COHOMOLOGY AND FINITE SUBGROUPS OF PROFINITE GROUPS
PHAM ANH MINH AND PETER SYMONDS

We prove two theorems linking the cohomology of a pro-p group G with the conjugacy classes of its
finite subgroups.

Theorem 3. The number of conjugacy classes of elementary abelian p-subgroups of G is finite if and
only if the ring H*(G,Z/p) is finitely generated modulo nilpotent elements.

Theorem 5. If the ring H*(G,Z/p) is finitely generated then the number of conjugacy classes of finite
subgroups of G is finite.

1. PRO-p GROUPS AND ELEMENTARY ABELIAN PRO-p SUBGROUPS

Let G be an infinite pro-p group. Fix a fundamental system U/ of open neighborhoods U of 1 € G such
that UﬂuU = 1 and each U is an open normal subgroup of G. For convenience, write V < U for V C U
€

and U,V € U. For U € U, set Gy = G/U. Denote by ¢y v : Gy — Gy the projection map with V' < U.
{Gu,pu,v} is an inverse system and
G = lim GU.

Let oy : G — Gy, U € U, be the projection map. Let £ (resp. £y) be the set of elementary abelian pro-p
subgroups (resp. p-subgroups) of G (resp. Gy). (We use the convention that {1} is elementary abelian
of rank 0.) It is clear that ¢y (E) and ¢py,yv (F) are elements of &y, for every E € E,F € &,V < U.
Denote by 9y : € — Ey (resp. Yu,v : Ev — Ey, V < U) the map induced from ¢y (resp. ou,v).

Proposition 1. Given V € U, there exists W € U with W < U such that, for every E € Ew, Yyw(E) €
Im lﬂv.

Proof. Let F be an element of &y. Suppose that F' ¢ Im vy . Then there exists S € U with S <V such
that F ¢ Im ¢y g. Since Gy is finite, there exists W € U with W < V such that F € Im ¢y,w implies
F € Im vy, for every F € &y .

Let E be an arbitrary element of Ey. Since ¥y, (F) is an element of &y, it also belongs to Im ¥y .
The proposition is proved. [

The following notation will be used. Let K be a (profinite) p-group. H*(K) will always denote the
(continuous) cohomology of K with coeflicients Z/p. Denote by I(K) the ideal of H*(K) consisting of

elements which restrict trivially to every elementary abelian subgroup of K, and by SR the nilradical of
H*(K). Set

H(K) = H(K) forp>2,
| BHY(K), forp=2

and let HT(K) be the ideal of H*(K) consisting of elements of positive degrees. We have
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Proposition 2. Given n € I(GQ), there exist W € U and § € I(Gw) such that (ow)* (&) = 7.
In particular, if H*(G) is finitely generated, there exists U € U such that I1(G) C (pv)*(I(Gv)).

Proof. Let n be an element of I(G). Since H*(G) = lim H*(Gy), there exist V and ¢ € H*(Gy ) such
that ¢7,(¢) = n. Set & = pj,4y,(¢) with W given in Proposition 1. Also ¢j;,(§) = 1. We now prove that
€ I(Gw).

Let E be an element of &y and set K = ¢y w (E). By Proposition 1, there exists M € & such that
Yy (M) = K. Consider the commutative diagram

.
VW v

H*(Gw) <~ H*Gy) —Y— H*(G)

Resl Resl lRes

(ev,wle)* (evim)*

As oy |p is @ monomorphism and 5|y, = 0, the right square of the diagram tells us that ¢|x = 0. So, by
the commutativity of the left square, {|p = 0. Hence £ € I(Gw ).

If H*(G) is finitely generated, V can be chosen such that H*(G) = Im (py)*. It follows from what
we just proved that I(G) C (¢w)*(I(Gw)). O

We can now deduce the profinite case of the following theorem of Quillen from the finite case, where
many fairly elementary proofs are now known.

Theorem 1 (Quillen [8]). I(G) C Rq. In other words, every element of I(G) is nilpotent.

Proof. Straightforward from Proposition 2, by noting that I(Gw) C Rg,,, by the finite case, as Gy is
finite. O

This result also appears in [9].

Proposition 3. Suppose that there exist U € U and a € G\ U with ord(a) = p. Set b = ppy(a) € Gu.
Then there exists £ € HT (Gy) satisfying:

(a) &l # 0;
(b) 5 (E)lay # 0. In particular, ¢ (€) is not nilpotent in H*(G).

Proof. By [7, Theorem 2.7], there exists £ € H*(Gy) such that &,y is not nilpotent. From the commu-
tative diagram

*

H*(Gy) —Y— H*(G)

Resl l Res

H((b)) ol H*((a))

since H*((b)) ol H*((a)) is an isomorphism, it follows that ¢7;(£)] ) is not nilpotent. The propo-
sition follows. [
Theorem 2. A pro-p group A is torsion-free if and only if HT(A) C Ra.

Proof. If A is not torsion-free, it follows from Proposition 3 that HT(A) contains a non-nilpotent element.
If A is torsion-free, then I(G) = HT(A); hence, by Theorem 1, any element of HT(A) is nilpotent. [
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Corollary 1. (i) A subgroup A of G is torsion-free if and only Tm (H'(G) iy HT(A)) CRa;
(i) If H*(G)/R¢ is finitely generated, then G contains an open, normal, torsion-free subgroup U.

Proof. (i) If A is torsion-free, it follows from Theorem 2 that H*(A) consists of nilpotent elements; hence

any element of Im (H(G) Ry T(A)) is nilpotent. Conversely, suppose that A contains an element a

of order p. By Proposition 3, there exists ¢ € H*(G) such that (|4, hence (|4, is not nilpotent.
(ii) Suppose that H*(G)/R¢ is finitely generated. Since H*(G) = lim H*(Gy ), there exists U € U such

that H*(Gu)/Re, 7% H*(G)/Re is surjective. Hence Im (H(G) X HY(U)) € Ry. By (i), U is

torsion-free.
The corollary follows. [

Remark 1. The following example shows that the converse of Corollary 1(ii) does not hold. For every
n € N, define 2, to be the procyclic group Z, generated by e,. Set A = ©,2l,, and let (a) = Z/2 act
on A by %, = e, !. Define G = 2 x Z/2. For every n, (e a) = Z/2 and (e,a) is not conjugate with
(ema) if m # n. Hence there are infinitely many conjugacy classes of elementary abelian subgroups of
G. According to Theorem 3 below, H*(G)/PR¢ is not finitely generated, although 2 is open, normal and

torsion-free in G.

We will give a necessary and sufficient condition for H*(G) to be finitely generated as a ring. First we
prepare.

Lemma 1. Suppose that H*(G) is finitely generated and M is a finite F,G-module. Then H*(G, M) is
noetherian over H*(G).

Proof. We prove by induction on n = dimg, M. Suppose that the lemma holds for n — 1. Consider the
exact sequence of F,G-modules

0-F, LML N0

with N = M/ f(F,). We then have the corresponding long exact sequence of cohomology

HY G, N) S HY(G) D NG, M) S HY G, N) —

By the inductive assumption, H*(G, N) is noetherian over H*(G), hence so is Im g.. Pick elements
&1,y &m of H*(G,M) so that {g.(&1),...,9«(&n)} is a set of generators of Im g.. It follows that
H*(G,M) is generated by &1,...,&mn, as a module over Im f,.. Hence H*(G, M) is noetherian over
H*(G). O

Corollary 2. The following are equivalent:
(a) H*(G) is finitely generated;
(b) G contains an open normal, torsion-free subgroup U such that H*(U) is finite;
(c) there exists an open subgroup K of G such that H*(K) is finitely generated;
(d) H*(K) is finitely generated, for any open subgroup K of G.

Proof. The implication (b) = (a) was proved by Quillen ([7, Proposition 13.5]) using a spectral sequence
argument. It is clear that (d) = (c¢) and (d) = (a). Suppose that H*(G) is finitely generated and K is
open in G. By the Eckmann-Shapiro lemma, H*(K) = H*(G, M) with M = Homg (F,G,F,)). Since
M is noetherian as a Fp-module, H*(K) is noetherian over H*(G), by Lemma 1. As H*(G) is finitely
generated, so is H*(K). In particular, if U is given as in Corollary 1 (ii), then H*(U) is finite dimensional,
as HT(U) C Ry. We then have (a) = (b) and (a) = (d).

Finally, suppose that K is open in G and H*(K) is finitely generated. It follows that K contains an
open, normal, torsion-free subgroup U such that H*(U) is finite. As U is also open in G, U contains
an open, normal subgroup V of G. Since V is torsion-free and open in U, H*(V) is finite. So H*(G) is
finitely generated. The implication (¢) = (a) is then proved. O

Remark 2. In [7], it was proved that, if H*(G) is finitely generated, then G has only finitely many
conjugacy classes of elementary abelian pro-p subgroups. However the converse does not hold: the group
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2 given above has only one elementary abelian subgroup, which is the one of rank 0, while H*(2) is an
exterior algebra with an infinite number of generators of degree 1, hence is not finitely generated.

From now on, fix F a set of representatives of conjugacy classes of elementary abelian pro-p subgroups
of G. We now give a cohomological criterion for F to be finite, as follows.

Theorem 3. The following are equivalent:

(a) There exists an open normal subgroup A of G such that EA # FA, for E#+F in F;
(b) H*(G)/R¢ is finitely generated (as a ring);
(c) F is finite.

Proof. (a) = (c): Let S be the set of subgroups of G4. The map f : F — S, E — EA/A is then injective.
As f maps F injectively into the finite set S, F is finite.

The implication (c) = (a) is clear. We now prove (b) = (c). Suppose that H*(G) /PR is finitely generated.
Let U be the open, normal, torsion-free subgroup of G as given in Corollary 1(ii). It follows from the

proof of the corollary that, for every V' < U, V is torsion-free and H*(Gv)/Ra, Cov) H*(G)/R¢g is
surjective.

Let M be a set of representatives of conjugacy classes of maximal elementary abelian pro-p subgroups
of G and let E,F be two different elements of M. Since U is torsion-free, it follows that ¢y maps
E (resp. F) isomorphically to ¢y (F) (resp. @y (F)), for every V. < U. Furthermore, as E # F,
there exists W < U such that each of pw (E), ow (F) is not conjugate (in Gy) to any subgroup of
the other. According to [7, Theorem 2.7}, there exist {,n € H*(Gw) such that &|, (), Mey (7) are
not nilpotent, and &[,., (r) = 0,7y (m) = 0. Set & = (ow)*(€),n" = (pw)*(n). It follows that
&'|g,n'|F are not nilpotent, and &'|r = 0,7|g = 0; in particular, ¢ and 1’ are not nilpotent. Since

H*(Gu) /Ry, (72) H*(G)/NR¢ is surjective, there exist ¢, 0 € H*(Gy) such that (|, (g), 0], (r) are not
nilpotent, and (|, (ry = 0,0|,,(z) = 0. Also, by [7, Theorem 2.7], it follows that each of ¢y (E), oy (F)
is not conjugate to any subgroup of the other; in particular, py (E) # @y (F). So ¢y maps M injectively
into &;. Hence M is finite, and so is F.

Finally, let us prove (c) = (b). Suppose that F is finite. It follows that there exists 7" € U such
that, for every E € &, ¢or|g is an isomorphism, and ¢ maps F injectively into &p. For every E € F,
the restriction map Resif(E) induces an action of H(Gr) on H*(pr(E)), hence on H*(E); furthermore,
by [4, Corollary 7.4.7], H*(E) is a finitely generated H(Gr)-module. Besides, the inflation (pr)* also
induces an action of H(Gr) on H*(G) so that Res$ is a H(G7)-homomorphism, for every E € F.
Set J = [[ger H*(E). Since F is finite, J is a finitely generated H(Gr)-module. As H*(G)/I(G) is
isomorphic to a submodule of J, it is also a finitely generated H(Gr)-module. Furthermore, I(G) C Rq
implies that H*(G)/R¢ is, in turn, a finitely generated H(Gr)-module. Since H(Gr) is a finitely
generated algebra, so is H*(G)/Rg. O

It has been pointed out to us by Henn that such a result can also be deduced from material in [6].

Let £ be the category with objects the elementary abelian pro-p subgroups of G and with morphisms
from A to B defined to be the homomorphisms 6 : A — B of the form fa = gag—' for some g € G. Set
£ =lim H(FE). It is clear that the projection map

Ec&
[[2®E—-3=1]] B (E)
EcE EcF
induces a monomorphism, between H(G)-modules, from £ to J. From the proof of the above theorem, J
is finitely generated over H(G). We then have

Proposition 4. If F is finite, then £ is finitely generated over H(G). O

According to [8, Proposition 13.4], if F is finite, the map

G
HG) " g
is an F-isomorphism. In other words, given = € I(G) and y € £, there exists an integer n = n, , such that
2" =0and 4" € Im Res®. We now give a sufficient condition for Res® to be a uniform F-isomorphism
(i.e., the integer n can be chosen independently of x and y).
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Theorem 4. If H*(G) is finitely generated, then Res® is a uniform F-isomorphism.

G
Proof. Suppose that H*(G) is finitely generated. F is then finite and the map H(G) Res™ @ is an F-
isomorphism. By Proposition 4, £ is finitely generated over H (G). So there exists an integer r such that
y?" € Im Res®, for every y € £.

By Proposition 2, there exists U € U such that I(G) C (¢v)*(I(Gy)). As Gy is finite, there exists
an integer s such that z° = 0, for every « € I(G). The theorem is then proved, by setting n = n,, =
max(r,s). O

2. PRO-p GROUPS AND FINITE p-SUBGROUPS

Let G be an infinite pro-p group. The purpose of this section is to prove the following

Theorem 5. If H*(G) is finitely generated, then G has only finitely many conjugacy classes of finite
p-subgroups.

An analogous result is known for discrete groups of finite virtual cohomological dimension over p (see
[1], 13.2) and for analytic pro-p groups (where the hypothesis is vacuous, see [2]).

Our proof depends on some deep results on unstable algebras over the Steenrod algebra.
We will need:

Lemma 2. If H*(G) is finitely generated and C is a finite central subgroup of G, then H*(G/C) is
finitely generated.

Proof. Without loss of generality, we may suppose that C is of order p. Write K = G/C and let
z € H*(K) be the cohomology class classifying the central extension

1-C—-G—K—1.

There exists then an open, normal subgroup L of K such that Resf (z) = 0. Therefore the preimage H
of L in G is isomorphic to C' x L. In other words, L can be considered as an open subgroup of G. By
Corollary 2, H*(L), and so H*(K), are finitely generated. O

For every subgroup P of G, denote by Ng(P) (resp. Cg(P)) the normalizer (resp. centralizer) of P
in G. We have

Lemma 3. If P is a subgroup of G of order p, then:
(i) No(P) = Ca(P);
(ii) H*(Cg(P)) and H*(Ce(P)/P) are finitely generated, provided that so is H*(G).

Proof. (i) follows from the fact that Ng(P)/Cg(P) is embedded into Aut(P) which is of order p — 1.

(ii) By Lemma 2, we need only prove that H*(Cg(P)) is finitely generated. By Corollary 2, there exists
U open, normal, torsion-free in G. Set K = (U, P). K is then of p-rank 1 (i.e. every elementary abelian
subgroup of K is of rank at most 1), open in G and has finitely generated cohomology, by Corollary 2.
Furthermore, Ck (P) is open in Cg(P). By Corollary 2, it suffices to prove that H*(Ck (P)) is finitely
generated. According to the theory in [3] (see also [7, Corollary 1.7]) the unstable algebra TV H*(G) is
noetherian and also TV H*(G) = 1) H*(Ck(imp)), where the product is taken over conjugacy classes
of homomorphisms p : Z/p — K. It follows that H*(Ck (P)) is finitely generated. O

Proof of Theorem 5. As H*(G) is finitely generated, it follows from Corollary 2 that there exists an open
normal, torsion-free subgroup U of G. Define

ng = min{n||G/U| = p" for some open, normal, torsion-free subgroup U of G}.

We argue by induction on ng. If ng = 1, the conclusion follows, as every finite subgroup of G is
elementary abelian of rank 1. Suppose that the theorem holds if ng < m.
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Assume that ng = m. It is known that the number of conjugacy classes of elementary abelian p-
subgroups of rank 1 of G is finite. Let {C1,...,Ck} be a set of representatives of such conjugacy classes.
It is clear that, for any finite p-subgroup P of G, there exist ¢ € G and i such that P9 contains C;
as a central subgroup. Let N; be the set of finite subgroups of G containing C; as a central subgroup,
1 < i < k. It is then sufficient to prove that the number of conjugacy classes in N; is finite, 1 < i < k.

Fix such an i. Note that N; coincides with the set of finite subgroups of K = Cg(C;) containing
C;, hence is in 1 — 1 correspondence with the set of finite subgroups of H = C(C;)/C;. Therefore we
need only prove that H has many finitely conjugacy classes of finite subgroups. Let U be open, normal,
torsion-free in G with |G/U| = p™¢ and set V = U N K. V is then open, normal, torsion-free in K and
|[K/V]| < |G/U| =p"¢. Song <ng. Asng =ng — 1 < ng, it follows from the inductive hypothesis
that H has many finitely conjugacy classes of finite subgroups. The theorem is proved. [
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