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We prove two theorems linking the cohomology of a pro-p group G with the conjugacy classes of its
finite subgroups.

Theorem 3. The number of conjugacy classes of elementary abelian p-subgroups of G is finite if and
only if the ring H∗(G,Z/p) is finitely generated modulo nilpotent elements.

Theorem 5. If the ring H∗(G,Z/p) is finitely generated then the number of conjugacy classes of finite
subgroups of G is finite.

1. Pro-p groups and elementary abelian pro-p subgroups

Let G be an infinite pro-p group. Fix a fundamental system U of open neighborhoods U of 1 ∈ G such
that ∩

U∈U
U = 1 and each U is an open normal subgroup of G. For convenience, write V ≤ U for V ⊂ U

and U, V ∈ U . For U ∈ U , set GU = G/U . Denote by ϕU,V : GV → GU the projection map with V ≤ U .
{GU , ϕU,V } is an inverse system and

G = lim
←−

GU .

Let ϕU : G→ GU , U ∈ U , be the projection map. Let E (resp. EU ) be the set of elementary abelian pro-p
subgroups (resp. p-subgroups) of G (resp. GU ). (We use the convention that {1} is elementary abelian
of rank 0.) It is clear that ϕU (E) and ϕU,V (F ) are elements of EU , for every E ∈ E , F ∈ EV , V ≤ U .
Denote by ψU : E → EU (resp. ψU,V : EV → EU , V ≤ U) the map induced from ϕU (resp. ϕU,V ).

Proposition 1. Given V ∈ U , there exists W ∈ U with W ≤ U such that, for every E ∈ EW , ψV,W (E) ∈
Im ψV .

Proof. Let F be an element of EV . Suppose that F /∈ Im ψV . Then there exists S ∈ U with S ≤ V such
that F /∈ Im ψV,S . Since GV is finite, there exists W ∈ U with W ≤ V such that F ∈ Im ψV,W implies
F ∈ Im ψV , for every F ∈ EV .

Let E be an arbitrary element of EW . Since ψV,W (E) is an element of EV , it also belongs to Im ψV .
The proposition is proved. �

The following notation will be used. Let K be a (profinite) p-group. H∗(K) will always denote the
(continuous) cohomology of K with coefficients Z/p. Denote by I(K) the ideal of H∗(K) consisting of
elements which restrict trivially to every elementary abelian subgroup of K, and by RK the nilradical of
H∗(K). Set

H(K) =
{
Hev(K) for p > 2,
H∗(K), for p = 2

and let H+(K) be the ideal of H∗(K) consisting of elements of positive degrees. We have
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Proposition 2. Given η ∈ I(G), there exist W ∈ U and ξ ∈ I(GW ) such that (ϕW )∗(ξ) = η.
In particular, if H∗(G) is finitely generated, there exists U ∈ U such that I(G) ⊂ (ϕU )∗(I(GU )).

Proof. Let η be an element of I(G). Since H∗(G) = lim
−→

H∗(GU ), there exist V and ζ ∈ H∗(GV ) such

that ϕ∗V (ζ) = η. Set ξ = ϕ∗V,W (ζ) with W given in Proposition 1. Also ϕ∗W (ξ) = η. We now prove that
ξ ∈ I(GW ).

Let E be an element of EW and set K = ψV,W (E). By Proposition 1, there exists M ∈ E such that
ψV (M) = K. Consider the commutative diagram

H∗(GW )
ϕ∗

V,W←−−−− H∗(GV )
ϕ∗

V−−−−→ H∗(G)

Res

y Res

y yRes

H∗(E) ←−−−−−−−
(ϕV,W |E)∗

H∗(K) −−−−−→
(ϕV |M )∗

H∗(M)

.

As ϕV |M is a monomorphism and η|M = 0, the right square of the diagram tells us that ζ|K = 0. So, by
the commutativity of the left square, ξ|E = 0. Hence ξ ∈ I(GW ).

If H∗(G) is finitely generated, V can be chosen such that H∗(G) = Im (ϕV )∗. It follows from what
we just proved that I(G) ⊂ (ϕW )∗(I(GW )). �

We can now deduce the profinite case of the following theorem of Quillen from the finite case, where
many fairly elementary proofs are now known.

Theorem 1 (Quillen [8]). I(G) ⊂ RG. In other words, every element of I(G) is nilpotent.

Proof. Straightforward from Proposition 2, by noting that I(GW ) ⊂ RGW
, by the finite case, as GW is

finite. �

This result also appears in [9].

Proposition 3. Suppose that there exist U ∈ U and a ∈ G \ U with ord(a) = p. Set b = ϕU (a) ∈ GU .
Then there exists ξ ∈ H+(GU ) satisfying:

(a) ξ|〈b〉 6= 0;
(b) ϕ∗U (ξ)|〈a〉 6= 0. In particular, ϕ∗U (ξ) is not nilpotent in H+(G).

Proof. By [7, Theorem 2.7], there exists ξ ∈ H+(GU ) such that ξ|〈b〉 is not nilpotent. From the commu-
tative diagram

H∗(GU )
ϕ∗

U−−−−→ H∗(G)

Res

y yRes

H∗(〈b〉) −−−−−−→
(ϕU |〈a〉)∗

H∗(〈a〉)

,

since H∗(〈b〉)
(ϕU |〈a〉)

∗

→ H∗(〈a〉) is an isomorphism, it follows that ϕ∗U (ξ)|〈a〉 is not nilpotent. The propo-
sition follows. �

Theorem 2. A pro-p group A is torsion-free if and only if H+(A) ⊂ RA.

Proof. If A is not torsion-free, it follows from Proposition 3 that H+(A) contains a non-nilpotent element.
If A is torsion-free, then I(G) = H+(A); hence, by Theorem 1, any element of H+(A) is nilpotent. �
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Corollary 1. (i) A subgroup A of G is torsion-free if and only Im (H+(G) Res→ H+(A)) ⊂ RA;
(ii) If H∗(G)/RG is finitely generated, then G contains an open, normal, torsion-free subgroup U .

Proof. (i) If A is torsion-free, it follows from Theorem 2 that H+(A) consists of nilpotent elements; hence
any element of Im (H+(G) Res→ H+(A)) is nilpotent. Conversely, suppose that A contains an element a
of order p. By Proposition 3, there exists ζ ∈ H+(G) such that ζ|〈a〉, hence ζ|A, is not nilpotent.
(ii) Suppose that H∗(G)/RG is finitely generated. Since H∗(G) = lim

−→
H∗(GV ), there exists U ∈ U such

that H∗(GU )/RGU

(ϕU )∗→ H∗(G)/RG is surjective. Hence Im (H+(G) Res→ H+(U)) ⊂ RU . By (i), U is
torsion-free.

The corollary follows. �

Remark 1. The following example shows that the converse of Corollary 1(ii) does not hold. For every
n ∈ N, define An to be the procyclic group Z2 generated by en. Set A = ⊕̂nAn and let 〈a〉 ∼= Z/2 act
on A by aen = e−1

n . Define G = A o Z/2. For every n, 〈ena〉 ∼= Z/2 and 〈ena〉 is not conjugate with
〈ema〉 if m 6= n. Hence there are infinitely many conjugacy classes of elementary abelian subgroups of
G. According to Theorem 3 below, H∗(G)/RG is not finitely generated, although A is open, normal and
torsion-free in G.

We will give a necessary and sufficient condition for H∗(G) to be finitely generated as a ring. First we
prepare.

Lemma 1. Suppose that H∗(G) is finitely generated and M is a finite FpG-module. Then H∗(G,M) is
noetherian over H∗(G).

Proof. We prove by induction on n = dimFp
M . Suppose that the lemma holds for n − 1. Consider the

exact sequence of FpG-modules

0→ Fp
f→M

g→ N → 0

with N = M/f(Fp). We then have the corresponding long exact sequence of cohomology

. . .H∗−1(G,N) δ∗→ H∗(G)
f∗→ H∗(G,M)

g∗→ H∗(G,N)→ . . . .

By the inductive assumption, H∗(G,N) is noetherian over H∗(G), hence so is Im g∗. Pick elements
ξ1, . . . , ξm of H∗(G,M) so that {g∗(ξ1), . . . , g∗(ξm)} is a set of generators of Im g∗. It follows that
H∗(G,M) is generated by ξ1, . . . , ξm, as a module over Im f∗. Hence H∗(G,M) is noetherian over
H∗(G). �

Corollary 2. The following are equivalent:
(a) H∗(G) is finitely generated;
(b) G contains an open normal, torsion-free subgroup U such that H∗(U) is finite;
(c) there exists an open subgroup K of G such that H∗(K) is finitely generated;
(d) H∗(K) is finitely generated, for any open subgroup K of G.

Proof. The implication (b)⇒ (a) was proved by Quillen ([7, Proposition 13.5]) using a spectral sequence
argument. It is clear that (d) ⇒ (c) and (d) ⇒ (a). Suppose that H∗(G) is finitely generated and K is
open in G. By the Eckmann-Shapiro lemma, H∗(K) = H∗(G,M) with M = HomK(FpG,Fp)). Since
M is noetherian as a Fp-module, H∗(K) is noetherian over H∗(G), by Lemma 1. As H∗(G) is finitely
generated, so is H∗(K). In particular, if U is given as in Corollary 1 (ii), then H∗(U) is finite dimensional,
as H+(U) ⊂ RU . We then have (a)⇒ (b) and (a)⇒ (d).

Finally, suppose that K is open in G and H∗(K) is finitely generated. It follows that K contains an
open, normal, torsion-free subgroup U such that H∗(U) is finite. As U is also open in G, U contains
an open, normal subgroup V of G. Since V is torsion-free and open in U , H∗(V ) is finite. So H∗(G) is
finitely generated. The implication (c)⇒ (a) is then proved. �

Remark 2. In [7], it was proved that, if H∗(G) is finitely generated, then G has only finitely many
conjugacy classes of elementary abelian pro-p subgroups. However the converse does not hold: the group
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A given above has only one elementary abelian subgroup, which is the one of rank 0, while H∗(A) is an
exterior algebra with an infinite number of generators of degree 1, hence is not finitely generated.

From now on, fix F a set of representatives of conjugacy classes of elementary abelian pro-p subgroups
of G. We now give a cohomological criterion for F to be finite, as follows.

Theorem 3. The following are equivalent:
(a) There exists an open normal subgroup A of G such that EA 6= FA, for E 6= F in F ;
(b) H∗(G)/RG is finitely generated (as a ring);
(c) F is finite.

Proof. (a)⇒ (c): Let S be the set of subgroups of GA. The map f : F → S, E 7→ EA/A is then injective.
As f maps F injectively into the finite set S, F is finite.

The implication (c)⇒ (a) is clear. We now prove (b)⇒ (c). Suppose thatH∗(G)/RG is finitely generated.
Let U be the open, normal, torsion-free subgroup of G as given in Corollary 1(ii). It follows from the

proof of the corollary that, for every V ≤ U , V is torsion-free and H∗(GV )/RGV

(ϕV )∗→ H∗(G)/RG is
surjective.

LetM be a set of representatives of conjugacy classes of maximal elementary abelian pro-p subgroups
of G and let E,F be two different elements of M. Since U is torsion-free, it follows that ϕV maps
E (resp. F ) isomorphically to ϕV (E) (resp. ϕV (F )), for every V ≤ U . Furthermore, as E 6= F ,
there exists W ≤ U such that each of ϕW (E), ϕW (F ) is not conjugate (in GW ) to any subgroup of
the other. According to [7, Theorem 2.7], there exist ξ, η ∈ H∗(GW ) such that ξ|ϕW (E), η|ϕW (F ) are
not nilpotent, and ξ|ϕW (F ) = 0, η|ϕW (E) = 0. Set ξ′ = (ϕW )∗(ξ), η′ = (ϕW )∗(η). It follows that
ξ′|E , η′|F are not nilpotent, and ξ′|F = 0, η′|E = 0; in particular, ξ′ and η′ are not nilpotent. Since

H∗(GU )/RGU

(ϕU )∗→ H∗(G)/RG is surjective, there exist ζ, θ ∈ H∗(GU ) such that ζ|ϕU (E), θ|ϕU (F ) are not
nilpotent, and ζ|ϕU (F ) = 0, θ|ϕU (E) = 0. Also, by [7, Theorem 2.7], it follows that each of ϕU (E), ϕU (F )
is not conjugate to any subgroup of the other; in particular, ϕU (E) 6= ϕU (F ). So ψU mapsM injectively
into EU . Hence M is finite, and so is F .

Finally, let us prove (c) ⇒ (b). Suppose that F is finite. It follows that there exists T ∈ U such
that, for every E ∈ E , ϕT |E is an isomorphism, and ψT maps F injectively into ET . For every E ∈ F ,
the restriction map ResGT

ϕT (E) induces an action of H(GT ) on H∗(ϕT (E)), hence on H∗(E); furthermore,
by [4, Corollary 7.4.7], H∗(E) is a finitely generated H(GT )-module. Besides, the inflation (ϕT )∗ also
induces an action of H(GT ) on H∗(G) so that ResG

E is a H(GT )-homomorphism, for every E ∈ F .
Set J =

∏
E∈F H

∗(E). Since F is finite, J is a finitely generated H(GT )-module. As H∗(G)/I(G) is
isomorphic to a submodule of J, it is also a finitely generated H(GT )-module. Furthermore, I(G) ⊂ RG

implies that H∗(G)/RG is, in turn, a finitely generated H(GT )-module. Since H(GT ) is a finitely
generated algebra, so is H∗(G)/RG. �

It has been pointed out to us by Henn that such a result can also be deduced from material in [6].

Let E be the category with objects the elementary abelian pro-p subgroups of G and with morphisms
from A to B defined to be the homomorphisms θ : A → B of the form θa = gag−1 for some g ∈ G. Set
L = lim

←−
E∈E

H(E). It is clear that the projection map

∏
E∈E

H∗(E)→ J =
∏

E∈F
H∗(E)

induces a monomorphism, between H(G)-modules, from L to J. From the proof of the above theorem, J
is finitely generated over H(G). We then have

Proposition 4. If F is finite, then L is finitely generated over H(G). �

According to [8, Proposition 13.4], if F is finite, the map

H(G) ResG

→ L

is an F -isomorphism. In other words, given x ∈ I(G) and y ∈ L, there exists an integer n = nx,y such that
xn = 0 and ypn ∈ Im ResG. We now give a sufficient condition for ResG to be a uniform F -isomorphism
(i.e., the integer n can be chosen independently of x and y).
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Theorem 4. If H∗(G) is finitely generated, then ResG is a uniform F -isomorphism.

Proof. Suppose that H∗(G) is finitely generated. F is then finite and the map H(G) ResG

→ L is an F -
isomorphism. By Proposition 4, L is finitely generated over H(G). So there exists an integer r such that
ypr ∈ Im ResG, for every y ∈ L.

By Proposition 2, there exists U ∈ U such that I(G) ⊂ (ϕU )∗(I(GU )). As GU is finite, there exists
an integer s such that xs = 0, for every x ∈ I(G). The theorem is then proved, by setting n = nx,y =
max(r, s). �

2. Pro-p groups and finite p-subgroups

Let G be an infinite pro-p group. The purpose of this section is to prove the following

Theorem 5. If H∗(G) is finitely generated, then G has only finitely many conjugacy classes of finite
p-subgroups.

An analogous result is known for discrete groups of finite virtual cohomological dimension over p (see
[1], 13.2) and for analytic pro-p groups (where the hypothesis is vacuous, see [2]).

Our proof depends on some deep results on unstable algebras over the Steenrod algebra.

We will need:

Lemma 2. If H∗(G) is finitely generated and C is a finite central subgroup of G, then H∗(G/C) is
finitely generated.

Proof. Without loss of generality, we may suppose that C is of order p. Write K = G/C and let
z ∈ H2(K) be the cohomology class classifying the central extension

1→ C → G→ K → 1.

There exists then an open, normal subgroup L of K such that ResK
L (z) = 0. Therefore the preimage H

of L in G is isomorphic to C × L. In other words, L can be considered as an open subgroup of G. By
Corollary 2, H∗(L), and so H∗(K), are finitely generated. �

For every subgroup P of G, denote by NG(P ) (resp. CG(P )) the normalizer (resp. centralizer) of P
in G. We have

Lemma 3. If P is a subgroup of G of order p, then:
(i) NG(P ) = CG(P );
(ii) H∗(CG(P )) and H∗(CG(P )/P ) are finitely generated, provided that so is H∗(G).

Proof. (i) follows from the fact that NG(P )/CG(P ) is embedded into Aut(P ) which is of order p− 1.

(ii) By Lemma 2, we need only prove that H∗(CG(P )) is finitely generated. By Corollary 2, there exists
U open, normal, torsion-free in G. Set K = 〈U,P 〉. K is then of p-rank 1 (i.e. every elementary abelian
subgroup of K is of rank at most 1), open in G and has finitely generated cohomology, by Corollary 2.
Furthermore, CK(P ) is open in CG(P ). By Corollary 2, it suffices to prove that H∗(CK(P )) is finitely
generated. According to the theory in [3] (see also [7, Corollary 1.7]) the unstable algebra TV H∗(G) is
noetherian and also TV H∗(G) =

∏
(ρ)H

∗(CK(imρ)), where the product is taken over conjugacy classes
of homomorphisms ρ : Z/p→ K. It follows that H∗(CK(P )) is finitely generated. �

Proof of Theorem 5. As H∗(G) is finitely generated, it follows from Corollary 2 that there exists an open
normal, torsion-free subgroup U of G. Define

nG = min{n||G/U | = pn for some open, normal, torsion-free subgroup U of G}.

We argue by induction on nG. If nG = 1, the conclusion follows, as every finite subgroup of G is
elementary abelian of rank 1. Suppose that the theorem holds if nG < m.
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Assume that nG = m. It is known that the number of conjugacy classes of elementary abelian p-
subgroups of rank 1 of G is finite. Let {C1, . . . , Ck} be a set of representatives of such conjugacy classes.
It is clear that, for any finite p-subgroup P of G, there exist g ∈ G and i such that P g contains Ci

as a central subgroup. Let Ni be the set of finite subgroups of G containing Ci as a central subgroup,
1 ≤ i ≤ k. It is then sufficient to prove that the number of conjugacy classes in Ni is finite, 1 ≤ i ≤ k.

Fix such an i. Note that Ni coincides with the set of finite subgroups of K = CG(Ci) containing
Ci, hence is in 1 − 1 correspondence with the set of finite subgroups of H = CG(Ci)/Ci. Therefore we
need only prove that H has many finitely conjugacy classes of finite subgroups. Let U be open, normal,
torsion-free in G with |G/U | = pnG and set V = U ∩K. V is then open, normal, torsion-free in K and
|K/V | ≤ |G/U | = pnG . So nK ≤ nG. As nH = nK − 1 < nG, it follows from the inductive hypothesis
that H has many finitely conjugacy classes of finite subgroups. The theorem is proved. �
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