
SMITH THEORY FOR ALGEBRAIC VARIETIES

PETER SYMONDS

Abstract. We show how an approach to Smith Theory about group actions on CW-
complexes using Bredon cohomology can be adapted to work for algebraic varieties.

1. Introduction

Peter May described in [8] a version of Smith Theory based on Bredon cohomology,
so it really applies to any complex of projective coefficient systems rather than just a
topological space. Later Jeremy Rickard in [9] showed how to associate a complex of
p-permutation modules to a group action on a variety in such a way that the cohomology
of this complex is the étale cohomology of the variety. We show how to generalize this to
obtain a complex of projective coefficient systems. Thus Smith Theory becomes available
for algebraic varieties, even over fields of finite characteristic. Our framework is also
sufficient to apply to varieties methods of Borel, Swan and others based on equivariant
cohomology, although we do not set out the details here.

2. Coefficient Systems

A coefficient system L on a group G over a ring R is a functor from the right orbit
category of G to R-modules. In more concrete terms, it consists of a collection of R-
modules L(H), one for each subgroup H ≤ G together with R-linear restriction maps
resH

K : L(H) → L(K) for each K ≤ H ≤ G and conjugation maps cg,H : L(H) → L(gH)
for each g ∈ G and H ≤ G.

These must satisfy the identities:

(1) resH
H = id, H ≤ G;

(2) resK
J resH

K = resH
J , J ≤ K ≤ H ≤ G;

(3) cg1,g2Hcg2,H = cg1g2,H , H ≤ G, g1, g2 ∈ G;
(4) res

gH
gK cg,H = cg,K resH

K , K ≤ H ≤ G, g ∈ G;
(5) ch,H = id, H ≤ G, h ∈ H.

In particular, the conjugation maps make L(H) into a left RNG(H)/H-module.
A morphism f : L → M is a collection of R-linear maps f(H) : L(H) → M(H) which

commute with the res and c.
The coefficient systems on G over R form an abelian category, which we denote by

CSR(G). If H ≤ G there is a forgetful map ResG
H : CSR(G) → CSR(H)

Examples. (1) The constant coefficient system R̄, which is just R on each evaluation
and all the maps are the identity.

(2) The fixed point coefficient system V ?, where V is a left RG-module and the no-
tation indicates that the evaluation on H ≤ G is the fixed point submodule V H .
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Restriction is inclusion and conjugation is multiplication by g ∈ G. These have
the important property that HomCSR(G)(L, V ?) ∼= HomRG(L(1), V ).

(3) A variation on V ? is V0, which takes the value V on 1 and 0 elsewhere.
(4) The systems R[X?], where X is a left G-set and the evaluation at H is the free

R-module on the fixed point set XH .
The particular cases R[G/H?] have the important property HomCSR(G)(R[G/H?], L) ∼=

L(H). It follows that they are projective and that they provide enough projectives.
Thus every projective is a summand of a sum of these.

For more information on coefficient systems see [10].
Given a set of coefficient systems I it is convenient to define add(I) to be the full

subcategory of CSR(G) in which the objects are isomorphic to a summand of a coefficient
system of the form L1 ⊕ . . .⊕ Ln, Li ∈ I.

Thus the subcategory proj(CSR(G)) of finitely generated projective coefficient systems
is the same as add({R[G/H?] : H ≤ G}).

If X is a G-CW-complex then there is a complex of coefficient systems C[X?] associated
to it, in which Cn[X] = R[(Xn)?] where Xn is the G-set of n-cells in X and the boundary
morphisms are defined in the usual way.

The Bredon cohomology of X with coefficients in a coefficient system L, as defined in
[3], is H∗

G(X, L) = H∗(HomCSR(G)(C[X?], L)).

Examples. (1) H∗
G(X, (RG)?) ∼= H∗(X, R), the usual CW-cohomology,

(2) H∗
G(X, RG) ∼= H∗(XG, R), where RG takes the value R on G and 0 elsewhere.

(3) H∗
G(X, R̄) ∼= H∗(X/G,R),

(4) More generally we can regard H∗
? (X, R) as a coefficient system itself under the nat-

ural restriction and conjugation maps, and then we have H∗
? (X, R̄) ∼= H∗(X/?, R).

The dual concept to that of a coefficient system we term an efficient system, in which
the restriction maps go in the opposite direction. E(H) is now a right NG(H)-module,
although we could remedy this by taking the contragredient instead of the dual. The
category of efficient systems for G over R is denoted by ESR(G).

If R is self-injective then applying HomR(−, R) provides a duality between the subcat-
egories taking values in finitely generated modules.

The dual of R[G/H?] is denoted by R[G/H?]∗. The evaluation on K ≤ G can be
thought of as the functions on the fixed point set (G/H)K and the restriction maps just
restrict the functions. If R is self injective then R[G/H?]∗ is injective.

CSR(G) can also be viewed as the category of modules over an R-algebra CR(G) of
finite rank over R, (cf. [2]). Similarly ESR(G) is equivalent to the category of modules
over another R-algebra ER(G).

3. Varieties

From now on k is an algebraically closed field and in this section X is a separated
scheme of finite type over k.

Let A be a torsion Artin algebra and let F be a constructible sheaf of A-modules over
X. Let stalks(F) denote the set of stalks of F at the k-rational points. This contains
only a finite number of isomorphism classes of A-modules.
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Recall that RΓc(X,F) is a complex of A-modules, natural as an object of the de-
rived category D(A−Mod), whose homology is étale cohomology with compact supports
H∗

c (X,F).
Our main tool will be the following result from [9]:

Theorem 3.1. (Rickard) There is a complex of modules in add(stalks(F)) of finite type,
which we denote by Ωc(X,F). It is well defined up to homotopy equivalence. It has the
following properties:

(1) Ωc(X,F) is isomorphic to RΓc(X,F) in D(A−Mod);
(2) F 7→ Ωc(X,F) is a functor from constructible sheaves of A-modules over X to

Kb(A−mod);
(3) If f : Y → X is a finite morphism of separated schemes of finite type over k then

there is an induced map Ωc(X,F) → Ωc(Y, f ∗F);
(4) If B is also a torsion Artin algebra and L is a functor add(stalks(F)) → B−mod

then LΩc(X,F) ∼= Ωc(X, L̃F), where L̃F denotes the sheafification of the presheaf
LF .

We will apply this in the case that R = Z/`n and A = ER(G).
We suppose that a finite group G acts on X with quotient variety Y = X/G and

projection map ρ : X → Y . We let F = FX be the sheafification of the presheaf that
sends a Zariski open set U ⊆ Y in the Zariski topology to R[(π0(ρ

−1U))?]∗, where π0(ρ
−1U)

is the G-set of components of ρ−1U . (This extends to the étale site on X by evaluating
on the image of an étale map U → X.) Then stalks(F) consists of injective modules.

Theorem 3.1 produces a complex of injective efficient systems of finite type Ωc(Y,F).
These complexes for different n can be pieced together in such a way that we can take the
inverse limit and obtain a complex of finite type of efficient systems in add({Ẑ`[G/H?]∗ :

H the stabilizer of a k-rational point}) as in [9]. The dual of this by HomẐ`
(−, Ẑ`) is the

complex that we will denote by C[X?].

Theorem 3.2. For any H ≤ G, C[X?](H)∗ ∼= RΓc(X
H , Ẑ`).

In other words C[X?](H) is a complex whose dual has cohomology H∗
c (XH , Ẑ`). We

can therefore think of it as the analogue of the complex C[X?] for the Bredon cohomology
of a G-CW-complex.

Since C[XH ](1) ∼= C[X?](H) our notation is justified and, after the proof is complete,
we will write C[XH ] instead of C[X?](H).

We will prove theorem 3.2 as a corollary of some more general results.
Notice that C[X?] is natural with respect to group homomorphisms f : H → G for

which the kernel acts trivially on X.
Let A be a set of subgroups of G closed under supergroups and conjugation. Let

SAX =
⋃

J∈A XJ .
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Define LA : CSR(G) → CSR(G) by taking LAC to be the smallest subsystem of C that
is equal to C(H) for all H ∈ A. Then

LAR[G/H?] =

{
R[G/H?] H ∈ A
0 otherwise

= R[(SAG/H)?].

So LA induces a functor LA : add({R[G/H?]; H ≤ G}) → add({R[G/H?]; H ∈ A}).

Proposition 3.3. LAC[X?] is homotopy equivalent to C[(SAX)?].

Proof. It is sufficient to prove the analogous statement for R = Z/`n.
By 3.1, LAC[X?]∗ ∼= Ωc(Y, L̃AF1), where F1 is the sheafification of F ′

1 : U 7→ Γ((π0(ρ
−1U))?, R).

So L̃AF1 is the sheafification of U 7→ Γ((SAπ0(ρ
−1U))?, R).

Now C[(SAX)?]∗ ∼= Ωc((SAX)/G,FSAX) ∼= Ωc(Y,F2), where F2 is the sheafification of
F ′

2 : U 7→ Γ((π0(ρ
−1U ∩ SAX))?, R).

Inclusion of fixed points gives a map L̃AF ′
1 → F ′

2, which induces an isomorphism on
the stalks and hence an isomorphism of sheaves. �

Lemma 3.4. C[X?](1)∗ ∼= RΓc(X,R)

Proof. Again it is enough to work over Z/`n.

Considering the functor “evaluate at 1”, we find that Ωc(Y,F)(1) ∼= Ωc(Y, F̃(1)), where

F̃(1) is the sheafification of U 7→ Γ(π0(ρ
−1U), R), which is just ρ∗R.

Finally Ωc(Y, ρ∗R) ∼= RΓc(Y, ρ∗R) ∼= RΓc(X, R). �

Remark. The above lemma shows that C[X] = C[X?](1) is the dual of Rickard’s complex
of `-permutation modules.

Proof. of 3.2. We can restrict to NG(H) if necessary, by naturality under inclusions, so
we may assume that H is normal in G. Let H be the set of subgroups of G containing H
and apply 3.3 to obtain C[XH ](H) ∼= LHC[X?](H) = C[X?](H).

Notice that C[XH ](H) ∼= C[XH ](1) by naturality under G → G/H and apply 3.4. �

A similar method will prove the following result (see [9]). We abbreviate H0(G, M) by
MG.

Lemma 3.5. C[X]G ∼= C[X/G].

Let S1 denote the set of non-trivial subgroups and write S = SS1 and L = LS1 .

Lemma 3.6. (C[X?]/LC[X?])∗ ∼= RΓc(X r SX, R)0.

Proof. Both sides are zero on non-trivial subgroups, so we only need to check at the trivial
group.

The inclusion map C[SX] → C[X] is equivalent to LC[X] → C[X]. It is also dual
to RΓc(X, R) → RΓc(SX, R). Thus the triangles LC[X] → C[X] → C[X]/LC[X] and
RΓc(X r SX, R) → RΓc(X, R) → RΓc(SX, R) are dual. �
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4. Smith Theory

Various results are known collectively as Smith theory (see [4], for example), but the
prototype is the theorem that if a p-group P acts on a finite dimensional CW-complex
which has the mod-p cohomology of a point then the fixed point subcomplex also has the
mod-p cohomology of a point. Once the case of P of order p is proved this follows by
induction on the order of P .

From now on we will take R to be Fp. We allow X to be either a CW-complex,
in which case our results are well known, or a separated scheme of finite type over an
algebraically closed field k. In the latter case the ` in the previous section becomes p and
as a consequence we will need the characteristic of k not to be equal to p in order to be
able to use the étale cohomology.

As before, we define H∗
G(X, L) = H∗(HomCSR(G)(C[X?], L)).

Lemma 4.1. We have the following identifications:

H∗
G(X, (RG)?) ∼= H∗

c (X, R),

H∗
G(X, (RG?)/(RG)0) ∼= H∗

c (SX, R)

H∗
G(X, R0) ∼= H∗

c ((X r SX)/G, R).

The analogous result for G-CW-complexes is well known.

Proof. By the adjointness property of (RG)?,

HomCSR(G)(C[X?], (RG)?) ∼= HomRG(C[X], RG)
∼= HomR(C[X], R)
∼= RΓc(X, R).

Notice that C[SX] ∼= LC[X], by 3.3. Because LC[X] is in add({R[G/H?]; H 6= 1) we
obtain

HomCSR(G)(C[X?], (RG)?/(RG)0) ∼= HomCSR(G)(LC[X?], (RG)?)
∼= HomRG(LC[X], RG)
∼= HomRG(C[SX], RG)
∼= HomR(C[SX], R)
∼= RΓc(SX, R).

There are no non-zero homomorphisms from add({R[G/H?]; H 6= 1}) to R0. Also
C[X r SX] is in add({R[G?]}), so vanishes off the trivial group. We find that

HomCSR(G)(C[X?], R0) ∼= HomCSR(G)(C[X?]/LC[X?], R0)

∼= HomCSR(G)(C[(X r SX)?], R0)
∼= HomRG(C[X r SX], R)
∼= RΓc((X r SX)/G, R),

by 3.5. �
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May’s approach to Smith Theory considers the Bredon cohomology groups in the lemma
above and uses various long exact sequences associated to a short exact sequence of
coefficient systems.

Let I denote the augmentation ideal of RG. Notice that if G is a p-group, which we
will denote by P , then (RP )?/I0

∼= (RP )?/(RP )0 ⊕R0 and the composition factors of I0

are all R0.
Let

aq = dim Hq
G(X, R0) = dim Hq

c ((X r SX)/G, R),

bq = dim Hq
G(X, (RG)?) = dim Hq

c (X, R),

cq = dim Hq
G(X, (RG?)/(RG)0) = dim Hq

c (SX, R).

May proves the following result in [8] for P -CW-complexes but, since the proof uses
only manipulations with Bredon cohomology and the identifications in 4.1, it is valid for
separated schemes of finite type too.

Theorem 4.2. (Floyd, May) The following inequality holds for any q ≥ 0 and r ≥ 0:

aq +
r∑

i=0

(|P | − 1)icq+i ≤
r∑

i=0

(|P | − 1)ibq+i + (|P | − 1)r+1aq+r+1.

In particular, if ai = 0 for i sufficiently large,

aq +
∑
i≥0

(|P | − 1)icq+i ≤
∑
i≥0

(|P | − 1)ibq+i.

Moreover, if ai, bi, ci = 0 for i sufficiently large then

χc(X) = χc(SX) + |P |χc((X r SX)/P ).

If P is cyclic of order p, and r is even if p 6= 2, then we can remove the factors (|P |−1),
i.e.

aq +
r∑

i=0

cq+i ≤
r∑

i=0

bq+i + aq+r+1.

Remark. (1) If X is a CW-complex then we can use ordinary cohomology instead of
compactly supported cohomology provided that we also replace (X r SX)/G by
(X/SX)/G and take its reduced cohomology.

(2) Notice that the last line includes Illusie’s result [6] for varieties that if P acts freely
on X then |P | divides χc(X). In fact, in this case, C[X] is a complex of projective
RP -modules and, since P is a p-group, the modules are free.

(3) In the topological case, if we take X to be EP (the universal cover of the classifying
space) and q = 0 then we recover the well-known result that the H i(P, Fp) are non-
zero in every degree.

Recall that

H i
c(An(k), Fp) =

{
Fp, i = n

0, otherwise

provided that p is not the characteristic of k.
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Corollary 4.3. Suppose that X has the cohomology of an affine space An and also that if
X is a CW-complex then it is finite-dimensional. Then XP has the cohomology of some
affine space Am for some m, with n−m even if |P | 6= 2.

Remark. (1) By taking n = 0 this includes the case that when X is mod-p acyclic
then XP must also be mod-p acyclic.

(2) When X is compact a similar argument shows that if X is a mod-p homology
sphere then so is XP .

Proof. By induction on P we can reduce to the case when P is cyclic of order p. For P
must have a normal subgroup Q of index p, and by induction XQ has the cohomology of
an affine space. But XP = (XQ)P .

From the last line in 4.2 with r large it follows that
∑

i≥0 ci ≤ 1. The sum can not be
0 by the Euler characteristic formula. �

We now present a more conceptual approach to these results which shows how coefficient
systems can provide a very flexible tool. It is based on the following lemma:

Lemma 4.4. Any monomorphism between two projective coefficient systems in CSR(P )
is split.

Proof. Consider a map R[P/U ?] → R[P/V ?]. It must be zero unless U is conjugate to
a subgroup of V . But then it can only be a monomorphism if |U | ≥ |V | so in fact U is
conjugate to V and the map is an isomorphism.

Now any projective F is of the form F ∼=
⊕

j∈J Fj, where each Fj is an indecomposable

projective, so isomorphic to some R[P/V ?]. So suppose that we have a monomorphism
f : R[P/U ?] →

⊕
j∈J Fj. The socle of R[P/U ?] is just the sub-system generated by∑

g∈P/U gP in degree 0. One of the components of f , say fj : R[P/U ?] → Fj must be
non-zero on the socle, hence a monomorphism and so an isomorphism. The splitting is
now projection onto Fj followed by (fj)

−1.
Now consider the case f :

⊕
i∈I Ei → F . If I is finite, say I = {1, . . . , n}, then we

have a proof by induction on n. We have shown that F ∼= E1 ⊕ F/f(E1), and there is an
injection f ′ :

⊕
i∈I\{1} Ei → F/f(E1). The latter splits by the induction hypothesis.

The case of finite I is enough for us to deduce that, for any I, the map f is pure. But,
for modules over an Artin algebra, any projective module is pure injective (because it is a
summand of a free module and the free module of rank 1 is Σ-pure-injective by condition
(iii) of theorem 8.1 in [7]), so f is split. �

Corollary 4.5. If C is a complex of projectives in CSR(P ) that is bounded above and
such that C(1) is exact then C is split exact.

Proof. Evaluation at 1 detects monomorphisms between projectives, so there is an easy
argument based on 4.4 and induction on the number of boundary maps that can be split,
starting from the left. �

Corollary 4.6. Let f : C → D be a map between two bounded complexes of projective
coefficient systems in CSR(P ). If f(1) : C(1) → D(1) is a quasi-isomorphism, i.e. induces
an isomorphism in homology, then f is a homotopy equivalence.
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Proof. Apply 4.5 to the cone of f , to deduce that f is a quasi-isomorphism. Since the
complexes consist of projectives, f must be a homotopy equivalence. �

Corollary 4.7. Let f : X → Y be a finite morphism of separated schemes that induces
an isomorphism on étale cohomology with coefficients in R . Suppose that P acts on both
X and Y and that f is equivariant. Then the induced morphism fP : XP → Y P also
induces an isomorphism on cohomology.

Remark. It is not sufficient to consider complexes of p-permutation modules. For example,
if we let C2 denote the cyclic group of order 2 take R = F2 then there is a short exact
sequence R → RC2 → R. But this is not split.

Remark. The methods of equivariant cohomology of Borel [1] can also be applied to
varieties. They all depend on analyzing the triangle C[SAX] → C[X] → C[X]/LAC[X]
of RG-modules. The proofs in [5] and [11] carry over.
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