
STRUCTURE THEOREMS OVER POLYNOMIAL RINGS

PETER SYMONDS

Abstract. DRAFT 21 December 2005. Given a polynomial ring R over a field k and a
finite group G, we consider a finitely generated graded RG-module S. We regard S as a
kG-module and show that various conditions on S are equivalent, such as only containing
finitely many isomorphism classes of indecomposable summands or satisfying a structure
theorem in the sense of [8].

1. Introduction

Consider a polynomial ring R = k[d1, . . . , dn], finitely generated over a commutative
ring k and graded in such a way that the di are homogeneous of positive degree. We are
most interested in the case when k is a field of finite characteristic, but we allow k to
be any complete local noetherian commutative ring, for example the p-adic integers. Let
G be a finite group and let S = ⊕∞

i=NSi be a finitely generated graded left RG-module,
where G preserves the grading.

By a structure theorem for S over RG we mean a set of finitely generated graded kG-
submodules X̄I ⊆ S, one for each I ⊆ {1, . . . , n}, such that S ∼=

⊕
I⊆{1,...,n} k[di | i ∈

I]⊗k X̄I as a graded kG-module, where the map from right to left is induced by the action
of R on S.

This concept originates in work of Karagueuzian and the author [7, 8], where it is shown
that if S = k[x1, . . . , xn], k is finite, Un is the group of n × n upper triangular matrices
acting in the natural way on S and R is the ring of invariants then S has a structure
theorem over RUn.

In this paper we investigate this property further and prove the following result.

Theorem 1.1. For R and S as above the following are equivalent.

(1) Only finitely many isomorphism classes of indecomposable kG-modules occur as
summands of S.

(2) S has a relatively projective resolution over RG relative to kG of finite length and
finitely generated in each degree.

(3) There is a number N such that the group Ext∗RG/kG(S, T )0 of relative homological
algebra vanishes for any graded RG-module T that is 0 in degrees less than N .

(4) S has a structure theorem over RG.
(5) There are integers a1, . . . , at such that Sr =

∑t
i=1 aiS

r−i for r sufficiently large (in
the Green ring of graded kG-modules).

Of course, there are many other possible equivalent properties, but in some heuristic
sense (1) is the weakest and (2) is the strongest. The significance of (4) is that it is what
is usually proved in specific examples, (e.g. [7, 8] or the proof of 7.1).

Partially supported by a grant from the Leverhulme Trust.
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Corollary 1.2. If S is a polynomial ring in n variables of degree 1 over a finite field k
and R denotes the ring of invariants under GLn(k) then S has a structure theorem over
R GLn(k). More generally, let k be the algebraic closure of a finite field or let k be any
field but n ≤ 3. Let G ≤ GLn(k) be finite and let R be a polynomial subring of the ring
of invariants under G that has n generators. Then S has a structure theorem over RG.

Proof. In [8] it was shown that condition (1) of the theorem holds when k is finite, and
this generalizes easily to the algebraic closure (see [9], discussion after 4.2). If n ≤ 3 then
[9] 6.1 applies without any restriction on the field. �

Note that the proof in [8] only yields a structure theorem for p-groups, where p is the
characteristic of k.

An example of a module S for which the conditions of the theorem do not hold is given
in [9] 4.4.

Condition (1) of the theorem is independent of the ring R, so if, for given S, k and
G, one of the other conditions is satisfied for some ring R then it is also satisfied by any
other ring R satisfying the hypotheses of the theorem.

We thank the referee for the elegant proofs of 3.3 and 8.1.

2. Change of Category

We want to move to a category in which all of the indecomposable kG-modules occurring
become projective. This could be done using functor categories, but we choose to present
a module-theoretic approach.

As is customary, given any ring A (perhaps without an identity element) we let A Mod
denote the category of left A-modules and let A mod denote the full subcategory of finitely
generated modules. We also let A Proj denote the full subcategory of projective modules
and A proj the full subcategory of finitely generated projective modules. The correspond-
ing categories of right modules are denoted by ModA, etc.. Given a left A-module M we
let A Add denote the full subcategory of A Mod consisting of the modules that are sum-
mands of some sum (possibly infinite) of copies of M and let A add the full subcategory
of this consisting of the finitely generated modules.

Our conditions on k imply that, for any finitely generated indecomposable kG-module
Y , the endomorphism ring EndkG(Y ) is a local ring and the quotient ring ` = EndkG(Y )/ rad EndkG(Y )
is a finite dimensional division algebra over k̄, the residue class field of k. For proofs see
[4] 6.10 or [1] 1.9.3. In fact this is the only reason for which we need completeness before
section 6. It would also be possible for k to be a discrete valuation ring in a splitting field
for G, by [4] ex.36.1.

In particular, it follows that finitely generated k-modules satisfy the unique decomposi-
tion (or Krull-Schmidt) property, which is that any other decomposition into indecompos-
ables involves the same indecomposables up to isomorphism with the same multiplicities.

Let Mm be the sum of the indecomposable kG-modules that occur as summands of
⊕i≤mSi, with each isomorphism type appearing once only. Mm is finitely generated over
k; let Em = EndkG(Mm), which we consider to act on Mm on the left.

There are functors Um = HomkG(Mm,−) : kG Mod → ModEm and Vm = − ⊗Em Mm :
ModEm → kG Mod, which restrict to functors between the finitely generated subcategories.
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Proposition 2.1. The functors Um and Vm induce inverse equivalences of categories
between Mm Add and ProjEm

and these restrict to an equivalence between Mm add and
projEm

.

This is well known, but for the convenience of the reader we sketch a proof.

Proof. Let (Em)Em denote the right regular representation for Em, so ProjEm
= Add(Em)Em

.
Then Mm and (Em)Em correspond under these functors. The functors preserve direct sums
and, since they must preserve idempotents, they preserve direct summands. �

If we define modules Nm by writing Mm+1 = Mm ⊕ Nm+1 then we can extend an
element of Em to Em+1, by defining it to be zero on Nm+1. Thus it makes sense to define
E = lim−→Em and E acts on M = lim−→Mm.

Now define U = lim−→Um : kG Mod → ModE and V = −⊗E M : ModE → kG Mod.

Proposition 2.2. U and V induce inverse equivalences between M Add and ProjE and
these restrict to equivalences between M add and projE, where modules X for E are required
to satisfy the property XE = X. (This extra condition is required because E does not, in
general, contain an identity element.)

For full details see [13] ch.10, but we sketch a proof.

Proof. Let em ∈ E be the idempotent that is the identity on Mm and 0 on its complement
⊕i>mNi. The way that U was constructed as a direct limit means that U(X) is the
submodule of HomkG(M, X) consisting of f ∈ HomkG(M, X) satisfying fem = f for some
m. Thus each f has a finite dimensional image, and it follows that U commutes with
direct sums; clearly V commutes with direct sums.

It also follows that (EE)E = E, and the condition XE = X shows that ProjE = AddEE
.

Clearly M corresponds to EE, so U and V induce inverse equivalences between M Add
and ProjE, as before.

In order to see that U takes M add into projE it is sufficient to show that U(L) is finitely
generated when L is finitely generated and indecomposable. This L must be a summand
of some Mm; let f : M → L be em followed by projection onto the summand of Mm

isomorphic to L and then an isomorphism with L. Then any homomorphism M → L
factors through f and it follows that U(L) ∼= fE.

Conversely, if X is finitely generated over E then X = Xem for some m so V (X) =
X ⊗E M = Xem ⊗E M = X ⊗E emM is also finitely generated. �

Notice that if X is a graded RG-module then we can regard it as a kG-module and
apply U . The result is naturally a graded R ⊗k E-module. Similarly, if Y is a graded
R⊗k E-module then V (Y ) is naturally a graded RG-module.

It is shown in [4] §19 and [13] proof of 54.1 that if we write Mm = Y1 ⊕ · · · ⊕ Yt as
a sum of indecomposables and we express an element of Em as a matrix with entries
in EndkG(Yi, Yj) then rad Em consists of those matrices with no entry an isomorphism.
In particular Em/ rad Em

∼= ⊕t
i=1 EndkG(Yi)/ rad EndkG(Yi) ∼= ⊕t

i=1`i, where each `i is a
finite dimensional division algebra over k.

By taking the limit it follows that the same is true for E.

Lemma 2.3. E/ rad E ∼= ⊕I`i, where I indexes the indecomposable modules occurring in
M .
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Observe that J must annihilate any simple right E-module V satisfying V E = V . It
follows that there is a version of Nakayama’s Lemma for E-modules, by the usual proof
([13], 49.7).

Lemma 2.4. If M ∈ modE (so in particular ME = M) and L ≤ M is such that
MJ + L = M then L = M .

3. Polynomial Rings

Let R = `[x1, . . . , xn] be a graded polynomial ring over `, with the xi having positive
grading. For future use we only require ` to be a division ring, rather than a field, but
we do not consider anything more general.

First we prove 1.1 (4) in the case of the trivial group.

Proposition 3.1. Any finitely generated graded module over R has a structure theorem
over R.

For the proof we need two lemmas.

Lemma 3.2. If 0 → A → B → C → 0 is a short exact sequence of R-modules and A
and C have structure theorems then B has a structure theorem.

Proof. The X̄I in the structure theorem for C can be lifted arbitrarily to graded subspaces
of B and added to those for A. �

Lemma 3.3. Any finitely generated R-module has a finite filtration in which each compo-
sition factor is isomorphic to a module of the form R/I for some left graded ideal I with
the property that if c, d ∈ R are homogenous, c is central and cd ∈ I then c ∈ I or d ∈ I.

When ` is a field this is well known (e.g. [1] 2.2.2).

Proof. Since the R-module, M say, is finitely generated and R is noetherian it is sufficient
to show that M has a submodule of the given form, because then the lemma will follow
by a standard induction argument. For each m ∈ M let AnnR(m) = {r ∈ R | rm = 0}
be its annihilator. Consider the set of all the annihilators of the non-zero homogeneous
elements of M and let I = AnnR(m) be a maximal element, so R/I ∼= Rm ⊆ M . We
claim that Rm has the right properties.

If c, d ∈ R are homogeneous, c is central and cd ∈ I then I ≤ AnnR(cm) and d ∈
AnnR(cm). Since I is maximal amongst the annihilators of the non-zero homogeneous
elements we must have either d ∈ I or otherwise cm = 0, implying that c ∈ I. �

We now prove 3.1 by induction on n. The result is clear when n = 0. In view of the
lemmas above it is sufficient to show that an R-module of the form M = R/I with I as
in 3.3 has a structure theorem.

If I contains all the xi then the result is clear; otherwise there is an xi that is not
contained in I, say x1. By 3.3, multiplication by x1 on R/I is an injection.

The quotient M/x1M is finitely generated over `[x2, . . . , xn], so has a structure theorem
over `[x2, . . . , xn] by the induction hypothesis, say M/x1M ∼=

⊕
I⊆{2,...,n} `[di | i ∈ I]⊗`X̄I .

Each X̄I can be lifted over ` to ȲI ⊆ M , say. The multiplication map
⊕

I⊆{2,...,n} `[di |
i ∈ I] ⊗` ȲI → M is injective and we denote its image by N . We know that N maps
isomorphically to M/x1M under the quotient map M → M/x1M , so M = N ⊕ x1M .
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Because M ∼= x1M , repeated substitution for M yields M = ⊕∞
i=0x

i
1N , since the sum

is finite in each degree. The natural map `[x1] ⊗` N → M is thus an isomorphism and
this yields a structure theorem M ∼=

⊕
I⊆{2,...,n} `[di | i ∈ {1} ∪ I]⊗` ȲI .

4. Lifting Resolutions

A relatively projective resolution of S over RG relative to kG is a chain complex of
graded RG-modules · · · → Cr → · · · → C0 → S → 0. Each Cr must be of the form
R⊗k X (or, equivalently, RG⊗kG X), where X is a graded kG-module, and the complex
must be split exact over kG.

Such a resolution is unique up to homotopy.
One might expect to see “a summand of a sum of terms of the form R ⊗k X” in the

definition of a relatively projective resolution. But the “sum of terms” part is unnecessary
since (R⊗k X)⊕ (R⊗k Y ) ∼= R⊗k (X ⊕ Y ). In fact, we will only ever consider modules
that are a summand of a sum of terms of the form R⊗k X where X is finite dimensional.
In this case the “summand” part makes no difference to the class of resolutions either, in
view of the following lemma.

Lemma 4.1. If X is a homogeneous graded kG-module with local endomorphism ring (e.g.
if X is finite dimensional and indecomposable) then the grading-preserving endomorphism
ring of the RG-module R⊗k X is local and, in particular, R⊗k X is indecomposable.

Hence any (possibly infinite) sum of such modules M = ⊕i∈IR ⊗k Xi has the unique
decomposition property, i.e. any other decomposition into homogeneous indecomposables
involves the same indecomposables up to isomorphism with the same multiplicities. In
addition any graded summand of M is isomorphic to ⊕i∈JR⊗k Xi for some J ⊆ I.

Proof. The grading-preserving endomorphism ring of R⊗k X is isomorphic to EndkG(X),
so local.

It is well known that the second part follows for finite sums ([1] 1.4.3). For infinite
sums it is a theorem of Warfield ([11] Thm. 7). �

For any graded left RG-modules S, T the relative Ext-groups Ext∗RG/kG(S, T ) are de-
fined to be the homology of the complex HomRG(C∗, T ) of graded homomorphisms. We
usually only have need of Ext∗RG/kG(S, T )0 = H(HomRG(C∗, T )0), where the superscript
0 indicates the maps that preserve grading.

Similarly, if T is a graded right RG-module we have TorRG/kG
∗ (T, S), which is the

homology of the graded tensor product T ⊗RG C∗.
For more on relative homological algebra see [5, 6, 12].
In the next proposition we only require R to be a graded ring ⊕∞

i=0R
i with R0 = k such

that R is finitely generated as a k-algebra. S is as in the introduction.

Proposition 4.2. S has a minimal relatively projective resolution, C∗, over RG relative
to kG in which, for each indecomposable kG-module Y , R⊗k Y occurs as a summand in
each Ci only finitely many times and only in (grading) degrees greater than or equal to
those in which Y appears in S.

If R is polynomial then this resolution is of finite length bounded by the number of
generators of R.
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Proof. Let J = rad E. Consider U(S)/U(S)J , which we will shorten to U(S)/J . It is a
module for R⊗k E/J ∼= R⊗k (⊕i∈I`i) ∼= ⊕i∈I(R⊗k `i), where I indexes the isomorphism
classes of indecomposable summands Li of S. Thus U(S)/J is a sum of pieces (U(S)/J)i,
and the description of J in 2.2 shows that (U(S)/J)i

∼= HomRG(Li, S)/ rad End(Li), so is
finitely generated over R and thus over R⊗k `i.

Thus each (U(S)/J)i has a minimal graded projective resolution over R⊗k `i,

· · · → R⊗k P i
1 → R⊗k P i

0 → (U(S)/J)i → 0,

where each P i
j is a finite dimensional graded vector space over `i.

If R is polynomial then these resolutions have length bounded by the number of vari-
ables. In any case they can be summed to give a minimal projective resolution of U(S)/J
over R⊗k E/J .

Let Qi
j be the sum of dim`i

P i
j copies of U(Li), graded in the same way as P i

j , so

Qi
j/J

∼= P i
j as graded vector spaces over `i and we will identify these spaces. We claim

that R ⊗k (⊕i∈IQ
i
j) is the jth term in a projective resolution of U(S) over R ⊗k E. In

order to verify this we need to describe the boundary maps. To simplify the notation we
write Pj = ⊕i∈IP

i
j , Qj = ⊕i∈IQ

i
j and ⊗ = ⊗k.

Since R⊗Q0 is projective over R⊗E, the natural surjection R⊗Q0 → R⊗P0 → U(S)/J
lifts to a map f : R ⊗ Q0 → U(S). Since U(S) is finitely generated in each degree we
can apply Nakayama’s Lemma for E-modules (2.4) to see that f is surjective. Now f is
split over E because U(S) is projective. Let L0 be the kernel of f and K0 the kernel of
R⊗ P0 → U(S)/J ; the splitting implies that K0

∼= L0/J .
Thus we can continue in the same way with L0 instead of U(S) and so on, lifting all

the boundary maps. We obtain the minimal projective resolution of U(S) over R⊗k E.
The resulting resolution is split over E, so if we apply V it is still split over kG and is

the minimal relatively projective resolution that we require. �

Corollary 4.3. If R is polynomial in n variables then Extq
RG/kG(S, T ) and TorRG/kG

q (T, S)

vanish for q > n.

Proposition 4.4. If R is a polynomial ring and S has only finitely many isomorphism
classes of indecomposable kG summands then there is a structure theorem for S over RG.

Proof. Consider U(S)/J as a module over R⊗E/J . By hypothesis, the module M (from
§1) is finite dimensional, say M = ⊕t

i=1Mi as a sum of indecomposables. Let ei ∈ E
denote projection onto Mi.

Thus E/J ∼= ⊕t
i=1`i and R⊗k (E/J) ∼= ⊕t

i=1(R⊗k `i) is a sum of polynomial rings over
`i.

Each (U(S)/J)i has a structure theorem over R⊗`i, by 3.1. We can sum them to obtain
a structure theorem for U(S)/J over R⊗E/J , say U(S)/J ∼= ⊕I⊆{1,...,n}k[di | i ∈ I]⊗ X̄I .
Each X̄I is a sum of modules `i for various i and `i lifts to the projective E-module eiE
in such a way that (eiE)/J ∼= `i. Thus each X̄I lifts to a projective module ȲI over E
such that ȲI/J ∼= X̄I ; let T = ⊕I⊆{1,...,n}k[di | i ∈ I]⊗ ȲI .

Consider the map f ′ : T → T/J ∼= U(S)/J . On restriction to each ȲI , it lifts to U(S)
over E , because ȲI is projective. Also Homk[di|i∈I]⊗E(k[di | i ∈ I]⊗ȲI ,−) ∼= HomE(ȲI ,−),
so f ′ lifts to f : T → U(S) in such a way that f(k[di | i ∈ I]⊗ ȲI) = k[di | i ∈ I]f(ȲI).
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Thus f will give a structure theorem for U(S), provided that it is an isomorphism. But
f is onto, by Nakayama’s Lemma over E (2.4). So f is split over E, and, since it induces
an isomorphism modulo J , f must indeed be an isomorphism.

Now apply V to obtain the structure theorem for S over RG. �

5. Proof of the Theorem

It is clear that (2) implies (1) and that (4) implies (1). We showed in 4.4 that (1)
implies (4), and 4.2 shows that (1) implies (2).

Condition (5) allows us to express any Sr recursively in terms of the Si with i bounded,
so (5) implies (1). We can see that (2) implies (5) as follows. For any finitely gen-
erated graded RG-module M consider the Poincaré series PSM(t) =

∑
i∈Z M iti, with

coefficients in the Green ring of kG-modules. If C∗ is the resolution of (2) then PSS(t) =∑
(−1)i PSCi

(t). But Ci
∼= R⊗Xi, where Xi is finite dimensional, so PSCi

(t) = PSR(t) PSXi
(t)

and PSXi
(t) is a Laurent polynomial. Thus PSS(t) = PSR(t)f(t) for some Laurent poly-

nomial f(t).
But PSR(t) =

∏n
i=1(1− tdeg di)−1, so

∏n
i=1(1− tdeg di) PSS(t) = f(t), which is 0 in large

degrees. Thus we can take ai to be the coefficient of ti in −
∏n

i=1(1− tdeg di).
The conditions of (2) imply that the resolution C∗ contains only finitely many sum-

mands R ⊗ X and the X are finite dimensional, hence in sufficiently large degree m,
Xm = 0 for all the X. Since HomRG(R⊗k X, Y ) ∼= HomkG(X, Y ), we see that (2) implies
(3).

To finish we need to show that (3) implies (2). In fact we will prove a stronger claim,
for which we need another condition. If V is any kG-module we let V d denote this module
considered as a homogeneous graded RG-module in degree d.

(3′) There is a number N such that if V any kG-summand of any Sr then Ext∗(S, R⊗k

V d)0 = 0 for d ≥ N .

Clearly (3) implies (3′), so we prove that (3′) implies (2). In order to achieve this we
show that the minimal resolution C∗ from 4.2 contains no term Cr that has a summand
of the form R ⊗ V with deg V ≥ N . Since Cr is finite dimensional in each degree, this
implies that it is finitely generated over R.

Our proof is by downward induction on r. Since the resolution is of finite length the
induction certainly starts.

Let R+ denote the part of R in positive grading. By the induction hypothesis, we know
that the image of the boundary map Im(dr+1) is generated over R by elements in degrees
less than N .

Suppose that Cr contains a summand R⊗k V with deg V = d ≥ N , so S = (R⊗ V )⊕
(R ⊗ W ); let c be the projection onto R ⊗ V . Then cdr+1 = 0, by the remark about
Im(dr+1) above, so c is a cocycle; since Ext∗RG/kG(S, R⊗V )0 = 0, c must be a coboundary.

Thus c factors through dr : Cr → Cr−1, so dr(R⊗k V ) is a summand of Cr−1 isomorphic
to R⊗V and we obtain a smaller resolution · · · → Cr+1 → Cr/(R⊗k V ) → Cr−1/dr(R⊗k

V ) → Cr−2 → · · · , a contradiction.
This completes the proof of the Theorem.
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6. Further Conditions

We now consider some further equivalent conditions.
Let I denote the injective hull of k̄ as a k-module; we consider it to have grading 0.

For any graded left RG-module T , the graded dual T ∗ = Homk(T, I) naturally carries
the structure of a graded right RG-module by (frg)(t) = f(rgt), f ∈ T ∗, r ∈ R, g ∈ G.
Notice that our grading conventions mean that the degree r part of T ∗ is the dual of T−r.
Similarly, starting with a right module we can dualise to obtain a left module.

We remark that if T ∗ = 0 then T = 0 and also that if T is finitely generated over k in
each degree then T ∼= T ∗∗, since k is complete.

Using this duality we can formulate a close relationship between Ext and Tor, where S
is a left- and T is a right- graded RG-module

Extr
RG/kG(S, T ∗) ∼= TorRG/kG

r (T, S)∗.

The proof is quite formal and is left to the reader (cf. [1] 2.8.5).

Proposition 6.1. The following conditions are also equivalent to those of Theorem 1.1,
where V d is as in condition (3′).

(3′′) There is an N ∈ Z such that Ext∗RG/kG(S, V d)0 = 0 for d ≥ N for any V that is a
summand of some Sr.

(6) There is an N ∈ Z such that TorRG/kG
∗ (T, S)0 = 0 for any graded right RG-module

T that is 0 in degrees greater than N .
(6′) There is an N ∈ Z such that TorRG/kG

∗ ((V ∗)d, S)0 = 0 for d ≤ N and for any V
that is a summand of some Sr.

Proof. For convenience we also consider another condition.

(6′′) There is an N ∈ Z such that TorRG/kG
∗ (T, S)0 = 0 for any graded right RG-module

T that is finitely generated over k in each degree and is 0 in degrees greater than N .

Clearly (6) implies (6′′), which in turn implies (6′). The duality formula above shows
that (3) implies (6), that (6′′) implies (3′) and that (3′′) is equivalent to (6′).

The proof of 1.1 actually showed that (3′) implied (2), so it is sufficient to show that
(6′) implies (6′′).

We assume (6′) and let T = ⊕N
i=−∞T i, where each T i is finitely generated over k and

N is as in condition (6′). Thus each TorRG/kG
∗ (T i, S)0 = 0.

Let T≥r = ⊕N
i=rT

i. It is easy to show, by downward induction on r, that TorRG/kG
∗ (T≥r, S)0 =

0, using the long exact sequence for Tor corresponding to the short exact sequence
0 → T≥r+1 → T≥r → T r → 0.

But T = colimr→−∞ T≥r, the direct limit, so TorRG/kG
∗ (T, S)0 = colimr→−∞ TorRG/kG

∗ (T≥r, S)0 =
0, since Tor commutes with direct limits. �

It is easy to see that condition (2) of the Theorem implies that Ext∗RG/kG(S, S) is finitely
generated over R. In certain circumstances we can prove the converse.

We say that S is repetitive of width D if there are integers N, D such that if an
indecomposable kG-module V is a summand of some Sr for r ≥ N then V is a summand
of ⊕s+D−1

j=s Sj for any s ≥ N . Being repetitive of some width is a necessary condition
for there to be a structure theorem that is often clearly satisfied in examples. If S is a
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polynomial ring then there is a v ∈ SG and a kG-submodule T of S such that S ∼= T⊗k[v]
as a kG-module, by [9] 6.3, so we can take N = 0 and D = deg v. Alternatively, we could
always adjoin an invariant element dn+1 and consider S ⊗k k[dn+1] as a module over
R[dn+1].

Proposition 6.2. Suppose that k is artinian and that S is repetitive of width D. If
Ext∗RG/kG(S, S)−d is finitely generated over k for d = 0, . . . , D − 1 (so, for example, if
Ext∗RG/kG(S, S) is finitely generated over R) then S has a structure theorem over RG.

Proof. Let S≥r = ⊕i≥rS
i, S<r = S/S≥r ∼= ⊕i<rS

i and similarly for other graded modules
or inequality signs. (For the second of these the R-module structure is defined by the term
in the middle.)

There is a short exact sequence of RG-modules 0 → S≥r → S → S<r → 0, which is
split over kG.

As the first step we will prove that there is a number M such that Ext∗RG/kG(S, S≥r)−d =

0 and Ext∗RG/kG(S, Sr)−d = 0 for r ≥ M and d = 1, . . . , D − 1.

In fact, we will prove the dual statement, that TorRG/kG
∗ (S∗≤−r, S)d = 0 and TorRG/kG

∗ (S∗−r, S)d =
0 for r ≥ M and d = 1, . . . , D − 1.

But colimr→∞ TorRG/kG
∗ (S∗≤−r, S)d = TorRG/kG

∗ (colimr→∞ S∗≤−r, S)d = 0 and, since

the k-module ⊕D−1
d=0 TorRG/kG

q (S∗, S)d is finitely generated and hence artinian, there is a

number M such that Im(TorRG/kG
∗ (S∗, S)d → TorRG/kG

∗ (S∗≤−r, S)d) = 0 for r ≥ M and
d = 0, . . . , D − 1.

The long exact sequence for Tor associated to the short exact sequence above decom-

poses, for the same range of r and d, into short exact sequences 0 → Tor
RG/kG
q+1 (S∗≤−r, S)d →

TorRG/kG
q (S∗>−r, S)d → TorRG/kG

q (S∗, S)d → 0. We claim, by downward induction on

q, that Tor
RG/kG
i (S∗≤−r, S)d = 0 and Tor

RG/kG
i (S∗−r, S)d = 0 for r ≥ M , i ≥ q and

d = 1, . . . , D − 1.
The induction starts, by 4.3, so we suppose that we know the claim for q + 1 and

we prove it for q. The short exact sequence above shows that Tor
RG/kG
i (S∗>−r, S)d ∼=

Tor
RG/kG
i (S∗, S)d for r ≥ M and i ≥ q. It follows that Tor

RG/kG
i (S∗>−r, S)d ∼= Tor

RG/kG
i (S∗>−r−1, S)d

for i ≥ q and r ≥ M .
The long exact sequence for Tor associated to the short exact sequence 0 → S∗−r →

S∗>−r−1 → S∗>−r → 0 now yields TorRG/kG
q (S∗−r, S)d = 0 for r ≥ M and d = 0, . . . , D−1.

An easy induction argument shows that for t ≤ −r we have TorRG/kG
q ((S∗≤−r)≥t, S)d = 0.

Taking the limit as t → −∞ yields that TorRG/kG
q (S≤−r, S)d = 0, completing the induction

and the proof of the first step.
If V is an indecomposable kG module we will write V r for this module considered as a

graded RG-module in degree r, as in the statement of condition (3′). If V is a summand
of Sr for some r ≥ M then, by what we have just shown, Ext∗RG/kG(S, V r)−d = 0 for

d = 0, . . . , D − 1. But then Ext∗RG/kG(S, V r+d)0 = Ext∗RG/kG(S, V r)−d = 0, so, since S is
repetitive, if we take L ≥ M, N (where N comes from the definition of repetitive) then
Ext∗RG/kG(S, V r)0 = 0 for all r ≥ L.

But S<L certainly satisfies condition (1), so, by condition (3′′), there is a K ≥ L such
that Ext∗RG/kG(S<L, V r)0 = 0 for r ≥ K. The long exact sequence for 0 → S≥L → S →
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S<L → 0 now shows that Ext∗RG/kG(S≥L, V r)0 = 0 for r ≥ K + 1 and any V a summand

of S≥M , so certainly for any V a summand of S≥L.
Thus S≥L satisfies condition (3′′), hence condition (1), and S itself must satisfy condition

(1). �

7. When k is Not a Field

For more general rings k we only have results about when a ring S satisfies the conditions
of the Theorem in the case when n ≤ 2. We still require k to be complete. Recall that k̄
denotes the residue class field of k.

Proposition 7.1. Let S be a finitely generated graded k-algebra that is free over k and let
a finite group G act on S by grading preserving k-algebra automorphisms. Suppose that
G acts faithfully on S̄ = k̄ ⊗k S, that S̄ is an integral domain and that there is a bound
on dimk̄ S̄r that is linear in r.

Then there are two algebraically independent homogeneous elements d1, d2 ∈ SG (possi-
bly only one or zero if the bound above is constant) such that S is finitely generated over
R = k[d1, d2] and S satisfies the conditions of the theorem.

Proof. The existence of suitable elements d̄1, d̄2 ∈ S̄G of positive degree is well known (see
e.g. [2] 1.3.1, 2.2.7). If there are none of them then S is finitely generated over k, so the
claim holds.

If there is only one, say d, then we lift it arbitrarily to a homogeneous element d′ ∈ S
and define d =

∏
g∈G gd′ ∈ SG. Then S is finitely generated over k[d], by Nakayama’s

Lemma applied in each degree.

Consider the multiplication map Sr d→ Sr+deg d. Because S is finitely generated over

k[d], this map must be surjective for large enough r. Also the kernels of the maps Sr dt

→
Sr+t deg d form an ascending chain of submodules of Sr as t increases, so must eventually
stabilise. These two facts together imply that the multiplication map is an isomorphism
for large enough r. This implies that S contains only a finite number of isomorphism
classes of indecomposable modules.

Now we assume that there are two elements d̄1, d̄2; we lift them arbitrarily to homoge-
neous elements of d′1, d

′
2 ∈ S and then define d1, d2 ∈ SG by di =

∏
g∈G gd′i.

According to [10], S̄ is mostly projective over k̄G in the sense that it has a projective
summand P̄ over k̄G such that the multiplication map S̄G⊗k̄ P̄ → S̄ is injective, its image
S̄GP̄ is a k̄G-summand and the complement has a uniform bound on the dimension in
each degree.

Again, it is well known that, because of this bound, we can find a homogeneous element
v̄ ∈ S̄G such that S̄/S̄GP̄ is finitely generated over k̄[v̄].

Let Ū be a complement to v̄|G|S̄G in S̄G as a k̄-module, so Ū is finitely generated. Then
S̄G ∼= ⊕∞

r=0v̄
r|G|Ū ∼= k̄[v̄|G|] ⊗k̄ Ū , since S̄ is an integral domain and the sum is finite in

each degree. Also Ū P̄ ∼= Ū ⊗k̄ P̄ .
Let P be the projective cover of Ū P̄ over kG. The map P → Ū P̄ → S̄ must lift to a map

P → S. Lift v̄ arbitrarily to a homogeneous element v′ of S and set v =
∏

g∈G gv′ ∈ SG.

Multiplication yields a map k[v]⊗k P → S. We denote its image by P [v], so the image of
P [v] in S̄ is S̄G ⊗k̄ P̄ .
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Let C̄ be a complement to S̄G⊗k̄ P̄ in S̄ as a k̄-module and denote its projective cover
over k by C, so we obtain a map C → S.

The combined map P [v]⊕C → S is surjective, by Nakayama’s Lemma, and S is free over
k so the map splits. But after reducing to k̄ this map is an isomorphism, by construction,
so the kernel is 0 after reduction, hence 0 itself, thus S ∼= P [v]⊕ C. The same argument
now applies to the multiplication map k[v] ⊗k P → P [v], so P [v] ∼= k[v] ⊗k P and, in
particular, P [v] is projective over kG. But a projective kG-module is injective relative to
k and P [v] is certainly a summand of S over k, so P [v] must be a summand of S over kG.
Thus any indecomposable kG-summand of S is either projective or must be a summand
of S/P [v].

But S/P [v] is finitely generated over k[v], so the case of just one invariant element
applies. �

Notice how the proof above almost yields a structure theorem for S directly, but it
might not be possible to choose v to be either one of a given pair d1, d2.

Other results, which concern regular functions on projective varieties, particularly
curves and surfaces, are given in [3].

We have already seen in section 2 that we do not always need k to be complete for the
general theory to apply. Let k be a discrete valuation ring in a field in which the order
of G is not 0 and let k̂ denote its completion. In fact, if we can show that k̂ ⊗ S has a
structure theorem over k̂ ⊗RG then S has a structure theorem over RG.

This can be seen using Maranda’s Theory. Condition (5) is of the form M ∼= N for
certain modules M and N . By [4] 30.17, if this is true after completion then it was before.
([4] 30.17 is stated for lattices, but it easily extends to finitely generated modules.)

Similarly, in order to show that S has a structure theorem it is sufficient to prove it
only for (k/|G|rk)⊗ S for sufficiently large r, i.e. in the artinian case. This follows from
[4] 30.14. This is relevant even when k is complete.

8. Composition Factors

If k is a field and V is a simple kG-module then the multiplicity of V as a composition
factor of Sr is (dimk EndkG(V ))−1 dimk HomkG(PV , Sr), where PV is the projective cover of
V . Since HomkG(PV , S) is a summand of HomkG(kG, S) ∼= S and hence finitely generated
over R, these multiplicities are described by polynomial functions (cf. [10]).

If k is not required to be a field then we can consider the Grothendieck group G0(kG),
where the generators are the isomorphism classes of finitely generated kG-modules M ,
denoted by [M ], and the relations are [B] = [A] + [C] for each short exact sequence
0 → A → B → C → 0.

For any graded kG-module M = ⊕i∈ZM i with each Mi finitely generated over k we can
consider

∑
i∈Z[M i]ti ∈ G0(kG)Z, which we also denote by [M ]. Thus if R = k[d1, . . . , dn]

then [R] =
∏n

i=1(1− tdeg(di))−1[k], and we write pR(t) =
∏n

i=1(1− tdeg(di))−1.
If M is a graded kG-module with Mi = 0 for i � 0 then it makes sense to multiply

[M ] by a power series in t with coefficients in Z, such as pR(t).
In [3] the question is posed of describing [S] in G0(kG)Z, and this is answered in the

geometric context employed there.
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Proposition 8.1. Let k be any commutative noetherian ring, R = k[d1, . . . , dn] with the
di of positive degree and S a finitely generated graded RG-module.

Then there is an X ∈ G0(kG)Z that is 0 except in finitely many degrees and such that
[S] = pR(t)[X].

If k is a field then this is an easy consequence of the discussion at the beginning of this
section.

Proof. First we claim that S has a finite filtration by RG-submodules where the compo-
sition factors Mi are such that to each Mi is associated a graded prime ideal pi < R and
AnnR(m) = pi for all non-zero elements m ∈ Mi. Since R is noetherian we only need to
show that any finitely generated graded RG-module L has such a submodule.

Consider all the ideals AnnR(`) for homogeneous 0 6= ` ∈ M and let p be maximal
among them. Then p is prime, as in 3.3, and M = {m ∈ L | p ≤ AnnR(m)} is the desired
submodule.

Thus it is sufficient to prove the theorem for modules of this form and we do so by
induction on the number of polynomial generators n.

If p contains all the di then M is finitely generated over k and we can take [X] =
p−1

R (t)[M ], since p−1
R (t) is a polynomial. Otherwise p does not contain d1, say. Then d1

is regular on M and since [M ] = [M/d1M ] + [d1M ] = [M/d1M ] + tdeg d1 [M ], we obtain
[M ] = (1− tdeg d1)−1[M/d1M ]. But M/d1M is finitely generated over k[d2, . . . , dn] and by
induction we obtain [M/d1M ] = pk[d2,...,dn](t)[X], so [M ] = pR(t)[X]. �

Notice that the constructions in the proof do not require any knowledge of the action
of G.
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