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Abstract. We calculate the cohomology of a pro-p group with an extendable and almost powerfully embedded

subgroup.

We consider the mod-p cohomology of p-groups and pro-p groups with an almost powerfully embedded
subgroup satisfying an extendibility condition. The result has a strikingly simple form.

If G is a pro-p group for some prime p we say that a closed, normal, finitely generated subgroup, N ,
is almost powerfully embedded if:

- [G,N ] ⊂ Np for p > 2;
- [G,N ] ⊂ N2 and [N,N ] ⊂ (N2)2 for p = 2.

Where Np denotes the closure of the subgroup of N generated by p-th powers of elements of N .

Let Ω1N denote the subgroup of N generated by elements of order p. We say that N is Ω-extendable
in G if Ω1N is central in G, so in particular is an elementary abelian subgroup, and if also there is a
central extension E → G̃→ G, where E ∼= Ω1N and every non-trivial element of Ω1N is the image of an
element of G̃ of order p2. (So every torsion free group is extendable.)

For any closed normal subgroup M ⊂ G we define ΦG(M) = [G,M ]Mp.

Note: It follows from [4, 3.1 and 3.8] that the subgroups defined above are closed, indeed all but the
last are open. Also every element of Np is a p-th power and Ω1N is finite.

Denote by H∗(G) the cohomology of G with coefficients in Z/p (the Galois or continuous cohomology
if G is infinite, see [11]), and by β : H∗(G) → H∗+1(G) the Bockstein homomorphism. Our main theorem
is the following consequence of Theorem 3.13.

Theorem. Let G be a pro-p group and N an almost powerfully embedded subgroup, Ω-extendable in G.
Then there exist elements z(1)

i , . . . , z
(1)
d of H2(G/ΦG(N)), z1, . . . , zk of H2(G) such that

(i) H∗(G) ∼= H∗(G/ΦG(N))/(z(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zk];

(ii) z
(1)
1 , . . . , z

(1)
d classify the extension

(Z/p)d ∼= ΦG(N)/ΦGΦG(N) → G/ΦGΦG(N) → G/ΦG(N);

(iii) z1, . . . , zk restrict to a basis of βH1(Ω1(N) ∩Np).

We also give several partial converses, which give group theoretic information when the cohomology
has the form given above. Our basic computational tool is the spectral sequence argument of Proposition
2.4. Finally, in section 4, we calculate the Bocksteins up to an error term which vanishes if the extension
is itself extendable.

This problem was investigated by Weigel [13], who considered the case when p is odd and N = G and
also by Browder and Pakianathan [2], who considered the case when N = G is uniform and also required
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p ≥ 5. The latter authors also considered the Bocksteins. In all cases the key spectral sequence argument
is similar.

1. Regular Sequences

A regular sequence in ring R is a sequence of elements a1, . . . , an such that for each i = 1, . . . , n, ai
does not annihilate any non-trivial element of R/(a1, . . . , ai−1).

Recall the definition of the Koszul complex over R. Given a sequence of elements a1, . . . , an in the
centre of R, K = KR(ai, . . . , an) is the the free R-module on certain symbols, which we can take to be
monomials xi1 . . . xir in the symbols x1, . . . , xn such that i1 < i2 < · · · < ir (so no squares occur). It is
graded by the degree of the monomial. The differential dr : Kr → Kr−1 is the R-linear map defined by

dr(xi1 . . . xir ) =
r∑
j=1

(−1)j+1aijxi1 . . . x̂ij . . . xir .

If a1, . . . , an is a regular sequence of central elements of R then it is well known that the homology of the
associated complex is just R/(a1, . . . , an) in degree 0 and 0 elsewhere.

It is tempting to identify K with the exterior algebra over R on x1, . . . , xn, and indeed this makes K
into a differential graded algebra, but the algebra structure is not part of the definition.

If 2R = 0 there is a slight variation on this theme, which we will need. Let J = JR(a1, . . . , an) be the
free R-module on all monomials in x1, . . . , xn , again graded by the degree, and define dr : Jr → Jr−1 by
the same formula as before.

We identify J with the polynomial ring R[x1, . . . , xn] and it becomes a differential graded algebra.
Now we consider J as a module over R[x2

1, . . . , x
2
n]. We do this because d2(x2

i ) = 0 and hence d is linear
over R[x2

1, . . . , x
2
n].

But as an R[x2
1, . . . , x

2
n]-module, J ∼= R[x2

1, . . . , x
2
n]⊗K (even though this is not compatible with any

multiplicative structure) and so has homology R[x2
1, . . . , x

2
n]⊗R/(a1, . . . , an) ∼= R/(a1, . . . , an)[x2

1, . . . , x
2
n].

We record this as:

Lemma 1.1. Let a1, . . . , an is a regular sequence of central elements in a ring R. Then:

(1) H∗(KR(a1, . . . , an)) ∼= R/(a1, . . . , an),
(2) If 2R = 0 then H∗(JR(a1, . . . , an)) ∼= R/(a1, . . . , an)[x2

1, . . . , x
2
n]. �

We now provide some regular sequences in the mod-p cohomology of a finite p-group. We shall use
the following notation. Let R = Cpr1 (e1)×Cpr2 (e2)×· · ·×Cprk (ek) be an abelian p-group, with Cpri (ei)
the cyclic group of order pri generated by ei.

For each 1 ≤ i ≤ k, let xi ∈ H1(Cpri (ei)) ∼= Hom(Cpri (ei),Z/p) correspond to the homomorphism
that takes ei to 1 and let yi ∈ H2(Cpri (ei)) be a generator. It is well known that

H∗(Cpri ) =
{ Z/2[xi] for p = 2 and ri = 1,

Λ[xi]⊗ Z/p[yi] otherwise.

We identify H∗(R) with H∗(Cpr1 (e1))⊗H∗(Cpr2 (e2))⊗ · · · ⊗H∗(Cprk (ek)) under the Künneth isomor-
phism and identify xi and yi with their images in H∗(R).

Let λ∗(R) denote the subalgebra of H∗(R) generated by the xi (this need not be an exterior algebra
if p = 2) and set λ(R) = λ2(R) for brevity. Let B(R) ⊂ H∗(R) be the subspace generated by the yi.
Note that B(R) can be characterized as the image of H2(R; Z) in H2(R). Also B(R) contains the image
of the Bockstein map from H1(R), but is not equal to it unless R is elementary abelian. We record the
following elementary consequences:
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Lemma 1.2. (i) H2(R) =


λ(R) +B(R) always
λ(R)⊕B(R) if p > 2 or p = 2 and each ri ≥ 2
λ(R) for p = 2 and r1 = 1.

(ii) y1, . . . , yk is a regular sequence in H∗(R). Furthermore, given elements γ1, . . . , γk of λ(R),
the sequence y1 + γ1, . . . , yk + γk is regular in H∗(R), provided that p > 2, or p = 2 and
min(r1, . . . , rk) > 1. �

Define H+(G) to be the ideal of H∗(G) consisting of elements of positive degrees.

Proposition 1.3. Given a central extension of p-groups

0 θ→ A→ G→ K → 1

with A ∼= (Z/p)m, we have:

(i) If A is contained in the Frattini subgroup of G, then Im (H2(G) Res→ H2(A)) ⊂ B(A).
(ii) If there exist elements z1, . . . , zm of H2(G) and γ1, . . . , γm ∈ λ(A) such that either z1|A, . . . , zm|A

is linearly independent in B(A), or p > 2 and z1|A− γ1, . . . , zm|A− γm is linearly independent in
B(A), then z1, . . . , zm is a regular sequence in H∗(G) .

Proof. (i) was given in [10, Proposition 1.5]. We now prove (ii). Let iA : A→ A×G, iG : G→ A×G, f :
A×G→ G be defined by iA(a) = (a, 1), iG(g) = (0, g), f(a, g) = θ(a)g, a ∈ A, g ∈ G. Since A is central,
f is a homomorphism of groups. Note that (f ◦iA)∗ (resp. (f ◦iG)∗) is just the restriction (resp. identity)
map on cohomology. So, for 1 ≤ i ≤ m,

f∗(zi) = zi|A ⊗ 1 + 1⊗ zi mod H+(A)⊗H+(G).

We now use the argument similar to that of [1, Proof of Theorem 1.1]. The special form of f∗(zi)
induces for 1 ≤ i ≤ n a homomorphism of algebras

f∗i : H∗(G)/(z1, . . . , zi−1) → H∗(A)/(z1|A, . . . , zi−1|A)⊗H∗(G)/(z1, . . . , zi−1).

Let y be a non-trivial element of H∗(G)/(z1, . . . , zi−1). We now show that ziy is non-trivial, by claiming
that f∗i (ziy) is non-trivial.

Write f∗i (y) =
∑
s≥0 vs and f∗i (ziy) =

∑
s≥0 ws with vs, ws in

(H∗(A)/(z1|A, . . . , zi−1|A))s ⊗H∗(G)/(z1, . . . , zi−1).

Then v0 = 1 ⊗ y is non-trivial. Let s1 be maximal such that vs1 is non-trivial. It follows that, for
s2 = s1 + 2, ws2 = (zi|A ⊗ 1) · vs1 . By Lemma 1.2 (ii), z1|A, . . . , zi|A is a regular sequence in H∗(A).
hence ws2 6= 0. Thus z1, . . . , zm is then a regular sequence in H∗(G). �

2. Powerfully embedded subgroups and a cohomological characterization

Let P be a pro-p group and let N be a closed normal subgroup of P . Set Q = P/N and denote
by π : P → Q the projection map. Let A be an elementary abelian p-group of rank m and fix a basis
a1, . . . , am of A. Regard A as a trivial Q-module, so

H2(Q,A) = ⊕mi=1H
2(Q,Z/p 〈ai〉) = H2(Q)⊕m.

Pick an element z ∈ H2(Q,A). For every closed subgroup R of Q, denote by

0 → A→ Rz
πR,z→ R→ 1

the central extension of groups corresponding to the cohomology class z|R = ResQR(z) ∈ H2(R,A).

Let u1, . . . , um be the basis of H1(A) = Hom(A,Z/p), dual to that of A. We then have the projection
map

(ui)∗ : H2(Q,A) → H2(Q), 1 ≤ i ≤ m,

and z can be expressed as z = (z1, . . . , zm) with zi = (ui)∗(z).
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Lemma 2.1. (i) All the InfQP (zi) = 0 if and only if there exists a surjective homomorphism τ : P → Qz
satisfying πQ,z ◦ τ = π.

(ii) Let R = Cpr1 (e1)× · · · × Cprk (ek) be an abelian subgroup of Q. Then:
(iia) Rz is abelian if and only if z`|R ∈ B(R), 1 ≤ ` ≤ m;
(iib) let S be the maximal elementary abelian subgroup of R2. Then (Sz)p = 1 if and only if

z`|R ∈ λ(R), 1 ≤ ` ≤ m.

Proof. (i) Let 0 → A → Pz → P → 1 be a group extension classified by the element z = Inf(QP (z1), . . . ,
InfQP (zm)). There exists then a commutative diagram

0 −−−−→ A −−−−→ Pz
ρ−−−−→ P −−−−→ 1∥∥∥ µ

y yπ
0 −−−−→ A −−−−→ Qz

πQ,z−−−−→ Q −−−−→ 1.

If all the InfQP (z) = 0 then ρ is split, by σ say. Hence, by setting τ ◦ σ, we have πQ,z ◦ τ = π.

Conversely, given τ , we get a splitting Pz → A by sending x to τ(ρx)µ(x)−1.

(iia) This is well known: see [3, IV 3 ex.8] or use the calculations in §4.

(iic) We have

(Sz)p = 1 ⇔ |〈x〉| = p, for all x ∈ Sz
⇔ z`|〈y〉 = 0, for all y ∈ S, 1 ≤ ` ≤ m

⇔ z`|R ∈ λ(R), 1 ≤ ` ≤ m. �

We also have

Lemma 2.2. Suppose that R is an elementary abelian subgroup of Q. Then (Rz)p = A if and only if
there exists a basis b1, b2, . . . , bm, . . . of R such that ResQ〈bi〉(zi) 6= 0, ResQ〈bj〉(zi) = 0, 1 ≤ i ≤ m, 1 ≤ j 6= i.

Proof. If such a basis exists let b̃i be an element of the inverse image of bi. Then b̃i has order p2 and
〈b̃pi 〉 = 〈ei〉.

Conversely, if (Rz)p = A then every element of A is a p-th power of an element of Rz (Rz is powerful).
Let b̃i be such that b̃pi = ei, b̃j = 1, j > m, and let bi be the image of b̃i in R. �

Lemma 2.3. Consider the extension

0 → A→ Qz → Q→ 1

discussed above and suppose that there is no non-trivial relation q1z1 + · · ·+ qmzm = 0 with qi ∈ H1(Q).
Then the sequence

H2(Q) Inf→ H2(Qz)
Res→ H2(A)

is exact at the middle term.

Proof. The Lyndon-Hochschild-Serre spectral sequence for the extension has E2 term H∗(Q) ⊗H∗(A).
Note that d2(ui) = zi, 1 ≤ i ≤ m (see the remark after Proposition 2.4). Let q = q1u1 + · · · + qmum be
an element of ker d1,1

2 , with q1, . . . , qm ∈ H1(Q). Then 0 = d2(q) = −(q1z1 + · · ·+ qmzm) which implies
q1 = · · · = qm = 0, by the hypothesis. Therefore d1,1

2 : E1,1
2 → E3,0

2 is injective and so E1,1
3 = 0 and thus

E1,1
∞ = 0.

This yields an exact sequence

0 → E2,0
∞ → H2(Qz) → E0,2

∞ → 0

and identifying the edge maps gives the result claimed. �
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Proposition 2.4. Suppose that A is contained in the Frattini subgroup of Qz and that z1, . . . , zm is a
regular sequence in H∗(Q). Then the inflation and restriction maps induce an isomorphism of rings

H∗(Qz) ∼= H∗(Q)/(z1, . . . , zm)⊗ Z/p[B(A)]

provided that one of the following conditions is satisfied:

(a) H2(Qz)
Res→ B(A) is surjective;

(b) β(zi) ∈ (z1, . . . , zm), 1 ≤ i ≤ m;
(c) ker InfQQz

= (z1, . . . , zm).

Proof. Let {Er, dr} be the Lyndon-Hochschild-Serre spectral sequence corresponding to the central ex-
tension

0 → A→ Qz → Q→ 1.

Now E2 = H∗(Q)⊗H∗(A).

Assume that p > 2 and that condition (a) holds. By considering the maps B(A) = Im(Res : H2(Qz) →
H2(A)) ∼= E0,2

∞ ⊂ E0,2
2 we can find elements ỹ1, . . . , ỹm ∈ E0,2

2 corresponding to y1, . . . , ym ∈ B(A)
such that d2(ỹi) = 0. Under the isomorphism E0,2

2
∼= H2(A) we find that ỹi = yi(modλ(A)). Let

S = Z/p[ỹ1, . . . , ỹm]. Then E0,∗
2 = S ⊗ Λ∗(E0,1

2 ) and so E2 = S ⊗ Λ∗(E0,1
2 )⊗H∗(Q).

But d2 vanishes on S, by construction, and thus d2 is S⊗H ∗ (Q)-linear. So {E2, d2} is just the Koszul
complex KS⊗H∗(Q)(z1, . . . , zm) of Lemma 1.1. Thus E3 = S ⊗H∗(Q)/(z1, . . . , zm) = E0,∗

3 ⊗ E∗,03 .

Now E3 is generated as a ring by the ỹi and E∗,03 so, by the product structure, d3 = 0 and E4 = E3.
Subsequently all the differentials are 0 for degree reasons and so E∞ = E3.

Let ŷi ∈ H2(Qz) have image ỹi ∈ E0,2
∞ and let Ŝ = Z/p[ŷ1 . . . , ŷm]. Let I∗ = Im(Inf : H∗(Q) →

H∗(Qz) ∼= H∗(Q)/(z1 . . . , zm). Then we have a natural ring homomorphism φ : Ŝ ⊗ I → H∗(Qz). If we
filter Ŝ ⊗ I by F p(Ŝ ⊗ I) = Ŝ ⊗ I≥p and H∗(Qz) in the way that yields E∞ then φ is a homomorphism
of filtered rings and induces and isomorphism of the associated graded modules. The filtration is finite
in each degree, so φ must be an isomorphism. This concludes the proof in this case.

If condition (a) is not available then note that as ui is transgressive, βui survives to E3 and d3(βui) =
−βzi (see e.g. [9] and the remark below). Since E3,0

3 = H3(Q)/(H3(Q) ∩ (z1, . . . , zm)), either of the
conditions (b) or (c) implies that d3(βui) = 0. We set ỹi = β(ui) and proceed as before.

If p = 2 then E2 is just the complex JH∗(Q)(z1, . . . , zm) of Lemma 2.1(2), so

E3 = H∗(Q)/(z1, . . . , zm)[u2
1, . . . , u

2
m].

Set ỹi = u2
i (= βui) . Then condition (a) implies that d3(ỹi) = 0 for dimension reasons, and the rest of

the proof is just as for p odd. �

Remark. By projecting A onto its cyclic factors and comparing spectral sequences, it is easy to see that
d2(ui) = λizi for some non-zero λi ∈ Z/p. In fact λi = ±1, see [6] or [5]. The sign appears to be sensitive
to the sign convention used in constructing the double complex for the spectral sequence. Similarly with
the formula d3(βui) = ±βd2(ui).

From now on, assume that N is a closed normal and finitely generated subgroup of a pro-p group G.
Recall (see e.g. [4, 4]) that N is powerfully embedded in G if [G,N ] ⊂ N2p, that G is powerful if it is
powerfully embedded in itself. When p = 2, N is almost powerfully embedded in G if [G,N ] ⊂ N2 and
[N,N ] ⊂ (N2)2 (which also implies [N,N ] ⊂ N4 (see [7])). For convenience, we define almost powerfully
embedded as powerfully embedded for p > 2. As noted in [7], we have the following implications:

N powerfully embedded in G ⇒ N almost powerfully embedded in G ⇒ N powerful.

We quote two characterizations of powerfully embedded and almost powerfully embedded.
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Proposition 2.5.
(i) ([4, Lemma 2.2(iv)]) If N is not powerfully embedded in G, then there exists a normal subgroup

J of G such that
N2p[N,G,G] ⊂J ⊂ N2p[N,G]

|N2p[N,G] : J | = p;

in other words, G/J is given by the central extension

1 → Z/p→ G/J → G/N2p[N,G] → 1

such that N/J is abelian of exponent ≤ 2p, but N/J 6⊂ Z(G/J).
(ii) ( [7, Proposition 2]) Set M = Np[N,G],K = Mp[M,G], A = N/M,B = M/K. N is almost

powerfully embedded in G if and only if the map induced from the p-power A
p→ B is linear and

surjective. �

We now give some cohomological criteria for N to be (almost) powerfully embedded in G. Set Ĝ =
G/N2p[N,G], N̂ = N/N2p[N,G]. We have

Theorem 2.6. The following are equivalent:
(i) N is powerfully embedded in G;
(ii) ResĜ

N̂
(ker InfĜG) ∩ λ(N̂) = {0}.

Proof. Let N be powerfully embedded in G (so N2p[N,G] = N2p, as [N,G] ⊂ N2p) and let 0 6= z ∈ kerĜG.
Consider the central extension

0 → Z/p i→ Ĝz → Ĝ→ 1

corresponding to z. By Lemma 2.1 (i), Ĝz is a homomorphic image of G, via τ . This implies i(Z/p) ⊂
τ(N2p) = (N̂z)2p. So (N̂z)2p 6= 1. Therefore, by Lemma 2.1 (iic), z|N̂ /∈ λ(N̂).

Suppose now that N is not powerfully embedded in G. By Proposition 2.5, there exists a central
extension

0 → Z/p→ Ĝw → Ĝ→ 1

corresponding to an element 0 6= w ∈ H2(Ĝ) such that Ĝw is a quotient of G, (N̂w)2p = 1, [N̂w, Ĝw] 6= 1.
It follows from Lemma 2.1 that w ∈ Ker InfG̃G and w|N̂ ∈ λ(N̂) . �

We then have the following corollary, of which the case p > 2 was given in [12, Theorem 5.1.6].

Corollary 2.7. The following are equivalent:
(i) G is powerful.
(ii) p is odd and the map induced from the inflation

H1(Ĝ) ∧H1(Ĝ) → H2(G)

is injective, or p = 2 and
ker(InfĜG) ∩ λ(Ĝ) = {0}.

(iii) the map induced from the inflation

λ(Ĝ) → H2(G)

is injective. �

Proof. Recall that G is powerful if and only if it is powerfully embedded in itself. Thus, by Theorem
2.6, G is powerful if and only if (ker InfĜG) ∩ λ(N̂) = {0}, so (i) ⇔ (iii). Note that, for p 6= 2, λ(Ĝ) =
H1(Ĝ) ∧H1(Ĝ) so (ii) is just a restatement of (iii). �

If p = 2, set G̃ = G/N2[N,G], Ñ = N/N2[N,G]. A characterization of powerfully embedded normal
subgroup N of a 2-group G via the inflation InfG̃G can also be obtained, as follows. First we prepare
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Lemma 2.8. Let L be a central subgroup of a 2-group H, and let w be a cohomology class of H/L4

satisfying w|L2/L4 = 0. Then w ∈ Im InfH/L
2

H/L4 .

Proof. We may suppose that L2 6= 1. Set A1 = L/L2, A2 = L2/L4,H1 = H/L2,H2 = H/L4,K = H/L.
A1, A2 are then vector spaces over Z/2 and we have the central extensions

0 → A1 → H1 → K → 1,
0 → A2 → H2 → H1 → 1 .

Let z = (z1, . . . , zi) be the cohomology class classifying the extension 0 → A2 → H2 → H1 → 1. Since
L is abelian, by Proposition 1.3 (ii), zj |A1 ∈ B(A1), 1 ≤ j ≤ i. Then ((A1)z)2 = A2 and z1|A1 , . . . , zi|A1

are linearly independent in B(A1), by Lemma 2.2. It follows from Proposition 1.3 (ii) that z1, . . . , zi is a
regular sequence in H∗(H1). Hence, by Lemma 2.3, w|A2 = 0 implies w ∈ Im InfH1

H2
. �

For a ∈ G̃ (resp. b ∈ Ĝ), define Na = 〈Ñ , a〉 (resp. N̂b = 〈N̂ , b〉).

Corollary 2.9. For p = 2, the following are equivalent:
(i) N is powerfully (resp. almost powerfully) embedded in G;
(ii) for every non-zero element µ of ker (Inf:H2(G̃) → H2(G)), µ|Na ∈ B(Na) for every a ∈ G̃ (resp.

µ|Ñ ∈ B(Ñ)).

Proof. Let N be powerfully (resp. almost powerfully) embedded in G and let 0 6= z ∈ kerG̃G. Consider
the central extension

0 → Z/p→ G̃z → G̃→ 1

corresponding to z. By Lemma 2.1 (i), G̃z is a homomorphic image of G. Since Ñ is elementary abelian,
(Ñz)4 = 1. As [G̃z, Ñz] ⊂ (Ñz)4 = 1 (resp. [Ñz, Ñz] ⊂ (Ñz)4 = 1), Ñz is central (resp. abelian). Note
that Ñz is central iff Na is abelian for every a ∈ G̃. By Lemma 2.1 (iia), it follows that z|Na ∈ B(Na) for
every a ∈ G̃ (resp. z|Ñ ∈ B(Ñ)).

Suppose now that N is not powerfully (resp. almost powerfully) embedded in G. From the proof
of Theorem 2.6, there exists an element w ∈ H2(Ĝ) such that Ĝw is a quotient of G, (N̂w)4 = 1 and
[N̂w, Ĝw] 6= 1 (resp. [N̂w, N̂w] 6= 1). By Lemma 2.1, [N̂w, Ĝw] 6= 1 implies that there exists b ∈ Ĝ such
that w|N̂b

/∈ B(N̂b). So w|N̂2 = 0, and w|N̂b
/∈ B(N̂b) for some b ∈ Ĝ (resp. w|Ñ /∈ B(Ñ)). Applying

Lemma 2.8 with H = Ĝ, L = N̂ yields w = InfG̃
Ĝ

(t) for some t ∈ H̃∗(G̃). Let a be the projection of b on

G̃, then w|N̂b
/∈ B(N̂b) (resp. w|Ñ /∈ B(Ñ)) implies t|Na

/∈ B(Na) (resp. t|Ñ /∈ B(Ñ)).

As G̃ is a quotient of G, it follows from Lemma 2.1 (i) that ker InfG̃G contains t. �

We then have

Corollary 2.10. For p = 2, the following are equivalent:
(i) G is powerful;
(ii) ker (Inf:H2(G̃) → H2(G)) ⊂ B(G̃). �

Remark 2.10. Another proof of Theorem 2.6 (for p odd) and Corollary 2.9 (for N almost powerfully
embedded in G) also follows from Proposition 2.5 (ii). Indeed, one can deduce that the statement (ii) in
Theorem 2.6, together with µ|Ñ ∈ B(Ñ) for p = 2, is equivalent to the condition that the map A

p→ B
be linear and surjective.

3. Cohomology of pro-p groups with powerfully embedded subgroups

Let N be a closed normal and finitely generated subgroup of a pro-p group G. Set ΦG(N) = Np[N,G].
For i ≥ 1, define recursively a sequence of closed normal subgroups ΦiG(N) of G as follows:

Φ1
G(N) = N,Φi+1

G (N) = ΦG(ΦiG(N)).



8 PHAM ANH MINH AND PETER SYMONDS

It is clear that [ΦiG(N),ΦjG(N)] ⊂ Φi+jG (N) and the p-power map induces a map ΦiG(N)
p→ Φi+1

G (N), i, j ≥
1; also, [G,N ] ⊂ Φ2

G(N).

For i ≥ 0, set Gi = G/Φi+1
G (N), Ai = Ai(N) = ΦiG(N)/Φi+1

G (N) (with the convention that Φ0
G(N) =

N). By [4, Proposition 1.16], G = lim
←−

Gi, hence H∗(G) = lim
−→

H∗(Gi). Each Ai is a vector space over

Z/p and is central in Gi. We also have successive central extensions

0 −−−−→ A1 −−−−→ G1 −−−−→ G0 −−−−→ 1

0 −−−−→ A2 −−−−→ G2 −−−−→ G1 −−−−→ 1

. . .

0 −−−−→ As −−−−→ Gs −−−−→ Gs−1 −−−−→ 1

. . .

.

Define ` = `(Φ∗G(N)) to be the largest integer s, if any, satisfying ΦsG(N) 6= 1, or `(Φ∗G(N)) = ∞
otherwise (so G = G` if ` < ∞). Denote by φi,j : Gj → Gi and φi : G → Gi the projection maps,
j ≥ i. For 1 ≤ i, let ni be the dimension of Ai and let κi−1 = (z(i−1)

1 , . . . , z
(i−1)
ni ) ∈ H2(Gi−1)⊕ni be the

cohomology class corresponding to the central extension

0 → Ai → Gi → Gi−1 → 1.

We first have

Lemma 3.1. For every 1 ≤ i ≤ `− 1, no non-zero linear combination of the z(i)
j ’s belongs to Im φ∗i−1,i.

Proof. Given 1 ≤ i ≤ ` − 1, assume that z is a non-zero linear combination of the z(i)
j ’s with z ∈ Im

φ∗i−1,i. Without loss of generality, we may assume that z =
∑ni+1
j=1 λjz

(i)
j with λ1 6= 0. There exists then

a basis (e1, . . . , eni+1) of Ai+1 such that κi = (z, z(i)
2 , . . . , z

i)
ni+1) ∈ H2(Gi)⊕ni+1 .

Since z ∈ Im φ∗i−1,i, its restriction to Ai is 0, by Lemma 2.1. Thus 〈e1〉 is a factor of ΦiG(N)/Φi+1
G (N),

a contradiction. �

Proposition 3.2. The following are equivalent:

(i) N is almost powerfully embedded in G;
(ii) ((A1)κ1)

p = A2; also, 0 6= z
(1)
j |A1 ∈ B(A1), 1 ≤ j ≤ n2, for p = 2.

Proof. Suppose that N is almost powerfully embedded in G. By Lemma 3.1, z(1)
j 6= 0, 1 ≤ j ≤ n2.

It follows from Theorem 2.6 (for p > 2) and Corollary 2.9 (for p = 2) that, for any non-zero linear
combination z of the z(1)

j ’s, z|A1 /∈ λ(A1) for p > 2 and z|A1 ∈ B(A1) for p = 2. There exists then

a basis e1, . . . , en1 of A1 such that z(1)
j |〈ej〉 6= 0, z(1)

j |〈ei〉 = 0, 1 ≤ i 6= j ≤ n2. Hence, by Lemma 2.2,
((A1)κ1)

p = A2.
Conversely, suppose that (ii) holds. If p = 2, (i) also holds, by Corollary 2.9. Assume that p > 2

and N is not powerfully embedded in G. From the proof of Theorem 2.6, there exists a non-zero linear
combination z of the z(1)

j ’s such that z|A1 ∈ λ(A1). Arguing as in the proof of Lemma 3.1, there exists
an element of A2 not belonging to ((A1)κ1)

p, a contradiction. �

For i < j ≤ ` and for every element ξ ∈ H∗(Gi), consider ξ as an element of H∗(Gj) via the inflation
map φ∗i,j . We then have
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Theorem 3.3. Let N be almost powerfully embedded in a p-group G. We have:

(i) for 1 ≤ i ≤ `−1, ((Ai)κi)
p = Ai+1, n1 ≥ n2 · · · ≥ n`, and the sequence H∗(Gi)

φ∗i,i+1→ H∗(Gi+1)
Res→

B(Ai+1) is exact;
(ii) for 1 ≤ i ≤ `− 1, z(i)

1 , . . . , z
(i)
ni+1 is a regular sequence in H∗(Gi);

(iii) if n1 = · · · = nr = d, 2 ≤ r ≤ `, then
(iiia) the map H2(Gi)

Res→ B(Ai) is surjective, for 1 ≤ i ≤ r − 1;
(iiib) for 2 ≤ i ≤ r − 1,

H∗(Gi) = H∗(Gi−1)/(z
(i−1)
1 , . . . , z

(i−1)
d )⊗ Z/p[z(i)

1 , . . . , z
(i)
d ]

= H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z(i)

1 , . . . , z
(i)
d ].

Proof. It follows from Proposition 3.2 that ((A1)κ1)
p = A2. As N is powerful, we also have ((Ai)κi

)p =
Ai+1, i ≥ 2, and n1 ≥ n2 · · · ≥ n` (see e.g. [4, Theorem 2.7]). By Lemma 2.2 (and Proposition 3.2 (ii) for
p = 2), z(i)

1 |Ai
, . . . , z

(i)
ni+1 |Ai

satisfies the assumption of Proposition 1.3 (ii). So z(i)
1 , . . . , z

(i)
ni+1 is a regular

sequence in H∗(Gi). Therefore H∗(Gi)
φ∗i,i+1→ H∗(Gi+1)

Res→ B(Ai+1) is exact by Lemma 2.3. (i), (ii) are
then proved. (iii) is straightforward from (i), (ii), Lemma 2.3 and Proposition 2.4. �

Remark 3.4. Theorem 3.3 also holds if G is a pro-p group.

Definition. Let N be almost powerfully embedded in G and let d = d(N) be the minimal number of
generators of N . Set ` = `(Φ∗G(N)),Ω1(N) = 〈x ∈ N |xp = 1〉.

- N is said to be uniform if ni = dimZ/pAi(N) = d for every 1 ≤ i ≤ `. In such a case, N is also
said to be almost uniformly embedded in G.

- N is called Ω-extendable in G if Ω1(N) is central in G and there exists a central extension
0 → Z → Γ → G → 1 classified by z ∈ H2(G,Z), with Z = (Z/p)r, r = rank (Ω1(N)) and
Z = (Ω1(N)z)p and Γ is called an Ω1(N)-extension of G. G is Ω-extendable if it is Ω-extendable
in itself.

Remark 3.5. 1. If N is almost uniformly embedded in G and if Ω = Ω1(N) ⊂ Z(G)∩Φ(N) with d(Ω) = d,
the Ω-extendable property of N in G is equivalent to the existence of elements u1, . . . , ud of H2(G)
satisfying B(Ω) = 〈u1|Ω, . . . , ud|Ω〉, by Lemma 2.2. Let (w1, . . . , wd) ∈ H2(G/Ω)⊕d be any cohomology
class classified the extension 0 → (Z/p)d → G→ G/Ω → 1, and let {Er, dr} be the Lyndon-Hochschild-
Serre spectral sequence corresponding to this extension. It follows from the proof of Proposition 2.4
that B(Ω) ⊂ Im ResGΩ if and only if d3 = 0, or, equivalently, β(wi) ∈ (w1, . . . , wd), 1 ≤ i ≤ d. So the
Ω-extendibility of N in G is equivalent to the condition that β(wi) ∈ (w1, . . . , wd), 1 ≤ i ≤ d.

2. If N is almost powerfully embedded in the pro-p group G and T = T (N) is the set of elements of
finite order of N , then T is a normal subgroup of G (see [4], Theorem 4.20) and N/T is almost uniformly
embedded in G/T . In such a case, Ω1(N) = Ω1(T ). Furthermore, as Npk

= {gpk |g ∈ N} ([4], Corollary
3.5), it follows that N2p ∩ T = T 2p (N2 ∩ T = T 2, (N2)2 ∩ T = (T 2)2 for p = 2). So T is also almost
powerfully embedded in G.

Examples. 1. If G is an pro-p group of finite rank then, by [4, Corollary 4.3], G contains a characteristic,
open, uniform subgroup. If G is powerful then, by [4, Theorem 2.7], there exists a term Pi(G) in the
lower p-series of G which is uniform and powerfully embedded in G.

2. Let D2n = 〈an, bn|a2n−1

n = b2 = 1, (anbn)2 = 1〉 be the dihedral group of order 2n. We then have a
projection map ϕij : D2j → D2i which maps aj (resp. bj) to ai (resp. bi), for j ≥ i. Define D = lim

←−
D2n .

Then D = 〈a, b|b2 = 1, (ab)2 = 1〉 so that the projection map ϕi : D → D2i maps a (resp. b) to ai
(resp. bi), i ≥ 1. It is clear that 〈an〉 is almost powerfully embedded, but not powerfully embedded, and
Ω-extendable in D2n . Also, 〈a〉 is almost uniformly embedded in D.

However, any cyclic subgroup of index 2 of a quaternion group Q of order 8 is powerfully embedded in
Q, but not Ω-extendable in Q. Also, if M is the extraspecial p-group of order p3 and exponent p2 with
p > 2, then M is powerful, the center of M is powerfully embedded but not Ω-extendable in M .
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3. Let n be an integer. For every k ≥ 1, define Γn(k) = {A ∈ GLn(Z/pk+1)|A = In mod (pk)}. Then
Γn(k) with k ≥ 1 for p > 2, k ≥ 2 for p = 2 is uniform and Ω-extendable.

Corollary 3.6. If N is almost uniformly embedded in a p-group G with d = d(N) and ` = `(Φ∗G(N)) ≥ 3,
then, for 2 ≤ j ≤ `− 1,

H∗(Gj) = H∗(Gj−1)/(z
(j−1)
1 , . . . , z

(j−1)
d )⊗ Z/p[z(j)

1 , . . . , z
(j)
d ]

= H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z(j)

1 , . . . , z
(j)
d ].

Furthermore, if N is also Ω-extendable in G, there exist z1, . . . , zd in H2(G) such that

H∗(G) = H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zd]. �

Proof. By the first assumption, n1 = · · · = n` = d. The first equalities follows then from Theorem 3.3.

Suppose that N is also Ω-extendable in G. By Remark 3.5.1, there exist z1, . . . , zd in H2(G) such that
z1|Ω1(N), . . . , zd|Ω1(N) is a basis of B(Ω1(N)). Consider the central extension 1 → (Z/p)d → Γ → G→ 1
corresponding to z = (z1, . . . , zd). It follows that Nz is, in turn, almost uniformly embedded in Γ. The
last equality follows then from the first part of the Corollary. �

The above corollary can be generalized to the case where G is almost powerfully embedded in G (see
Theorem 3.13 below).

Lemma 3.7. Suppose that N is almost powerfully embedded in a p-group G and ni > ni+1 with a given
i.

(i) Let a1, . . . , aj , . . . , ani be elements of ΦiG(N)\Φi+1
G (N) satisfying:

(ia) φ∗i (a1), . . . , φ∗i (ani
) is a basis of Ai;

(ib) ord(a1) = · · · = ord(aj) = p < ord(ak), for k > j.
Then there exist elements bj+1, . . . , bni

of ΦiG(N) such that, for k > j, ord(bk) = p, φ∗i (bk) = ak.
Precisely, for every 1 6= x ∈ ΦiG(N) satisfying 1 6= xp ∈ ΦjG(N) with j > i + 1, there exists
y ∈ Φj−1

G (N) such that (xy)p = 1;
(ii) For every element a of order p of ΦiG(N)\Φi+1

G (N), there exists ξ ∈ H+(Gi) satisfying ξ|〈φi(a)〉 6=
0; hence, as an element of H+(G), ξ|〈a〉 6= 0, ξ is nilpotent in H+(G) and ξ /∈ Im φ∗i−1.

Proof. (i) follows from [4, Proof of Theorem 4.5]. Set b = φi(a). Then b 6= 1. Pick an element w of B(Ai)
satisfying w|〈b〉 6= 0 and set ξ = NAi→Gi(w) with NAi→Gi the Evens norm map. So ξ|〈b〉 is not nilpotent.
From the commutative diagram

H∗(Gi)
φ∗i−−−−→ H∗(G)

Res

y yRes

H∗(〈b〉) Inf−−−−→ H∗(〈a〉)

,

since H∗(〈b〉) Inf→ H∗(〈a〉) is an isomorphism, it follows that ξ|〈a〉 6= 0. So ξ is not nilpotent in H∗(G) and
ξ /∈ Im φ∗i−1. �

We now have a sufficient and necessary condition for an (almost) powerfully embedded subgroup in G
to be also (almost) uniformly embedded, as follows.

Corollary 3.8. Let N be (almost) powerfully embedded in a p-group G with d(N) = d and `(Φ∗G(N)) =
` ≥ 2. The following are equivalent:

(i) N is (almost) uniformly embedded in G;
(ii) n2 = d and Im φ∗1 = Im φ∗`−1.
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Proof. (i) ⇒ (ii) follows from Corollary 3.6. Suppose that (ii) holds. If N is not uniform, then, by Lemma
3.7, there exist j ≥ 2, ξ ∈ H∗(Gj) such that ξ|Aj

6= 0 and ξ is not nilpotent in H∗(G). This contradicts
the fact that Im φ∗1 = Im φ∗`−1 implies 0 = ξ ∈ H∗(G). So N is uniform. �

The next result gives a necessary and sufficient condition for an (almost) powerfully embedded subgroup
to be also (almost) uniformly embedded and Ω-extendable in G.

Corollary 3.9. Let N be (almost) powerfully embedded in a p-group G with d(N) = d and `(Φ∗G(N)) =
` ≥ 2. The following are equivalent:

(i) N is (almost) uniformly embedded and Ω-extendable in G;
(ii) n` = d and there exist z1, . . . , zd in H2(G) such that

H∗(G) = H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zd]

and z1|A`
, . . . , zd|A`

is a basis of B(A`);
(iii) n2 = d, Im φ∗1 = Im φ∗`−1 and there exist z1, . . . , zd ∈ H2(G) such that z1|A`

, . . . , zd|A`
is a basis

of B(A`); .

Proof. For convenience, write H∗(G1)/(z
(1)
1 , . . . , z

(1)
d ) = H. The implication (i) ⇒ (ii) follows from Corol-

lary 3.6. Also, by Corollary 3.6, (i) implies n2 = d (asN is uniform), ker φ∗1 = (z(1)
1 , . . . , z

(1)
d ), ker φ∗`−1 =

(z(`−1)
1 , . . . , z

(`−1)
d ), hence

Im φ∗1 = Im φ∗`−1 = H∗(G1)/(z
(1)
1 , . . . , z

(1)
d ).

So (i)⇒ (iii).
Suppose that (ii) holds. By Theorem 3.3 (i), n1 ≥ n2 · · · ≥ n`, so n1 = · · · = n` = d, hence N is

(almost) uniformly embedded in G. As B(A`) ⊂ Im ResGA`
, it follows from Remark 3.5.1 that N is

Ω-extendable in G. So (i) ⇔ (ii).
Suppose that (iii) holds. By Corollary 3.8, N is (almost) uniformly embedded in G. The existence of

the zi’s shows that N is Ω-extendable in G.
�

The following is straightforward from Corollaries 3.6, 3.8 and 3.9.

Theorem 3.10. Let N be a normal subgroup of a p-group G with d(N) = d. The following are equivalent:
(i) N is uniformly (resp. almost uniformly, for p = 2) embedded and Ω-extendable in G with

`(Φ∗G(N)) ≥ 2;
(ii) n` = d and there exists a system of linearly independent elements ψ1, . . . , ψd of H2(G1) satisfying:

(a) the inflation and restriction maps induces an isomorphism

H∗(G) ∼= H∗(G1)/(ψ1, . . . , ψd)⊗ Z/p[B(A`)],

and
(b) for every non-zero linear combination ψ of the ψi’s, either p > 2 and ψ|A1 /∈ λ(A1), or p = 2

and ψ|〈A1,a〉 ∈ B(〈A1, a〉) for every a ∈ G1 (resp. ψ|A1 ∈ B(A1)). �

We now have the following corollary, of which the last assertion is a celebrated theorem of Lazard ([8]).

Corollary 3.11. Let G be an infinite pro-p group and let N be a closed normal subgroup of G with
d(N) = d <∞. The following are equivalent:

(i) N is uniformly (resp. almost uniformly, for p = 2) embedded in G;
(ii) There exists a system of linearly independent elements ψ1, . . . , ψd of H2(G1) satisfying:

(a) the inflation map induces an isomorphism

H∗(G) ∼= H∗(G1)/(ψ1, . . . , ψd),

and
(b) for every non-zero linear combination ψ of the ψi’s, either p > 2 and ψ|A1 /∈ λ(A1), or p = 2

and ψ|〈A1,a〉 ∈ B(〈A1, a〉) for every a ∈ G1 (resp. ψ|A1 ∈ B(A1)).
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In particular, if G is any finitely generated pro-p group, the inflation map InfG/G
p[G,G]

G induces an
isomorphism

Λ∗((G/Gp[G,G])∗) ∼= H∗(G)

if and only if G is uniform.

Proof. Suppose that (i) holds. It follows that, for every i ≥ 2, Ai(N) is uniformly (resp. almost uniformly,
for p = 2) embedded and Ω-extendable in Gi. By Theorem 3.10, for i ≥ 2,

H∗(Gi) ∼= H∗(G1)/(ψ1, . . . , ψd)⊗ Z/p[B(Ai)],

and the condition (ii b) of Theorem 3.10 is satisfied. Since H∗(G) = lim
−→

H∗(Gi), (ii) also holds.

Conversely, assume that (ii) holds. It follows that ker φ∗1 = (ψ1, . . . , ψd). By Theorem 2.6 and Corollary
2.9, N is powerfully (resp. almost powerfully) embedded in G. If n1 > n2, Lemma 3.7 shows the existence
of a non-nilpotent element of H+(G) not belonging to Im φ∗1, a contradiction. Hence n2 = n1. For i ≥ 2,
as Im φ∗1 = Im φ∗i , Ai(N) is uniformly (resp. almost uniformly, for p = 2) embedded and Ω-extendable
in Gi, by Corollary 3.9. So N is uniformly (resp. almost uniformly, for p = 2) embedded in G. �

Lemma 3.12. Let N be almost powerfully embedded in a p-group G. For k ≥ 1, a ∈ G, b ∈ ΦiG(N),

(i) [a, bp
k

] = [a, b]p
k

mod Φi+k+2
G (N);

(ii) if [a, b] = xy with x ∈ Z(G), y ∈ ΦjG(N), then [a, bp] = [a, b]p mod Φj+2
G (N);

(iii) if Ω = Ω1(N) is central and ord(b) = p2, then [a, b] ∈ Ω.

Proof. (i) We prove by induction on k. Suppose that k = 1. Applying [4, Chapter 4, Exercise 6] yields
[a, bp] = [a, b]p mod ΦjG(N) with j ≥ i + 3 if p is odd or i > 1. If p = 2 and i = 1, as [a, b] ∈ Φ2

G(N)
and N is powerful, [[a, b], b] ∈ Φ4

G(N) (see [4, Chapter 2, Exercise 4]). So [a, b2] = [a, b]2[[a, b], b] =
[a, b]2 mod Φ4

G(N).
Assume that the equality holds for k ≥ 1. So

[a, b]p
k+1

= ([a, b]p
k

)p

= ([a, bp
k

] mod Φi+k+2
G )p

= [a, bp
k

]p mod Φi+k+3
G

= [a, bp
k+1

] mod Φi+k+3
G .

(ii) Without loss of generality, we may assume that Φj+2
G (N) = 1. Therefore, for every g ∈ G, [[a, b], g] ∈

Φj+1
G (N) ⊂ Z(G); in particular, [[a, b], g] = 1 if p = 2 and g ∈ N (see [4, Chapter 2, Exercise 4]). We

then have
[a, bp] = [a, b][a, b]b . . . [a, b]b

p−1

=
p−1∏
m=0

[a, b][[a, b], bm]

= [a, b]p
p−1∏
m=0

[[a, b], bm] since [[a, b], bm] is central

= [a, b]p[[a, b], b]p(p−1)/2

= [a, b]p mod Φj+2
G (N).

(iii) Let j be the smallest integer with [a, b] ∈ ΦjG(N). As (bp)p = 1, bp is central. By (ii), 1 = [a, bp] =
[a, b]p mod Φj+2

G (N). By Lemma 3.7 (i), [a, b] is of form

[a, b] = cx
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with c ∈ ΦjG(N) ∩ Ω, x ∈ Φj+1
G (N). Applying (ii) yields

xp = (cx)p = [a, b]p = [a, bp] mod Φj+3
G (N) by (ii)

= 1 mod Φj+3
G (N) since bp is central.

Therefore xp ∈ Φj+3
G (N). By Lemma 3.7 (i), x is of form x = dz with d ∈ Φj+1

G (N) ∩Ω, z ∈ Φj+2
G (N), so

[a, b] = cdz. Hence, by induction, it follows that [a, b] ∈ Ω. �

Suppose that N is almost powerfully embedded in a pro-p group G and Ω = Ω1(N) is central with
Ω 6⊂ Φ(G). Write Ω = M × L with M = Ω ∩Φ(G). L is then a direct factor of G. Therefore, there exist
subgroups K,N of G such that

(i) G = K × L,N = N1 × L,Ω1(N1) = M ;
(ii) N1 is almost powerfully embedded in K;
(iii) N is Ω-extendable in G implies that N1 is Ω-extendable in K.

Furthermore, L is elementary abelian and H∗(G) = H∗(K)⊗H∗(L). Hence, to consider the cohomology
of pro-p groups G having an almost powerfully embedded and Ω-extendable subgroups N in G, we may
suppose that Ω = Ω1(N) is central and is contained in the Frattini subgroup of G. We have

Theorem 3.13. Let N be almost powerfully embedded in a pro-p group G with d(Np) = d. Set Ω =
Ω1(N),Ω′ = Ω ∩Np, k = d(Ω), k′ = d(Ω′). The following are equivalent:

(i) N is Ω-extendable in G;
(ii) Ω is abelian and there exist z1, . . . , zk in H2(G) such that z1|Ω, . . . , zk|Ω (resp. z1|Ω′ , . . . , zk′ |Ω′)

is a basis of B(Ω) (resp. B(Ω′)) and

H∗(G) = H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zk′ ].

Proof.
Let T be the set of elements of finite order of N . By Remark 3.5, T is a closed normal subgroup which

is almost powerfully embedded in G. So Ω = Ω1(T ) and, by Lemma 3.7, d(T ) = k.
We prove (i) ⇒ (ii). Suppose that N is Ω-extendable in G. Consider the following cases:

- N = T (so d = k′). Set ` = `(Φ∗G(N)). We argue by induction on `. If ` = 2, then, by Lemma 2.3 and
Remark 3.5,

H∗(G) = H∗(G1)/(z
(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zd]

with z1|Ω′ , . . . , zd|Ω′ a basis of B(Ω′); furthermore, by Remark 3.5, there exist zd+1, . . . , zk in H2(G)
such that z1|Ω, . . . , zk|Ω is a basis of B(Ω). Assume that (i) holds for ` − 1 with ` > 2. As discussed
above, we also assume that Ω ⊂ Φ(G). Let Ω′′ be a complement of Ω′ in Ω. It follows that Ω′ =
Ω/Ω′′ = Ω1(N/Ω′′). Hence N/Ω′′ is Ω-extendable in Q = G/Ω′′ (∗). By Lemma 3.12 (iii) (see also
[13, Proposition 5.4 (a)]), N ′ = N/Ω is almost powerfully embedded and Ω-extendable in G′ = G/Ω;
furthermore, d(N ′) = d(Ω1(N ′)) = d. Set e = d((N ′)p) = d(Ω1(N ′) ∩ (N ′)p) and R = G′/(N ′)p. Since
`(Φ∗G′(N ′)) = ` − 1, it follows from the inductive hypothesis that there exist u1, . . . , ue in H2(R) and
s1, . . . , se, ue+1, . . . , ud in H2(G′) such that, via the restriction maps, the images of s1, . . . , se, ue+1, . . . , ud
(resp. s1, . . . , se) form a basis of B(Ω1(N ′)) (resp. B(Ω1((N ′)p)) and

H∗(G′) = H∗(R)/(u1, . . . , ue)⊗ Z/p[s1, . . . , se].

By (∗), Lemma 2.3 and Remark 3.5, there exist z1, . . . , zd in H2(Q) such that z1|Ω′ , . . . , zd|Ω′ form a basis
of B(Ω′) and

H∗(Q) = H∗(G′)/(s1, . . . , se, ue+1, . . . , ud)⊗ Z/p[z1, . . . , zd]
= H∗(R)/(u1, . . . , ud)⊗ Z/p[z1, . . . , zd].

As Ω′′ ∩ Np = 1, ker (H2(Q) Inf→ H2(G)) ⊂ Im InfRQ. There exist then ud+1, . . . , uk in H2(R) and
zd+1, . . . , zk in H2(G) such that zd+1|Ω′′ , . . . , zk|Ω′′ form a basis of B(Ω′′) and

H∗(G) = H∗(R)/(u1, . . . , uk)⊗ Z/p[zd+1, . . . , zk]⊗ Z/p[z1, . . . , zd].
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Since H∗(G1) = H∗(R)/(ud+1, . . . , uk)⊗Z/p[zd+1, . . . , zk] and z(i)
1 = InfRG1

(ui), 1 ≤ i ≤ d, it follows that

H∗(G) = H∗(G1)/(z
(1)
1 , . . . , z

(d)
1 )⊗ Z/p[z1, . . . , zd];

- T $ N . By Remark 3.5.2, T is almost powerfully embedded in G. It follows from the above case that
there exist ϕ1, . . . , ϕ` ∈ H2(G/T p), z1, . . . , zk′ , . . . , zk ∈ H2(G) such that

H∗(G) = H∗(G/T p)/(ϕ1, . . . , ϕ`)⊗ Z/p[z1, . . . , zk′ ]

with z1|Ω′ , . . . , zk′ |Ω′ (resp. z1|Ω, . . . , zk|Ω) a basis of B(Ω′) (resp. B(Ω)).
Set K = G/T p and M = N/T p. By [4, Theorem 4.20 and its proof], M is almost powerfully embedded

in K. Denote by w the element of H2(K1, A2(M)) classifying the extension 0 → A2(M) → K2 → K1 → 1
and set m = dimZ/pA2(M). Note that A1(M) is elementary abelian. There exists then an elementary
abelian subgroup B of rank m of A1(M) such that (Bw)p = A2(M). Let C be the preimage of B via
the projection map K → K1 = K/Cp. It follows that C is almost uniformly embedded in K. Hence, by
Corollary 3.9, there exist ψ1, . . . , ψm ∈ H2(K/Cp) such that

H∗(K) = H∗(K/Cp)/(ψ1, . . . , ψm).

Note that K/Cp is nothing but G1. Each ϕi is then represented by an element ψm+i of H2(G1). Therefore

H∗(G) = H∗(G1)/(ψ1, . . . , ψm+`)⊗ Z/p[z1, . . . , zk′ ].

As (ψ1, . . . , ψm+`) is nothing but Ker φ∗1, it coincides with (z(d)
1 , . . . , z

(1)
d ). So (i) ⇒ (ii).

Conversely, suppose that (ii) holds. We need prove that Ω is central. Let Gz be given by the central
extension

0 → (Z/p)k i→ Gz → G→ 1

classified by z = (z1, . . . , zk) ∈ H2(G)⊕k. It follows that Ω1(Gz) = i((Z/p)k) is central in Gz. Set
Ω2 = 〈g ∈ Gz|gp

2
= 1〉. Then Ω = Ω2/Ω1(Gz). By Lemma 3.12 (iii), Ω is central. �

We have the following corollary, of which the case p ≥ 5 was given in [2, Theorem 3.16] and the case
p odd in [13, Corollary 4.2], both in the finite case, when n = k = d.

Corollary 3.14. Let G be a powerful pro-p group with d(G) = n and d(Φ(G)) = d. Set Ω = Ω1(G) and
k = d(Ω). The following are equivalent:

(i) Ω is abelian and there exist y1, . . . , yk+d−n in H2(G) and a basis x1, . . . , xn of H1(G) such that

H∗(G) =
{

Λ[x1, . . . , xn]⊗ Z/p[y1, . . . , yk+d−n, βxd+1, . . . , βxn] for p > 2,
Λ[x1, . . . , xd]⊗ Z/2[y1, . . . , yk+d−n, xd+1, . . . , xn] for p = 2,

and y1|Ω, . . . , yk+d−n|Ω, βxd+1|Ω, . . . , βxn|Ω is a basis of B(Ω);
(ii) G is Ω-extendable.

Proof. The implication (i) ⇒ (ii) follows from Theorem 3.13. Suppose that G is Ω-extendable. Let N
be a minimal subgroup of G satisfying Np = Φ(G). N is then a closed normal subgroup and powerfully
embedded in G. Furthermore, N is Ω-extendable in G and d(N) = d. It follows that Ω/Ω ∩ Φ(G) (resp.
Ω ∩ Φ(G)) is of rank n− d (resp. k + d− n). By Theorem 3.13,

H∗(G) = H∗(G/Φ(G))/(z(1)
1 , . . . , z

(1)
d )⊗ Z/p[z1, . . . , zk+d−n]

with z1|Ω∩Φ(G), . . . , zk+d−n|Ω∩Φ(G) a basis of B(Ω ∩ Φ(G)). Since G/Φ(G) is elementary abelian, (i)
follows from Lemma 1.2 and Corollary 2.6. �
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Theorem 3.15. In the circumstances of Theorem 3.13, let Γ be an Ω-extension of G. Let U be a
subgroup of Aut(Γ) which preserves N , and let V be the image of U in Aut(G). Then, as V -modules,
H∗(G) ∼= H∗(G1)/(z

(1)
1 , . . . , z

(1)
d )⊗ Z/p[Ω∗].

Proof. H∗(G) ∼= H∗(G1)/(z
(1)
1 , . . . , z

(1)
d ) is the image of inflation from G1, so is preserved by V . �

The linear span of z1, . . . , zk is isomorphic to Ω∗. It is the kernel of inflation to Γ, so is preserved by
V , hence so is Z/p[z1, . . . , zk]. �

4. The Bockstein

This section is devoted to the study of the Bockstein homomorphism on H∗(G) with G a pro-p group
having an almost powerfully embedded subgroup N .

It is sometimes useful to be able to calculate with an explicit construction of group extensions. Let
A = Cpr1 (e1)×· · ·×Cprn (en) and let U be an elementary abelian group of rank m, considered as a trivial
A-module. Let z = (z1, . . . , zm) ∈ H2(A,U) and let z̃ be a representative normalized cocycle. Let Az̃ be
a group defined as follows. Az̃ = U ×A as sets and the multiplication is given by

(u, x) · (v, y) = (u+ v + z̃(x, y), xy)

with u, v ∈ U, x, y ∈ A. If z̃ is changed by the codifferential of a normalized cochain c then there is an
isomorphism Az̃ → Az̃+c given by (u, x) 7→ (u+ c(x), x).

We choose xi ∈ H1(Cpri (ei)) as in section 1 and denote by x̃i the representing normalized cocycle.
We specify yi ∈ H2(Cpri (ei)) by the cocycle

ỹi(eti, e
s
i ) =

{
1 for t+ s ≥ pri ,
0 for t+ s < pri .

As before we also regard these elements as cocycles on A.

Lemma 4.1. If z` =
∑n
i=1 α

(`)
i yi +

∑
1≤i<j≤n λ

(`)
ij xixj then:

(i) If ri = 1 then βxi = yi,
(ii) (u, ei)p

ri = ((α(1)
i , . . . , α

(m)
i ), 1),

(iii) [(u, ei), (v, ej)] = (u, ei)−1(v, ej)−1(u, ei)(v, ej) = ((λ(1)
ij , . . . , λ

(m)
ij ), 1), where we define λ

(`)
ij =

−λ(`)
ji if i > j and 0 if i = j.

Notice that these sets of equations are invariant under adding a coboundary to z̃.

Proof. Part (i) is an easy calculation with cocycles.
For (ii) one proves, by induction on s, that (u, ei)s = (su +

∑s−1
k=1 z̃(ei, e

s
i ), e

s
i ). Now set s = pri and

evaluate the explicit cocycles.
For (iii), note that (u, ei)(v, ej) = (v, ej)(u, ei)(z̃(ei, ej) − z̃(ej , ei), 1). Now finish by evaluating

z̃(ei, ej)− z̃(ej , ei) using explicit cocycles. �

Suppose now that
A = Cpr (e0)× Cp(e1)× · · · × Cp(en)

be an abelian group with r ≥ 1, and let B = 〈e1, . . . , en〉

Let Γ be given by the central extension

0 → (Z/p)n i→ Γ
ϕ→ A→ 1

corresponding to a cohomology class (z1, . . . , zn) ∈ H2(A)⊕n. Suppose that i((Z/p)n) ⊂ Φ(Γ), that
ϕ−1(B) is almost powerfully embedded and Ω-extendable in Γ. By Lemma 2.2 and Theorem 3.3, the zi
can be chosen such that

zi|〈ej〉 =
{
yi for i = j,

0 otherwise.
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Since ϕ−1(B) is Ω-extendable in Γ, it follows from Theorem 3.13 that each βzi belongs to (z1, . . . , zn),
hence is of the form

βzi =
∑
k,`

`>0

α
(i)
k` xkz` (1)

with α(i)
k` ∈ Z/p, 1 ≤ i ≤ n. We have

Lemma 4.2. For 1 ≤ i ≤ n, 0 ≤ k, ` ≤ n, we have α(i)
kk = 0, α(i)

k` = −α(i)
`k and

zi = −
∑
k<`

α
(i)
k` xkx` mod B(A).

In other words, [(0, ek), (0, e`)] =
n∏
i=1

(0, ei)−pα
(i)
k` , 0 ≤ k, ` ≤ n.

Proof. Write
zi = yi +

∑
0<`

γ
(i)
0` x0x` +

∑
1≤k<`

γ
(i)
k` xkx` + γiy0, (2)

with γ
(i)
st , γi ∈ Z/p, 1 ≤ i ≤ n. (Note that, for p = 2 and 1 ≤ k < `, γ(i)

k` = 0 by Proposition 3.2, as
ϕ−1(B) is powerful.) So

βzi =
∑
0<`

γ
(i)
0` [x`β(x0)− x0y`] +

∑
1≤k<`

γ
(i)
k` [x`yk − xky`]. (3)

Also, from (1) and (2), we have

βzi =
∑
k,`

`>0

α
(i)
k` xk[y` +

∑
0<s

γ
(`)
0s x0xs +

∑
1≤t<s

γ
(`)
ts xtxs + γ`y0]

=
∑
k,`

`>0

α
(i)
k` xky` +

∑
k,`

`>0

∑
0<s

α
(i)
k` γ

(`)
0s xkx0xs +

∑
k,`

`>0

∑
1≤t<s

α
(i)
k` γ

(`)
ts xkxtxs +

∑
k,`

`>0

α
(i)
k` γ`xky0

=



∑
k,`

`>0

α
(i)
k` xky` +

∑
k,`

`>0

α
(i)
k` γ`xky0 mod λ3(A) for p > 2,

∑
k,`

`>0

α
(i)
k` xky` +

∑
k,`

`>0

∑
0<s

α
(i)
k` γ

(`)
0s xkx0xs +

∑
k,`

`>0

α
(i)
k` γ`xky0 for p = 2.

(4)

Comparing (3) and (4) yields then α(i)
kk = 0, α(i)

k` = −α(i)
`k and α(i)

k` = −γ(i)
k` for k < `. The last equality

follows from (2) and Lemma 4.1. �

With the notation as above, let ∆ be given by the central extension

0 → (Z/p)n+1 j→ ∆
ψ→ A→ 1

corresponding to a cohomology class (w0, w1, . . . , wn) ∈ H2(A)⊕n+1. Suppose that j((Z/p)n+1) ⊂ Φ(∆),
that r ≥ 2 (so βx0 = 0) and ψ−1(Ω1(A)) is almost powerfully embedded and Ω-extendable in Γ. As
above, the wi can be chosen such that

wi|〈ej〉 =
{
yi for i = j,

0 otherwise,

and each βwi is of form
βwi =

∑
k,`

σ
(i)
k` xkw` (5)

with σ(i)
k` ∈ Z/p, 0 ≤ i ≤ n. We have
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Lemma 4.3. For 0 ≤ i ≤ n, 0 ≤ k, ` ≤ n, we have σ(i)
kk = 0, σ(i)

k` = −σ(i)
`k and

wi = −
∑
k<`

σ
(i)
k` xkx` mod B(A).

In other words, [(0, ek), (0, e`)] = (0, e0)−p
2σ

(0)
k`

n∏
i=1

(0, ei)−pσ
(i)
k` , 0 ≤ k, ` ≤ n.

Proof. We use a similar argument to the one of the proof of Lemma 4.2. Write

wi = yi + γ
(i)
0` x0x` +

∑
1≤k<`

γ
(i)
k` xkx`, (6)

with γ(i)
st ∈ Z/p, 0 ≤ i ≤ n. (So, for p = 2 and 1 ≤ k < `, γ(i)

k` = 0.) Therefore

βwi = −
∑
0<`

γ
(i)
0` x0y` +

∑
1≤k<`

γ
(i)
k` [x`yk − xky`]. (7)

From (5) and (6), we have

βwi =
∑
k,`

σ
(i)
k` xk[y` +

∑
0<s

γ
(`)
0s x0xs +

∑
1≤t<s

γ
(`)
ts xtxs]

=
∑
k,`

σ
(i)
k` xky` +

∑
k,`

∑
0<s

σ
(i)
k` γ

(`)
0s xkx0xs +

∑
k,`

∑
1≤t<s

σ
(i)
k` γ

(`)
ts xkxtxs

=


∑
k,`

σ
(i)
k` xky` mod λ3(A) for p > 2,

∑
k,`

σ
(i)
k` xky` +

∑
k,`

∑
0<s

σ
(i)
k` γ

(`)
0s xkx0xs for p = 2.

(8)

Comparing (7) and (8) yields then σ(i)
kk = 0, σ(i)

k` = −σ(i)
`k and σ(i)

k` = −γ(i)
k` for k < `. The last equality

follows from (6) and Lemma 4.1. �

Suppose now that N is almost powerfully embedded in the p-group G with d(N) = d. Let a1, . . . , ar,
ar+1, . . . , am be a minimal system of generators of G with a1, . . . , ar ∈ N (with the convention that r = 0
if N ⊂ Φ(G)). So, for every i ≥ 1, φi(a1), . . . , φi(am) also generate Gi. Define xj , 1 ≤ j ≤ n in H1(G1)
by xj(φ1(ak)) = δjk. Set ei = ai, 1 ≤ i ≤ m. There exist then er+1, . . . , ed ∈ N such that e1, . . . , ed
generate N . As N is powerful, the ei’s can be renumbered so that ep

i−1

1 , . . . , ep
i−1

ni
generate ΦiG(N). The

xj ’s are then considered as elements of H∗(Gi), i ≥ 2, via the inflation map.

Theorem 4.4. Suppose that N is almost uniformly embedded in G with ` = `(Φ∗G(N)) ≥ 3. For
2 ≤ i ≤ `− 1, the classes z(i)

1 , . . . , z
(i)
d given in Section 2 can be chosen such that:

(i) z
(i)
j |〈φi(e

pi−1
k )〉 = 0 if j 6= k;

(ii) if
βz

(1)
j =

∑
s,t

λ
(j)
st xsz

(1)
t (9)

with λ(j)
st ∈ Z/p, 1 ≤ j ≤ d, then:

(iia) λ(j)
ss = 0;

(iib) for 2 ≤ i ≤ `− 2, 1 ≤ j ≤ d,

βz
(i)
j =

∑
st

λ
(j)
st xsz

(i)
t ,

βz
(`−1)
j =

∑
st

λ
(j)
st xsz

(`−1)
t + ηj ,
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with ηj ∈ Im InfG1
G . If N is Ω-extendable in G, then ηj = 0, 1 ≤ j ≤ d.

In particular, if p = 2 or if [N,G] ⊂ Np2 for p > 2, we have, for 1 ≤ j ≤ d,

βz
(i)
j = 0, 1 ≤ i ≤ `− 2,

βz
(`−1)
j ∈ Im InfG1

G ,

and βz(`−1)
j = 0 if N is Ω-extendable in G.

Proof. (i) is clear from Lemma 2.2 and Proposition 3.2. We now prove (ii). Set A = 〈φ1(ak), A1〉 with a
given 1 ≤ k ≤ m. A is then an abelian subgroup of G1. It follows from (9) that

βz
(1)
j |A =

m∑
s=1

d∑
t=1

λ
(j)
st xs|Az

(1)
t |A.

By Lemmas 4.1, 4.2 and 4.3, this implies λ(j)
ss = 0 and, for s 6= t,

[as, et] =
d∏
j=1

e
−pλ(j)

st
j mod Φ3

G(N).

Hence, by Lemma 3.12 (i), for s 6= t

[as, e
pi−1

t ] = [as, et]p
i−1

mod Φi+2
G (N)

=
d∏
j=1

e
−piλ

(j)
st

j mod Φi+2
G (N). (10)

Given i ≤ ` − 2, for 1 ≤ k ≤ m, define Bk to be the abelian subgroup of Gi given by Bk = 〈ek, Ai〉.
Note that βz(i)

j belongs to (z(i)
1 , . . . , z

(i)
d ), for i ≤ ` − 2; hence it should be a linear combination of the

xkz
(i)
t ’s. By (i), (10), Lemmas 4.2, 4.3 and from the structure of H∗(Gi), βz

(i)
j |Bk

should be of form

βz
(i)
j |Bk

=
∑
s,t

λ
(j)
st xs|Bk

z
(i)
t |Bk

.

Therefore
βz

(i)
j =

∑
s,t

λ
(j)
st xsz

(i)
t .

Analogously, we also get the required decomposition for z(`−1)
j , 1 ≤ j ≤ d, by noting that, modulo Im

InfG1
G , βz(`−1)

j also belongs to (z(`−1)
1 , . . . , z

(`−1)
d ), and ξ|Bk

= 0 for every ξ ∈ Im InfG1
G . Furthermore, if

N is Ω-extendable in G, then βz(`−1)
j belongs to (z(`−1)

1 , . . . , z
(`−1)
d ), hence ηj = 0.

Finally, if p = 2 or if [N,G] ⊂ Np2 for p > 2, then βz
(1)
j = 0, for 1 ≤ j ≤ d. So the last equalities

follow from what we just proved. The theorem follows. �

Suppose thatN is almost powerfully embedded and Ω-extendable in a finite p-groupG. As noted above,
d(Ω1(N)) = d(N) and we may consider the case where Ω1(N) is contained in the Frattini subgroup of
G. The proof of the above theorem can be applied to the subgroup N/Ω1(N) of G/Ω1(N) and, together
with Theorem 3.13, yields the following
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Theorem 4.5. Let N be almost powerfully embedded and Ω-extendable in a finite p-group G. Assume
that Ω = Ω1(N) is contained in Np, d(Ω) = d. Pick a basis x1, . . . , xm of H1(G1) and a cohomology
class (w1, . . . , wd) ∈ H2(G1)⊕d corresponding to the central extension 0 → A2 → G2 → G1 → 1. Then
there exist z1, . . . , zd of H2(G), η1, . . . , ηd of Im InfG1

G such that:
(i) H∗(G) = H∗(G1)/(w1, . . . , wd)⊗ Z/p[z1, . . . , zd];
(ii) z1|Ω, . . . , zd|Ω is a basis of B(Ω);
(iii) if

βwj =
∑
r,s

λ(j)
rs xrws, 1 ≤ j ≤ k,

then

βzj =
∑
r,s

λ(j)
rs xrzs + ηj , 1 ≤ j ≤ k.

The extension Γ of G by (Z/p)d corresponding to (z1, . . . , zd) is also Ω-extendable if and only if
all the ηj’s vanish.

In particular, if [N,G] ⊂ Np2 (for example, if N is powerfully embedded in G for p = 2), then
βwj = 0, βzj ∈ Im InfG1

G , 1 ≤ j ≤ k. �

Consider now the case where N is almost powerfully embedded and Ω-extendable in a pro-p group
G with Ω = Ω1(N) contained in Np. As noted in Remark 3.5, d(Ω) = d(T ) with T the subgroup of
N consisting of elements of finite order. It is known that N/T is almost uniformly embedded in G/T .
Set d = d(N), k = d(Ω). The cohomology class (z(1)

1 , . . . , z
(1)
d ) ∈ H2(G1) can be then chosen such that

(z(1)
k+1, . . . , z

(1)
d ) corresponds to the central extension 0 → A2(N/T ) → G/T → G1 → 1. It follows that,

for 1 ≤ j ≤ k, βz(1)
j is of form

βz
(1)
j =

∑
r
s≤k

λ(j)
rs xrz

(1)
s .

We then have

Corollary 4.6. Let N be almost powerfully embedded and Ω-extendable in a pro-p group G with d(N) = d.
Assume that Ω = Ω1(N) is contained in Np, d(Ω) = k. Then there exist a basis x1, . . . , xm of H1(G1),
a cohomology class (w1, . . . , wd) ∈ H2(G1)⊕d corresponding to the central extension 0 → A2 → G2 →
G1 → 1, elements z1, . . . , zk of H2(G), η1, . . . , ηk of Im InfG1

G and λ
(j)
rs ∈ Z/p, 1 ≤ r ≤ m, 1 ≤ s, j ≤ k

such that:
(i) H∗(G) = H∗(G1)/(w1, . . . , wd)⊗ Z/p[z1, . . . , zk];
(ii) z1|Ω, . . . , zk|Ω is a basis of B(Ω);
(iii) for 1 ≤ j ≤ k,

βwj =
∑
r
s≤k

λ(j)
rs xrws,

βzj =
∑
r,s

λ(j)
rs xrzs + ηj .

The extension Γ of G by (Z/p)k corresponding to (z1, . . . , zd) is also Ω-extendable if and only if
all the ηj’s vanish.

In particular, if [N,G] ⊂ Np2 (for example, if N is powerfully embedded in G for p = 2), then
βwj = 0, βzj ∈ Im InfG1

G , 1 ≤ j ≤ k. �

With the notation as above, suppose that G is a powerful pro-p group and βxj =
∑
s<t

λ
(j)
st xsxt, 1 ≤ j ≤

n1. Combining the above theorem with Corollary 3.14, we have the following, of which the case p ≥ 5
was given in [2, Theorem 3.16].
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Corollary 4.7. Let G be a powerful pro-p group, Ω-extendable with d(G) = n, ` = `(Φ∗G(G)) ≥ 2.
Set d = d(Φ(G)),Ω = Ω1(G) and k = d(Ω). Then there exist a basis x1, . . . , xn of H1(G), elements
y1, . . . , yk+d−n of H2(G), η1, . . . , ηk−d+n of Im InfG/Φ(G)

G and λ(i)
rs of Z/p, 1 ≤ r, s, i ≤ k+d−n, satisfying:

(i) ResGΩ maps {y1, . . . , yk+d−n, βxd+1, . . . , βxn} isomorphically onto a basis of B(Ω);

(ii) H∗(G) =
{

Λ[x1, . . . , xn]⊗ Z/p[y1, . . . , yk−d+n, βxd+1, . . . , βxn] for p > 2,
Λ[x1, . . . , xd]⊗ Z/2[y1, . . . , yk−d+n, xd+1, . . . , xn] for p = 2;

(iii) λ
(i)
rr = 0, λ(i)

rs = −λ(i)
sr , βxi = −

∑
r<s

λ(i)
rs xrxs, βyi =

∑
r,s

λ(i)
rs xrys + ηi, 1 ≤ i ≤ k − d+ n.

The extension Γ of G by (Z/p)k+d−n corresponding to (y1, . . . , yk+d−n) is also Ω-extendable if
and only if all the ηi’s vanish.

In particular, if p = 2 or if [G,G] ⊂ Gp
2

for p odd, then all the λ(i)
rs ’s vanish. �
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