\ell>0}} \alpha_{k \ell}^{(i)} \gamma_{\ell} x_{k} y_{0} \\
& = \begin{cases}\sum_{\substack{k, \ell}} \alpha_{k \ell}^{(i)} x_{k} y_{\ell}+\sum_{k, \ell} \alpha_{k \ell}^{(i)} \gamma_{\ell} x_{k} y_{0} \bmod \lambda^{3}(A) & \text { for } p>2, \\
\ell>0 \\
\sum_{\substack{k, \ell}} \alpha_{k \ell}^{(i)} x_{k} y_{\ell}+\sum_{\substack{k, \ell}} \sum_{0<s} \alpha_{k \ell}^{(i)} \gamma_{0 s}^{(\ell)} x_{k} x_{0} x_{s}+\sum_{\substack{k, \ell}} \alpha_{k \ell}^{(i)} \gamma_{\ell} x_{k} y_{0} & \text { for } p=2 . \\
\ell>0 & \end{cases} \tag{4}
\end{align*}
$$

Comparing (3) and (4) yields then $\alpha_{k k}^{(i)}=0, \alpha_{k \ell}^{(i)}=-\alpha_{\ell k}^{(i)}$ and $\alpha_{k \ell}^{(i)}=-\gamma_{k \ell}^{(i)}$ for $k<\ell$. The last equality follows from (2) and Lemma 4.1.

With the notation as above, let Δ be given by the central extension

$$
0 \rightarrow(\mathbb{Z} / p)^{n+1} \xrightarrow{j} \Delta \xrightarrow{\psi} A \rightarrow 1
$$

corresponding to a cohomology class $\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in H^{2}(A)^{\oplus n+1}$. Suppose that $j\left((\mathbb{Z} / p)^{n+1}\right) \subset \Phi(\Delta)$, that $r \geq 2$ (so $\beta x_{0}=0$) and $\psi^{-1}\left(\Omega_{1}(A)\right)$ is almost powerfully embedded and Ω-extendable in Γ. As above, the w_{i} can be chosen such that

$$
\left.w_{i}\right|_{\left\langle e_{j}\right\rangle}= \begin{cases}y_{i} & \text { for } i=j \\ 0 & \text { otherwise }\end{cases}
$$

and each βw_{i} is of form

$$
\begin{equation*}
\beta w_{i}=\sum_{k, \ell} \sigma_{k \ell}^{(i)} x_{k} w_{\ell} \tag{5}
\end{equation*}
$$

with $\sigma_{k \ell}^{(i)} \in \mathbb{Z} / p, 0 \leq i \leq n$. We have

Lemma 4.3. For $0 \leq i \leq n, 0 \leq k, \ell \leq n$, we have $\sigma_{k k}^{(i)}=0, \sigma_{k \ell}^{(i)}=-\sigma_{\ell k}^{(i)}$ and

$$
w_{i}=-\sum_{k<\ell} \sigma_{k \ell}^{(i)} x_{k} x_{\ell} \bmod B(A)
$$

In other words, $\left[\left(0, e_{k}\right),\left(0, e_{\ell}\right)\right]=\left(0, e_{0}\right)^{-p^{2} \sigma_{k \ell}^{(0)}} \prod_{i=1}^{n}\left(0, e_{i}\right)^{-p \sigma_{k \ell}^{(i)}}, 0 \leq k, \ell \leq n$.
Proof. We use a similar argument to the one of the proof of Lemma 4.2. Write

$$
\begin{equation*}
w_{i}=y_{i}+\gamma_{0 \ell}^{(i)} x_{0} x_{\ell}+\sum_{1 \leq k<\ell} \gamma_{k \ell}^{(i)} x_{k} x_{\ell}, \tag{6}
\end{equation*}
$$

with $\gamma_{s t}^{(i)} \in \mathbb{Z} / p, 0 \leq i \leq n$. (So, for $p=2$ and $1 \leq k<\ell, \gamma_{k \ell}^{(i)}=0$.) Therefore

$$
\begin{equation*}
\beta w_{i}=-\sum_{0<\ell} \gamma_{0 \ell}^{(i)} x_{0} y_{\ell}+\sum_{1 \leq k<\ell} \gamma_{k \ell}^{(i)}\left[x_{\ell} y_{k}-x_{k} y_{\ell}\right] \tag{7}
\end{equation*}
$$

From (5) and (6), we have

$$
\begin{align*}
\beta w_{i} & =\sum_{k, \ell} \sigma_{k \ell}^{(i)} x_{k}\left[y_{\ell}+\sum_{0<s} \gamma_{0 s}^{(\ell)} x_{0} x_{s}+\sum_{1 \leq t<s} \gamma_{t s}^{(\ell)} x_{t} x_{s}\right] \\
& =\sum_{k, \ell} \sigma_{k \ell}^{(i)} x_{k} y_{\ell}+\sum_{k, \ell} \sum_{0<s} \sigma_{k \ell}^{(i)} \gamma_{0 s}^{(\ell)} x_{k} x_{0} x_{s}+\sum_{k, \ell} \sum_{1 \leq t<s} \sigma_{k \ell}^{(i)} \gamma_{t s}^{(\ell)} x_{k} x_{t} x_{s} \\
& = \begin{cases}\sum_{k, \ell} \sigma_{k \ell}^{(i)} x_{k} y_{\ell} \bmod \lambda^{3}(A) & \text { for } p>2, \\
\sum_{k, \ell} \sigma_{k \ell}^{(i)} x_{k} y_{\ell}+\sum_{k, \ell} \sum_{0<s} \sigma_{k \ell}^{(i)} \gamma_{0 s}^{(\ell)} x_{k} x_{0} x_{s} & \text { for } p=2 .\end{cases} \tag{8}
\end{align*}
$$

Comparing (7) and (8) yields then $\sigma_{k k}^{(i)}=0, \sigma_{k \ell}^{(i)}=-\sigma_{\ell k}^{(i)}$ and $\sigma_{k \ell}^{(i)}=-\gamma_{k \ell}^{(i)}$ for $k<\ell$. The last equality follows from (6) and Lemma 4.1.

Suppose now that N is almost powerfully embedded in the p-group G with $d(N)=d$. Let a_{1}, \ldots, a_{r}, a_{r+1}, \ldots, a_{m} be a minimal system of generators of G with $a_{1}, \ldots, a_{r} \in N$ (with the convention that $r=0$ if $N \subset \Phi(G))$. So, for every $i \geq 1, \phi_{i}\left(a_{1}\right), \ldots, \phi_{i}\left(a_{m}\right)$ also generate G_{i}. Define $x_{j}, 1 \leq j \leq n$ in $H^{1}\left(G_{1}\right)$ by $x_{j}\left(\phi_{1}\left(a_{k}\right)\right)=\delta_{j k}$. Set $e_{i}=a_{i}, 1 \leq i \leq m$. There exist then $e_{r+1}, \ldots, e_{d} \in N$ such that e_{1}, \ldots, e_{d} generate N. As N is powerful, the e_{i}^{\prime} 's can be renumbered so that $e_{1}^{p^{i-1}}, \ldots, e_{n_{i}}^{p^{i-1}}$ generate $\Phi_{G}^{i}(N)$. The x_{j} 's are then considered as elements of $H^{*}\left(G_{i}\right), i \geq 2$, via the inflation map.

Theorem 4.4. Suppose that N is almost uniformly embedded in G with $\ell=\ell\left(\Phi_{G}^{*}(N)\right) \geq 3$. For $2 \leq i \leq \ell-1$, the classes $z_{1}^{(i)}, \ldots, z_{d}^{(i)}$ given in Section 2 can be chosen such that:
(i) $\left.z_{j}^{(i)}\right|_{\left\langle\phi_{i}\left(e_{k}^{p^{i-1}}\right)\right\rangle}=0$ if $j \neq k$;
(ii) if

$$
\begin{equation*}
\beta z_{j}^{(1)}=\sum_{s, t} \lambda_{s t}^{(j)} x_{s} z_{t}^{(1)} \tag{9}
\end{equation*}
$$

with $\lambda_{s t}^{(j)} \in \mathbb{Z} / p, 1 \leq j \leq d$, then:
(iia) $\lambda_{s s}^{(j)}=0$;
(iib) for $2 \leq i \leq \ell-2,1 \leq j \leq d$,

$$
\begin{aligned}
\beta z_{j}^{(i)} & =\sum_{s t} \lambda_{s t}^{(j)} x_{s} z_{t}^{(i)}, \\
\beta z_{j}^{(\ell-1)} & =\sum_{s t} \lambda_{s t}^{(j)} x_{s} z_{t}^{(\ell-1)}+\eta_{j},
\end{aligned}
$$

with $\eta_{j} \in \operatorname{Im} \operatorname{Inf}_{G}^{G_{1}}$. If N is Ω-extendable in G, then $\eta_{j}=0,1 \leq j \leq d$.
In particular, if $p=2$ or if $[N, G] \subset N^{p^{2}}$ for $p>2$, we have, for $1 \leq j \leq d$,

$$
\begin{aligned}
\beta z_{j}^{(i)} & =0,1 \leq i \leq \ell-2, \\
\beta z_{j}^{(\ell-1)} & \in \operatorname{Im}_{\operatorname{Inf}_{G}^{G_{1}}},
\end{aligned}
$$

and $\beta z_{j}^{(\ell-1)}=0$ if N is Ω-extendable in G.

Proof. (i) is clear from Lemma 2.2 and Proposition 3.2. We now prove (ii). Set $A=\left\langle\phi_{1}\left(a_{k}\right), A_{1}\right\rangle$ with a given $1 \leq k \leq m . A$ is then an abelian subgroup of G_{1}. It follows from (9) that

$$
\left.\beta z_{j}^{(1)}\right|_{A}=\left.\left.\sum_{s=1}^{m} \sum_{t=1}^{d} \lambda_{s t}^{(j)} x_{s}\right|_{A} z_{t}^{(1)}\right|_{A} .
$$

By Lemmas 4.1, 4.2 and 4.3, this implies $\lambda_{s s}^{(j)}=0$ and, for $s \neq t$,

$$
\left[a_{s}, e_{t}\right]=\prod_{j=1}^{d} e_{j}^{-p \lambda_{s t}^{(j)}} \bmod \Phi_{G}^{3}(N)
$$

Hence, by Lemma 3.12 (i), for $s \neq t$

$$
\begin{align*}
{\left[a_{s}, e_{t}^{p^{i-1}}\right] } & =\left[a_{s}, e_{t}\right]^{p^{i-1}} \bmod \Phi_{G}^{i+2}(N) \\
& =\prod_{j=1}^{d} e_{j}^{-p^{i} \lambda_{s t}^{(j)}} \bmod \Phi_{G}^{i+2}(N) \tag{10}
\end{align*}
$$

Given $i \leq \ell-2$, for $1 \leq k \leq m$, define B_{k} to be the abelian subgroup of G_{i} given by $B_{k}=\left\langle e_{k}, A_{i}\right\rangle$. Note that $\beta z_{j}^{(i)}$ belongs to $\left(z_{1}^{(i)}, \ldots, z_{d}^{(i)}\right)$, for $i \leq \ell-2$; hence it should be a linear combination of the $x_{k} z_{t}^{(i)}$ s. By (i), (10), Lemmas 4.2, 4.3 and from the structure of $H^{*}\left(G_{i}\right),\left.\beta z_{j}^{(i)}\right|_{B_{k}}$ should be of form

$$
\left.\beta z_{j}^{(i)}\right|_{B_{k}}=\left.\left.\sum_{s, t} \lambda_{s t}^{(j)} x_{s}\right|_{B_{k}} z_{t}^{(i)}\right|_{B_{k}}
$$

Therefore

$$
\beta z_{j}^{(i)}=\sum_{s, t} \lambda_{s t}^{(j)} x_{s} z_{t}^{(i)}
$$

Analogously, we also get the required decomposition for $z_{j}^{(\ell-1)}, 1 \leq j \leq d$, by noting that, modulo Im $\operatorname{Inf}_{G}^{G_{1}}, \beta z_{j}^{(\ell-1)}$ also belongs to $\left(z_{1}^{(\ell-1)}, \ldots, z_{d}^{(\ell-1)}\right)$, and $\left.\xi\right|_{B_{k}}=0$ for every $\xi \in \operatorname{Im} \operatorname{Inf}_{G}^{G_{1}}$. Furthermore, if N is Ω-extendable in G, then $\beta z_{j}^{(\ell-1)}$ belongs to $\left(z_{1}^{(\ell-1)}, \ldots, z_{d}^{(\ell-1)}\right)$, hence $\eta_{j}=0$.

Finally, if $p=2$ or if $[N, G] \subset N^{p^{2}}$ for $p>2$, then $\beta z_{j}^{(1)}=0$, for $1 \leq j \leq d$. So the last equalities follow from what we just proved. The theorem follows.

Suppose that N is almost powerfully embedded and Ω-extendable in a finite p-group G. As noted above, $d\left(\Omega_{1}(N)\right)=d(N)$ and we may consider the case where $\Omega_{1}(N)$ is contained in the Frattini subgroup of G. The proof of the above theorem can be applied to the subgroup $N / \Omega_{1}(N)$ of $G / \Omega_{1}(N)$ and, together with Theorem 3.13, yields the following

Theorem 4.5. Let N be almost powerfully embedded and Ω-extendable in a finite p-group G. Assume that $\Omega=\Omega_{1}(N)$ is contained in $N^{p}, d(\Omega)=d$. Pick a basis x_{1}, \ldots, x_{m} of $H^{1}\left(G_{1}\right)$ and a cohomology class $\left(w_{1}, \ldots, w_{d}\right) \in H^{2}\left(G_{1}\right)^{\oplus d}$ corresponding to the central extension $0 \rightarrow A_{2} \rightarrow G_{2} \rightarrow G_{1} \rightarrow 1$. Then there exist z_{1}, \ldots, z_{d} of $H^{2}(G), \eta_{1}, \ldots, \eta_{d}$ of $\operatorname{Im} \operatorname{Inf}_{G}^{G_{1}}$ such that:
(i) $H^{*}(G)=H^{*}\left(G_{1}\right) /\left(w_{1}, \ldots, w_{d}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{d}\right]$;
(ii) $\left.z_{1}\right|_{\Omega}, \ldots,\left.z_{d}\right|_{\Omega}$ is a basis of $B(\Omega)$;
(iii) if

$$
\beta w_{j}=\sum_{r, s} \lambda_{r s}^{(j)} x_{r} w_{s}, 1 \leq j \leq k
$$

then

$$
\beta z_{j}=\sum_{r, s} \lambda_{r s}^{(j)} x_{r} z_{s}+\eta_{j}, 1 \leq j \leq k
$$

The extension Γ of G by $(\mathbb{Z} / p)^{d}$ corresponding to $\left(z_{1}, \ldots, z_{d}\right)$ is also Ω-extendable if and only if all the η_{j} 's vanish.

In particular, if $[N, G] \subset N^{p^{2}}$ (for example, if N is powerfully embedded in G for $p=2$), then $\beta w_{j}=0, \beta z_{j} \in \operatorname{Im} \operatorname{Inf}_{G}^{G_{1}}, 1 \leq j \leq k$.

Consider now the case where N is almost powerfully embedded and Ω-extendable in a pro- p group G with $\Omega=\Omega_{1}(N)$ contained in N^{p}. As noted in Remark 3.5, $d(\Omega)=d(T)$ with T the subgroup of N consisting of elements of finite order. It is known that N / T is almost uniformly embedded in G / T. Set $d=d(N), k=d(\Omega)$. The cohomology class $\left(z_{1}^{(1)}, \ldots, z_{d}^{(1)}\right) \in H^{2}\left(G_{1}\right)$ can be then chosen such that $\left(z_{k+1}^{(1)}, \ldots, z_{d}^{(1)}\right)$ corresponds to the central extension $0 \rightarrow A_{2}(N / T) \rightarrow G / T \rightarrow G_{1} \rightarrow 1$. It follows that, for $1 \leq j \leq k, \beta z_{j}^{(1)}$ is of form

$$
\beta z_{j}^{(1)}=\sum_{\substack{r \\ s \leq k}} \lambda_{r s}^{(j)} x_{r} z_{s}^{(1)}
$$

We then have
Corollary 4.6. Let N be almost powerfully embedded and Ω-extendable in a pro-p group G with $d(N)=d$. Assume that $\Omega=\Omega_{1}(N)$ is contained in $N^{p}, d(\Omega)=k$. Then there exist a basis x_{1}, \ldots, x_{m} of $H^{1}\left(G_{1}\right)$, a cohomology class $\left(w_{1}, \ldots, w_{d}\right) \in H^{2}\left(G_{1}\right)^{\oplus d}$ corresponding to the central extension $0 \rightarrow A_{2} \rightarrow G_{2} \rightarrow$ $G_{1} \rightarrow 1$, elements z_{1}, \ldots, z_{k} of $H^{2}(G), \eta_{1}, \ldots, \eta_{k}$ of $\operatorname{Im}_{\operatorname{Inf}}^{G} G_{1}$ and $\lambda_{r s}^{(j)} \in \mathbb{Z} / p, 1 \leq r \leq m, 1 \leq s, j \leq k$ such that:
(i) $H^{*}(G)=H^{*}\left(G_{1}\right) /\left(w_{1}, \ldots, w_{d}\right) \otimes \mathbb{Z} / p\left[z_{1}, \ldots, z_{k}\right]$;
(ii) $\left.z_{1}\right|_{\Omega}, \ldots,\left.z_{k}\right|_{\Omega}$ is a basis of $B(\Omega)$;
(iii) for $1 \leq j \leq k$,

$$
\begin{aligned}
\beta w_{j} & =\sum_{r}^{r} \lambda_{r s}^{(j)} x_{r} w_{s} \\
\beta z_{j} & =\sum_{r, s} \lambda_{r s}^{(j)} x_{r} z_{s}+\eta_{j}
\end{aligned}
$$

The extension Γ of G by $(\mathbb{Z} / p)^{k}$ corresponding to $\left(z_{1}, \ldots, z_{d}\right)$ is also Ω-extendable if and only if all the η_{j} 's vanish.

In particular, if $[N, G] \subset N^{p^{2}}$ (for example, if N is powerfully embedded in G for $p=2$), then $\beta w_{j}=0, \beta z_{j} \in \operatorname{Im} \operatorname{Inf}_{G}^{G_{1}}, 1 \leq j \leq k$.

With the notation as above, suppose that G is a powerful pro- p group and $\beta x_{j}=\sum_{s<t} \lambda_{s t}^{(j)} x_{s} x_{t}, 1 \leq j \leq$ n_{1}. Combining the above theorem with Corollary 3.14, we have the following, of which the case $p \geq 5$ was given in [2, Theorem 3.16].

Corollary 4.7. Let G be a powerful pro-p group, Ω-extendable with $d(G)=n, \ell=\ell\left(\Phi_{G}^{*}(G)\right) \geq 2$. Set $d=d(\Phi(G)), \Omega=\Omega_{1}(G)$ and $k=d(\Omega)$. Then there exist a basis x_{1}, \ldots, x_{n} of $H^{1}(G)$, elements y_{1}, \ldots, y_{k+d-n} of $H^{2}(G), \eta_{1}, \ldots, \eta_{k-d+n}$ of ${\operatorname{Im~} \operatorname{Inf}_{G}^{G / \Phi(G)}}^{\text {and }} \lambda_{r s}^{(i)}$ of $\mathbb{Z} / p, 1 \leq r, s, i \leq k+d-n$, satisfying:
(i) $\operatorname{Res}_{\Omega}^{G}$ maps $\left\{y_{1}, \ldots, y_{k+d-n}, \beta x_{d+1}, \ldots, \beta x_{n}\right\}$ isomorphically onto a basis of $B(\Omega)$;
(ii) $H^{*}(G)= \begin{cases}\Lambda\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Z} / p\left[y_{1}, \ldots, y_{k-d+n}, \beta x_{d+1}, \ldots, \beta x_{n}\right] & \text { for } p>2, \\ \Lambda\left[x_{1}, \ldots, x_{d}\right] \otimes \mathbb{Z} / 2\left[y_{1}, \ldots, y_{k-d+n}, x_{d+1}, \ldots, x_{n}\right] & \text { for } p=2 ;\end{cases}$
(iii) $\lambda_{r r}^{(i)}=0, \lambda_{r s}^{(i)}=-\lambda_{s r}^{(i)}, \beta x_{i}=-\sum_{r<s} \lambda_{r s}^{(i)} x_{r} x_{s}, \beta y_{i}=\sum_{r, s} \lambda_{r s}^{(i)} x_{r} y_{s}+\eta_{i}, 1 \leq i \leq k-d+n$.

The extension Γ of G by $(\mathbb{Z} / p)^{k+d-n}$ corresponding to $\left(y_{1}, \ldots, y_{k+d-n}\right)$ is also Ω-extendable if and only if all the η_{i} 's vanish.

In particular, if $p=2$ or if $[G, G] \subset G^{p^{2}}$ for p odd, then all the $\lambda_{r s}^{(i)}$'s vanish.

References

1. C. Broto, H.W. Henn, Some remarks on central elementary abelian p-subgroups and cohomology of classifying spaces, Quart. J. Math. Oxford 44 (1993), 155-163.
2. W. Browder, J. Pakianathan, Cohomology of uniformly powerful p-groups, Trans. Amer. Math. Soc. 352 (2000), 26592688.
3. K.S. Brown, Cohomology of groups, Springer-Verlag, New York, 1982.
4. J.D. Dixon, M.P.F. du Sautoy, A. Mann, D. Segal, Analytic pro-p groups (2nd edition), London Math. Soc. Lecture Notes 157, Cambridge University Press, Cambridge, 1999.
5. L. Evens, Cohomology of finite groups, Oxford University Press, 1991.
6. G. Hochschild, J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
7. B. Kahn, A characterization of powerfully embedded normal subgroups of a p-group, J. Algebra 188 (1997), 401-408.
8. M. Lazard, Groupes analytiques p-adiques, vol. 26, Pub. Math. IHES, 1965.
9. J.P. May, A general algebraic approach to Steenrod operations, in Lecture Notes in Mathematics 168, Springer-Verlag, Berlin, 1970, pp. 153-231.
10. P. A. Minh, On a conjecture of Kahn for the Stiefel-Whitney classes of the regular representation, J. Algebra 188 (1997), 590-609.
11. J.P. Serre, Cohomologie Galoisienne, vol. 5, Lecture Notes in Mathematics 5, Springer-Verlag, Berlin, 1964.
12. P. Symonds, T. Weigel, Cohomology of p-adic analytic groups, New horizons in pro-p groups, 349-410, Progr. Math., 184, Birkhäuser, Boston, 2000.
13. T. Weigel, p-Central groups and Poincaré duality, Trans. Amer. Math. Soc. 352 (2000), 4143-4154.

Department of Mathematics, College of Science, University of Hue, Dai hoc Khoa hoc, Hue, Vietnam. E-mail address: paminh@dng.vnn.vn

Department of Mathematics, U.m.I.S.T., P.O. Box 88, Manchester M60 1QD, England.
E-mail address: Peter.Symonds@umist.ac.uk

[^0]: 1991 Mathematics Subject Classification. 20J06, 17B50.
 *Supported by a grant from the E.P.S.R.C.

