COHOMOLOGY AND FINITE SUBGROUPS OF PROFINITE GROUPS

Pham Anh Minh and Peter Symonds

We prove two theorems linking the cohomology of a pro-p group G with the conjugacy classes of its finite subgroups.

Theorem 3. The number of conjugacy classes of elementary abelian p-subgroups of G is finite if and only if the ring $H^*(G, \mathbb{Z}/p)$ is finitely generated modulo nilpotent elements.

Theorem 5. If the ring $H^*(G, \mathbb{Z}/p)$ is finitely generated then the number of conjugacy classes of finite subgroups of G is finite.

1. Pro-p groups and elementary abelian pro-p subgroups

Let G be an infinite pro-p group. Fix a fundamental system \mathcal{U} of open neighborhoods U of $1 \in G$ such that $\bigcap_{U \in \mathcal{U}} U = 1$ and each U is an open normal subgroup of G. For convenience, write $V \leq U$ for $V \subset U$ and $U, V \in \mathcal{U}$. For $U \in \mathcal{U}$, set $G_U = G/U$. Denote by $\varphi_{U,V} : G_V \to G_U$ the projection map with $V \leq U$. $\{G_U, \varphi_{U,V}\}$ is an inverse system and

$$G = \lim G_U.$$

Let $\varphi_U : G \to G_U, U \in \mathcal{U}$, be the projection map. Let \mathcal{E} (resp. \mathcal{E}_U) be the set of elementary abelian pro-p subgroups (resp. p-subgroups) of G (resp. G_U). (We use the convention that {1} is elementary abelian of rank 0.) It is clear that $\varphi_U(E)$ and $\varphi_{U,V}(F)$ are elements of \mathcal{E}_U , for every $E \in \mathcal{E}, F \in \mathcal{E}_V, V \leq U$. Denote by $\psi_U : \mathcal{E} \to \mathcal{E}_U$ (resp. $\psi_{U,V} : \mathcal{E}_V \to \mathcal{E}_U, V \leq U$) the map induced from φ_U (resp. $\varphi_{U,V}$).

Proposition 1. Given $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ with $W \leq U$ such that, for every $E \in \mathcal{E}_W$, $\psi_{V,W}(E) \in \text{Im } \psi_V$.

Proof. Let F be an element of \mathcal{E}_V . Suppose that $F \notin \operatorname{Im} \psi_V$. Then there exists $S \in \mathcal{U}$ with $S \leq V$ such that $F \notin \operatorname{Im} \psi_{V,S}$. Since G_V is finite, there exists $W \in \mathcal{U}$ with $W \leq V$ such that $F \in \operatorname{Im} \psi_{V,W}$ implies $F \in \operatorname{Im} \psi_V$, for every $F \in \mathcal{E}_V$.

Let *E* be an arbitrary element of \mathcal{E}_W . Since $\psi_{V,W}(E)$ is an element of \mathcal{E}_V , it also belongs to Im ψ_V . The proposition is proved. \Box

The following notation will be used. Let K be a (profinite) p-group. $H^*(K)$ will always denote the (continuous) cohomology of K with coefficients \mathbb{Z}/p . Denote by I(K) the ideal of $H^*(K)$ consisting of elements which restrict trivially to every elementary abelian subgroup of K, and by \mathfrak{R}_K the nilradical of $H^*(K)$. Set

$$H(K) = \begin{cases} H^{ev}(K) & \text{for } p > 2, \\ H^*(K), & \text{for } p = 2 \end{cases}$$

and let $H^+(K)$ be the ideal of $H^*(K)$ consisting of elements of positive degrees. We have

¹⁹⁹¹ Mathematics Subject Classification. 20J06, 17B50.

Proposition 2. Given $\eta \in I(G)$, there exist $W \in \mathcal{U}$ and $\xi \in I(G_W)$ such that $(\varphi_W)^*(\xi) = \eta$. In particular, if $H^*(G)$ is finitely generated, there exists $U \in \mathcal{U}$ such that $I(G) \subset (\varphi_U)^*(I(G_U))$.

Proof. Let η be an element of I(G). Since $H^*(G) = \lim_{\longrightarrow} H^*(G_U)$, there exist V and $\zeta \in H^*(G_V)$ such that $\varphi_V^*(\zeta) = \eta$. Set $\xi = \varphi_{V,W}^*(\zeta)$ with W given in Proposition 1. Also $\varphi_W^*(\xi) = \eta$. We now prove that $\xi \in I(G_W)$.

Let E be an element of \mathcal{E}_W and set $K = \psi_{V,W}(E)$. By Proposition 1, there exists $M \in \mathcal{E}$ such that $\psi_V(M) = K$. Consider the commutative diagram

As $\varphi_V|_M$ is a monomorphism and $\eta|_M = 0$, the right square of the diagram tells us that $\zeta|_K = 0$. So, by the commutativity of the left square, $\xi|_E = 0$. Hence $\xi \in I(G_W)$.

If $H^*(G)$ is finitely generated, V can be chosen such that $H^*(G) = \text{Im } (\varphi_V)^*$. It follows from what we just proved that $I(G) \subset (\varphi_W)^*(I(G_W))$. \Box

We can now deduce the profinite case of the following theorem of Quillen from the finite case, where many fairly elementary proofs are now known.

Theorem 1 (Quillen [8]). $I(G) \subset \mathfrak{R}_G$. In other words, every element of I(G) is nilpotent.

Proof. Straightforward from Proposition 2, by noting that $I(G_W) \subset \mathfrak{R}_{G_W}$, by the finite case, as G_W is finite. \Box

This result also appears in [9].

Proposition 3. Suppose that there exist $U \in \mathcal{U}$ and $a \in G \setminus U$ with $\operatorname{ord}(a) = p$. Set $b = \varphi_U(a) \in G_U$. Then there exists $\xi \in H^+(G_U)$ satisfying:

- (a) $\xi|_{\langle b \rangle} \neq 0;$
- (b) $\varphi_U^*(\xi)|_{\langle a \rangle} \neq 0$. In particular, $\varphi_U^*(\xi)$ is not nilpotent in $H^+(G)$.

Proof. By [7, Theorem 2.7], there exists $\xi \in H^+(G_U)$ such that $\xi|_{\langle b \rangle}$ is not nilpotent. From the commutative diagram

$$\begin{array}{ccc} H^*(G_U) & \stackrel{\varphi_U^*}{\longrightarrow} & H^*(G) \\ \operatorname{Res} & & & & \downarrow \operatorname{Res} \\ H^*(\langle b \rangle) & \stackrel{}{\longrightarrow} & H^*(\langle a \rangle) \end{array}$$

since $H^*(\langle b \rangle) \xrightarrow{(\varphi_U|_{\langle a \rangle})^*} H^*(\langle a \rangle)$ is an isomorphism, it follows that $\varphi_U^*(\xi)|_{\langle a \rangle}$ is not nilpotent. The proposition follows. \Box

Theorem 2. A pro-p group A is torsion-free if and only if $H^+(A) \subset \mathfrak{R}_A$.

Proof. If A is not torsion-free, it follows from Proposition 3 that $H^+(A)$ contains a non-nilpotent element. If A is torsion-free, then $I(G) = H^+(A)$; hence, by Theorem 1, any element of $H^+(A)$ is nilpotent. \Box **Corollary 1.** (i) A subgroup A of G is torsion-free if and only $\text{Im} (H^+(G) \xrightarrow{\text{Res}} H^+(A)) \subset \mathfrak{R}_A$; (ii) If $H^*(G)/\mathfrak{R}_G$ is finitely generated, then G contains an open, normal, torsion-free subgroup U.

Proof. (i) If A is torsion-free, it follows from Theorem 2 that $H^+(A)$ consists of nilpotent elements; hence any element of Im $(H^+(G) \xrightarrow{\text{Res}} H^+(A))$ is nilpotent. Conversely, suppose that A contains an element a of order p. By Proposition 3, there exists $\zeta \in H^+(G)$ such that $\zeta|_{\langle a \rangle}$, hence $\zeta|_A$, is not nilpotent. (ii) Suppose that $H^*(G)/\mathfrak{R}_G$ is finitely generated. Since $H^*(G) = \lim H^*(G_V)$, there exists $U \in \mathcal{U}$ such

that $H^*(G_U)/\mathfrak{R}_{G_U} \xrightarrow{(\varphi_U)^*} H^*(G)/\mathfrak{R}_G$ is surjective. Hence Im $(H^+(G) \xrightarrow{\operatorname{Res}} H^+(U)) \subset \mathfrak{R}_U$. By (i), U is torsion-free.

The corollary follows. \Box

Remark 1. The following example shows that the converse of Corollary 1(ii) does not hold. For every $n \in \mathbb{N}$, define \mathfrak{A}_n to be the procyclic group \mathbb{Z}_2 generated by e_n . Set $\mathfrak{A} = \bigoplus_n \mathfrak{A}_n$ and let $\langle a \rangle \cong \mathbb{Z}/2$ act on \mathfrak{A} by ${}^a e_n = e_n^{-1}$. Define $G = \mathfrak{A} \rtimes \mathbb{Z}/2$. For every n, $\langle e_n a \rangle \cong \mathbb{Z}/2$ and $\langle e_n a \rangle$ is not conjugate with $\langle e_m a \rangle$ if $m \neq n$. Hence there are infinitely many conjugacy classes of elementary abelian subgroups of G. According to Theorem 3 below, $H^*(G)/\mathfrak{R}_G$ is not finitely generated, although \mathfrak{A} is open, normal and torsion-free in G.

We will give a necessary and sufficient condition for $H^*(G)$ to be finitely generated as a ring. First we prepare.

Lemma 1. Suppose that $H^*(G)$ is finitely generated and M is a finite \mathbb{F}_pG -module. Then $H^*(G, M)$ is noetherian over $H^*(G)$.

Proof. We prove by induction on $n = \dim_{\mathbb{F}_p} M$. Suppose that the lemma holds for n - 1. Consider the exact sequence of $\mathbb{F}_p G$ -modules

$$0 \to \mathbb{F}_p \xrightarrow{f} M \xrightarrow{g} N \to 0$$

with $N = M/f(\mathbb{F}_p)$. We then have the corresponding long exact sequence of cohomology

$$\dots H^{*-1}(G,N) \xrightarrow{\delta_*} H^*(G) \xrightarrow{f_*} H^*(G,M) \xrightarrow{g_*} H^*(G,N) \to \dots$$

By the inductive assumption, $H^*(G, N)$ is noetherian over $H^*(G)$, hence so is Im g_* . Pick elements ξ_1, \ldots, ξ_m of $H^*(G, M)$ so that $\{g_*(\xi_1), \ldots, g_*(\xi_m)\}$ is a set of generators of Im g_* . It follows that $H^*(G, M)$ is generated by ξ_1, \ldots, ξ_m , as a module over Im f_* . Hence $H^*(G, M)$ is noetherian over $H^*(G)$. \Box

Corollary 2. The following are equivalent:

- (a) $H^*(G)$ is finitely generated;
- (b) G contains an open normal, torsion-free subgroup U such that $H^*(U)$ is finite;
- (c) there exists an open subgroup K of G such that $H^*(K)$ is finitely generated;
- (d) $H^*(K)$ is finitely generated, for any open subgroup K of G.

Proof. The implication (b) \Rightarrow (a) was proved by Quillen ([7, Proposition 13.5]) using a spectral sequence argument. It is clear that $(d) \Rightarrow (c)$ and $(d) \Rightarrow (a)$. Suppose that $H^*(G)$ is finitely generated and K is open in G. By the Eckmann-Shapiro lemma, $H^*(K) = H^*(G, M)$ with $M = \operatorname{Hom}_K(\mathbb{F}_pG, \mathbb{F}_p)$). Since M is noetherian as a \mathbb{F}_p -module, $H^*(K)$ is noetherian over $H^*(G)$, by Lemma 1. As $H^*(G)$ is finitely generated, so is $H^*(K)$. In particular, if U is given as in Corollary 1 (ii), then $H^*(U)$ is finite dimensional, as $H^+(U) \subset \mathfrak{R}_U$. We then have $(a) \Rightarrow (b)$ and $(a) \Rightarrow (d)$.

Finally, suppose that K is open in G and $H^*(K)$ is finitely generated. It follows that K contains an open, normal, torsion-free subgroup U such that $H^*(U)$ is finite. As U is also open in G, U contains an open, normal subgroup V of G. Since V is torsion-free and open in U, $H^*(V)$ is finite. So $H^*(G)$ is finitely generated. The implication $(c) \Rightarrow (a)$ is then proved. \Box

Remark 2. In [7], it was proved that, if $H^*(G)$ is finitely generated, then G has only finitely many conjugacy classes of elementary abelian pro-p subgroups. However the converse does not hold: the group

 \mathfrak{A} given above has only one elementary abelian subgroup, which is the one of rank 0, while $H^*(\mathfrak{A})$ is an exterior algebra with an infinite number of generators of degree 1, hence is not finitely generated.

From now on, fix \mathcal{F} a set of representatives of conjugacy classes of elementary abelian pro-*p* subgroups of *G*. We now give a cohomological criterion for \mathcal{F} to be finite, as follows.

Theorem 3. The following are equivalent:

- (a) There exists an open normal subgroup A of G such that $EA \neq FA$, for $E \neq F$ in \mathcal{F} ;
- (b) $H^*(G)/\mathfrak{R}_G$ is finitely generated (as a ring);
- (c) \mathcal{F} is finite.

Proof. (a) \Rightarrow (c): Let S be the set of subgroups of G_A . The map $f : \mathcal{F} \to S, E \mapsto EA/A$ is then injective. As f maps \mathcal{F} injectively into the finite set S, \mathcal{F} is finite.

The implication (c) \Rightarrow (a) is clear. We now prove (b) \Rightarrow (c). Suppose that $H^*(G)/\Re_G$ is finitely generated. Let U be the open, normal, torsion-free subgroup of G as given in Corollary 1(ii). It follows from the proof of the corollary that, for every $V \leq U$, V is torsion-free and $H^*(G_V)/\Re_{G_V} \stackrel{(\varphi_V)^*}{\to} H^*(G)/\Re_G$ is surjective.

Let \mathcal{M} be a set of representatives of conjugacy classes of maximal elementary abelian pro-p subgroups of G and let E, F be two different elements of \mathcal{M} . Since U is torsion-free, it follows that φ_V maps E (resp. F) isomorphically to $\varphi_V(E)$ (resp. $\varphi_V(F)$), for every $V \leq U$. Furthermore, as $E \neq F$, there exists $W \leq U$ such that each of $\varphi_W(E), \varphi_W(F)$ is not conjugate (in G_W) to any subgroup of the other. According to [7, Theorem 2.7], there exist $\xi, \eta \in H^*(G_W)$ such that $\xi|_{\varphi_W(E)}, \eta|_{\varphi_W(F)}$ are not nilpotent, and $\xi|_{\varphi_W(F)} = 0, \eta|_{\varphi_W(E)} = 0$. Set $\xi' = (\varphi_W)^*(\xi), \eta' = (\varphi_W)^*(\eta)$. It follows that $\xi'|_E, \eta'|_F$ are not nilpotent, and $\xi'|_F = 0, \eta'|_E = 0$; in particular, ξ' and η' are not nilpotent. Since $H^*(G_U)/\mathfrak{R}_{G_U} \stackrel{(\varphi_U)^*}{\to} H^*(G)/\mathfrak{R}_G$ is surjective, there exist $\zeta, \theta \in H^*(G_U)$ such that $\zeta|_{\varphi_U(E)}, \theta|_{\varphi_U(F)}$ are not nilpotent, and $\zeta|_{\varphi_U(F)} = 0, \theta|_{\varphi_U(E)} = 0$. Also, by [7, Theorem 2.7], it follows that each of $\varphi_U(E), \varphi_U(F)$ is not conjugate to any subgroup of the other; in particular, $\varphi_U(E) \neq \varphi_U(F)$. So ψ_U maps \mathcal{M} injectively into \mathcal{E}_U . Hence \mathcal{M} is finite, and so is \mathcal{F} .

Finally, let us prove (c) \Rightarrow (b). Suppose that \mathcal{F} is finite. It follows that there exists $T \in \mathcal{U}$ such that, for every $E \in \mathcal{E}$, $\varphi_T|_E$ is an isomorphism, and ψ_T maps \mathcal{F} injectively into \mathcal{E}_T . For every $E \in \mathcal{F}$, the restriction map $\operatorname{Res}_{\varphi_T(E)}^{G_T}$ induces an action of $H(G_T)$ on $H^*(\varphi_T(E))$, hence on $H^*(E)$; furthermore, by [4, Corollary 7.4.7], $H^*(E)$ is a finitely generated $H(G_T)$ -module. Besides, the inflation $(\varphi_T)^*$ also induces an action of $H(G_T)$ on $H^*(G)$ so that Res_E^G is a $H(G_T)$ -homomorphism, for every $E \in \mathcal{F}$. Set $\mathfrak{J} = \prod_{E \in \mathcal{F}} H^*(E)$. Since \mathcal{F} is finite, \mathfrak{J} is a finitely generated $H(G_T)$ -module. As $H^*(G)/I(G)$ is isomorphic to a submodule of \mathfrak{J} , it is also a finitely generated $H(G_T)$ -module. Furthermore, $I(G) \subset \mathfrak{R}_G$ implies that $H^*(G)/\mathfrak{R}_G$ is, in turn, a finitely generated $H(G_T)$ -module. Since $H(G_T)$ is a finitely generated algebra, so is $H^*(G)/\mathfrak{R}_G$. \Box

It has been pointed out to us by Henn that such a result can also be deduced from material in [6].

Let \mathcal{E} be the category with objects the elementary abelian pro-p subgroups of G and with morphisms from A to B defined to be the homomorphisms $\theta : A \to B$ of the form $\theta a = gag^{-1}$ for some $g \in G$. Set $\mathcal{L} = \lim_{\longleftarrow} H(E)$. It is clear that the projection map

 $E \in \mathcal{E}$

$$\prod_{E \in \mathcal{E}} H^*(E) \to \mathfrak{J} = \prod_{E \in \mathcal{F}} H^*(E)$$

induces a monomorphism, between H(G)-modules, from \mathfrak{L} to \mathfrak{J} . From the proof of the above theorem, \mathfrak{J} is finitely generated over H(G). We then have

Proposition 4. If \mathcal{F} is finite, then \mathfrak{L} is finitely generated over H(G). \Box

According to [8, Proposition 13.4], if \mathcal{F} is finite, the map

$$H(G) \stackrel{\operatorname{Res}^{\circ}}{\to} \mathfrak{L}$$

is an *F*-isomorphism. In other words, given $x \in I(G)$ and $y \in \mathfrak{L}$, there exists an integer $n = n_{x,y}$ such that $x^n = 0$ and $y^{p^n} \in \text{Im Res}^G$. We now give a sufficient condition for Res^G to be a uniform *F*-isomorphism (*i.e.*, the integer *n* can be chosen independently of *x* and *y*).

Theorem 4. If $H^*(G)$ is finitely generated, then Res^G is a uniform F-isomorphism.

Proof. Suppose that $H^*(G)$ is finitely generated. \mathcal{F} is then finite and the map $H(G) \xrightarrow{\operatorname{Res}^G} \mathfrak{L}$ is an *F*-isomorphism. By Proposition 4, \mathfrak{L} is finitely generated over H(G). So there exists an integer r such that $y^{p^r} \in \operatorname{Im} \operatorname{Res}^G$, for every $y \in \mathfrak{L}$.

By Proposition 2, there exists $U \in \mathcal{U}$ such that $I(G) \subset (\varphi_U)^*(I(G_U))$. As G_U is finite, there exists an integer s such that $x^s = 0$, for every $x \in I(G)$. The theorem is then proved, by setting $n = n_{x,y} = \max(r, s)$. \Box

2. Pro-p groups and finite p-subgroups

Let G be an infinite pro-p group. The purpose of this section is to prove the following

Theorem 5. If $H^*(G)$ is finitely generated, then G has only finitely many conjugacy classes of finite *p*-subgroups.

An analogous result is known for discrete groups of finite virtual cohomological dimension over p (see [1], 13.2) and for analytic pro-p groups (where the hypothesis is vacuous, see [2]).

Our proof depends on some deep results on unstable algebras over the Steenrod algebra.

We will need:

Lemma 2. If $H^*(G)$ is finitely generated and C is a finite central subgroup of G, then $H^*(G/C)$ is finitely generated.

Proof. Without loss of generality, we may suppose that C is of order p. Write K = G/C and let $z \in H^2(K)$ be the cohomology class classifying the central extension

$$1 \to C \to G \to K \to 1.$$

There exists then an open, normal subgroup L of K such that $\operatorname{Res}_{L}^{K}(z) = 0$. Therefore the preimage H of L in G is isomorphic to $C \times L$. In other words, L can be considered as an open subgroup of G. By Corollary 2, $H^{*}(L)$, and so $H^{*}(K)$, are finitely generated. \Box

For every subgroup P of G, denote by $N_G(P)$ (resp. $C_G(P)$) the normalizer (resp. centralizer) of P in G. We have

Lemma 3. If P is a subgroup of G of order p, then:

- (i) $N_G(P) = C_G(P);$
- (ii) $H^*(C_G(P))$ and $H^*(C_G(P)/P)$ are finitely generated, provided that so is $H^*(G)$.

Proof. (i) follows from the fact that $N_G(P)/C_G(P)$ is embedded into $\operatorname{Aut}(P)$ which is of order p-1.

(ii) By Lemma 2, we need only prove that $H^*(C_G(P))$ is finitely generated. By Corollary 2, there exists U open, normal, torsion-free in G. Set $K = \langle U, P \rangle$. K is then of p-rank 1 (*i.e.* every elementary abelian subgroup of K is of rank at most 1), open in G and has finitely generated cohomology, by Corollary 2. Furthermore, $C_K(P)$ is open in $C_G(P)$. By Corollary 2, it suffices to prove that $H^*(C_K(P))$ is finitely generated. According to the theory in [3] (see also [7, Corollary 1.7]) the unstable algebra $T^V H^*(G)$ is noetherian and also $T^V H^*(G) = \prod_{(\rho)} H^*(C_K(\operatorname{im} \rho))$, where the product is taken over conjugacy classes of homomorphisms $\rho : \mathbb{Z}/p \to K$. It follows that $H^*(C_K(P))$ is finitely generated. \Box

Proof of Theorem 5. As $H^*(G)$ is finitely generated, it follows from Corollary 2 that there exists an open normal, torsion-free subgroup U of G. Define

 $n_G = \min\{n | | G/U | = p^n \text{ for some open, normal, torsion-free subgroup } U \text{ of } G\}.$

We argue by induction on n_G . If $n_G = 1$, the conclusion follows, as every finite subgroup of G is elementary abelian of rank 1. Suppose that the theorem holds if $n_G < m$.

Assume that $n_G = m$. It is known that the number of conjugacy classes of elementary abelian *p*subgroups of rank 1 of *G* is finite. Let $\{C_1, \ldots, C_k\}$ be a set of representatives of such conjugacy classes. It is clear that, for any finite *p*-subgroup *P* of *G*, there exist $g \in G$ and *i* such that P^g contains C_i as a central subgroup. Let \mathcal{N}_i be the set of finite subgroups of *G* containing C_i as a central subgroup, $1 \leq i \leq k$. It is then sufficient to prove that the number of conjugacy classes in \mathcal{N}_i is finite, $1 \leq i \leq k$.

Fix such an *i*. Note that \mathcal{N}_i coincides with the set of finite subgroups of $K = C_G(C_i)$ containing C_i , hence is in 1 – 1 correspondence with the set of finite subgroups of $H = C_G(C_i)/C_i$. Therefore we need only prove that H has many finitely conjugacy classes of finite subgroups. Let U be open, normal, torsion-free in G with $|G/U| = p^{n_G}$ and set $V = U \cap K$. V is then open, normal, torsion-free in K and $|K/V| \leq |G/U| = p^{n_G}$. So $n_K \leq n_G$. As $n_H = n_K - 1 < n_G$, it follows from the inductive hypothesis that H has many finitely conjugacy classes of finite subgroups. The theorem is proved. \Box

References

- 1. K. S. Brown, Cohomology of groups, vol. 87 Springer-Verlag, Berlin, Graduate Texts in Mathematics, 1982.
- J.D. Dixon, M.P.F. du Sautoy, A. Mann, D. Segal, Analytic pro-p groups (2nd edition), vol. 157, C.U.P., Cambridge, L.M.S Lecture Notes, 1999.
- 3. W. G. Dwyer, C. Wilkerson, Smith Theory and the functor T, Comment. Math. Helvetici 66 (1991), 1-17.
- 4. L. Evens, The cohomology of groups, Oxford Mathematical Monographs, Clarendon Press, 1991.
- 5. H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups, Duke Math. J. **91** (1998), 561-585.
- H.-W. Henn, J. Lannes, L. Schwarz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Amer. Jour. Math. 115 (1993), 1053-1106.
- 6. D. Quillen, A cohomological criterion for p-nilpotence, J. Pure Appl. Alg. 1 (1971), 361-372.
- 8. _____, The spectrum of an equivariant cohomology ring II, Ann. Math. 94 (1971), 573-602.
- 9. C. Scheiderer, Farrell cohomology and Brown theorems for profinite groups, Manuscripta Math. 91 (1996), 247-281.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, UNIVERSITY OF HUE, DAI HOC KHOA HOC, HUE, VIETNAM. *E-mail address*: paminh@dng.vnn.vn

DEPARTMENT OF MATHEMATICS, U.M.I.S.T., P.O. BOX 88, MANCHESTER M60 1QD, ENGLAND. *E-mail address*: Peter.Symonds@umist.ac.uk