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Abstract. Draft, 28th September 2006. An important tool in the analysis of discrete
groups of finite virtual cohomological dimension is the existence of a finite dimensional
contractible CW-complex on which the group acts with finite stabilizers. We develop a
purely algebraic analogue for profinite groups.

This enables us to reveal the connection between finiteness conditions on the coho-
mology of the group and those on the normalizers of the finite p-subgroups.

1. Introduction

The main aim of this paper is to develop the cohomology theory of profinite groups
along the lines of that done for discrete groups, as in the book of Brown [6] for example.
Some of this was addressed by the author and Weigel in [31], but here we are particularly
interested in constructing an algebraic analogue of a finite dimensional contractible space
on which the group acts with finite stabilizers and in developing its consequences. The
torsion free case was considered by Serre [26].

We start with a review of the basic module theory behind the cohomology of profinite
groups. This originated in the work of Brumer [7], and is well explained in the books of
Ribes and Zalesskii [22] and of Wilson [33], but we collect together the main properties that
we will use and describe them from our point of view. This part might be of independent
interest. We devote relatively little space to basic homological algebra, since this is a
routine adaptation of the methods used in the discrete case once the module theory is
understood.

We pay particular attention to permutation modules and the Brauer quotient, because
this allows us to utilize some results of Swan on the cohomology of fixed point sets. This
enables us to formulate precisely the complexes we want and their properties. We then
define the Tate-Farrell cohomology for a profinite group of finite virtual cohomological
dimension and use the complexes to develop its properties.

There are applications to questions about the finiteness of the number of conjugacy
classes of finite subgroups and to the local cohomology of the cohomology of the group.

We wish to thank the referee for his patience and advice.

2. Background

2.1. Ambient ring. Let R be a commutative local ring with maximal ideal m and finite
residue class field k = R/m of characteristic p. We assume that dimk m/m2 <∞ and that
R is complete, i.e. R ∼= lim←−R/mr. We give the quotients R/mr the discrete topology and
then let R have the inverse limit topology.

The obvious example is when R is the p-adic integers, Ẑp, but we also allow such things
as R = k or power series rings k[[x1, . . . , xn]].
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2.2. Modules. We consider principally three categories of R-modules: the finite modules,
FR; the pseudocompact modules, CR, which are inverse limits of modules in FR; and the
discrete torsion modules, DR, which are direct limits of modules in FR. Both are given
their limit topologies: (the objects of CR are profinite, hence compact and the objects
of DR are discrete). All morphisms are supposed to be R-linear and continuous and
the set of all morphisms is denoted by HomR. Both CR and DR are abelian categories
in which the notions of kernel and cokernel are compatible with the underlying abelian
group structure, and CR has exact inverse limits and DR has exact direct limits. (All
limits will be over directed systems, although we do not assume that all the maps are
epimorphisms or monomorphisms.) We will refer to modules in CR and DR as compact
and discrete respectively.

It is possible to allow k to be infinite if we are prepared to deal with pseudo-compact
modules as in [7].

Let T ′ be the injective hull of k as an (abstract) R-module and let T be its torsion
submodule, i.e. the maximal submodule in DR. Equivalently T = Hom(R, Q/Z). For

example, if R = k then T = k, if R = Ẑp then T = Z/p∞ = p− torsion in Q/Z.
The categories CR and DR are dual by HomR(−, T ); this is an instance of Pontrya-

gin duality. We will denote HomR(A, T ) by A∗. Thus results for one category can be
translated into results for the other. ([7] 2.3, [22], [14].)

It is sometimes also convenient to consider the category ER of modules which are inverse
limits of modules in DR. This contains both CR and DR as full subcategories and, in
particular, if R = Ẑp then ER contains Q̂p, since it is the inverse limit of the system

· · · p→ Z/p∞
p→ Z/p∞.

We can, of course, consider continuous morphisms from an object of one category of
R-modules to an object of another. If A ∈ CR and B ∈ ER then HomR(A, B) is naturally
an object of ER. It is in DR if also B ∈ DR and in CR if B ∈ CR and A is finitely
(topologically) generated.

In particular, it makes sense to claim that HomR(A, B) ∼= HomR(B∗, A∗), A ∈ CR, B ∈
DR, and this is proved by taking the limit of the finite case.

2.3. Operations. On DR we have the usual direct sum ⊕. The dual of ⊕ on CR is just
the product Π. Of course Π is the same as the usual ⊕ when we are only taking the
product of a finite number of modules, and in this case we will often write ⊕.

For A, Ai, Ci ∈ CR and B, Bi ∈ DR we have ([22] 5.1.4):

HomR(lim←−Ai, B) ∼= lim−→HomR(Ai, B),

HomR(A, lim−→Bi) ∼= lim−→HomR(A, Bi),

HomR(A, lim←−Ci) ∼= lim←−HomR(A, Ci),

and so

HomR(ΠAi, B) ∼= ⊕HomR(Ai, B),

HomR(A,⊕Bi) ∼= ⊕HomR(A, Bi),

HomR(A, ΠCi) ∼= Π HomR(A, Ci).
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On FR we have the usual tensor product ⊗R. A sort of tensor product ⊗̂R can be defined
on CR as follows. If A = lim←−Ai and B = lim←−Bj with Ai, Bj ∈ FR then A⊗̂RB =
lim←−(Ai ⊗R Bj). ([18, 7])

The product ⊗̂R is symmetric, associative and commutes with inverse limits, in partic-
ular products. It is the ordinary tensor product if one of A or B is finitely generated.

We define another sort of product ⊗̌R on DR as the dual of ⊗̂R, so A⊗̌RB ∼= (A∗⊗̂RB∗)∗

for A, B ∈ DR. Equivalently, A⊗̌RB ∼= HomR(A∗, B). This product commutes with direct
limits.

This is not the usual tensor product, since Z/p∞ ⊗Ẑp
Z/p∞ = 0 but Z/p∞⊗̌Ẑp

Z/p∞ ∼=
Z/p∞.
CR satisfies a form of Nakayama’s Lemma, that if U ≤ V is closed and U + mV = V

then U = V . The dual statement also holds ([7] 1.4). Notice that U does not need to be
topologically finitely generated.

For any D ∈ DR, soc D = ⊕Ik for some indexing set I and hence the injective hull of
D is ⊕IT . By duality, the projective cover of C ∈ CR is the same as the projective cover
of C/ rad C ∼= ΠIk, which is ΠIR.

As a consequence, every projective in CR is of the form ΠIR and there are enough
projectives, and dually for DR.

However, ΠIẐp is not always projective in the category of abstract Ẑp-modules; see
[16].

2.4. Modules for groups. If G is a profinite group then we can consider the categories
consisting of objects in one of the categories above endowed with a continuous action of
G, and we denote these by CR(G), DR(G) and ER(G). The morphisms will be denoted by
HomG. All the constructions and identities above are natural, hence equivariant, and so
yield versions for these new categories. CR(G) and DR(G) are still abelian categories and
Pontryagin dual, but of course we take the contragredient module to ensure that all our
modules are left G-modules.

Every object in CR(G) is, in fact, an inverse limit of objects in FR(G), and similarly
for DR(G) and ER(G) ([22] 5.3.3, [18] II 2.2.6). They both satisfy a version of the Krull-
Schmidt property, that if M ∈ CR(G) is a product of indecomposable modules (or N ∈
DR(G) is a sum of indecomposable modules) with local endomorphism rings then this
decomposition is essentially unique ([14]).

Recall that being indecomposable is equivalent to having a local endomorphism ring
for finitely generated R[F ]-modules when F is a finite group. For M ∈ CR(G) and N
an open normal subgroup of G let MN denote the module of coinvariants, i.e. the largest
continuous quotient on which N acts trivially; it is a G/N -module. Then EndCR(G)(M) ∼=
lim←−EndR[G/N ](MN). Suppose that M is topologically finitely generated and, for each open
normal subgroup N < G, there is an open normal subgroup N ′ such that N ′ < N and
MN ′ is indecomposable as a G/N ′-module. Then M is an indecomposable module with
local endomorphism ring.

Suppose that G = lim←−G/Ni for some system Ni of open subgroups. Then we define
the complete group algebra R[[G]] ∈ CR by R[[G]] = lim←−R[G/Ni]. An object of ER has
a continuous action of G if and only if it has a continuous action of R[[G]]. This implies
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that, as a left module over itself, R[[G]] is projective in CR(G). The dual of R[[G]] is
F (G), the functions on G (see §3 for more details).

Again there is a form of Nakayama’s Lemma. We let rad R[[G]] denote the intersection
of the maximal two-sided ideals of R[[G]]. Then if V ∈ CR(G) and U ≤ V is closed such
that U + (rad R[[G]])V = V then U = V ([7] 1.4).

We can define A⊗̂R[[G]]B for A, B ∈ CR(G) either as lim←−(Ai ⊗RG Bj), where A = lim←−Ai

and B = lim←−Bj with Ai, Bj ∈ FR(G), or simply as the coinvariants of A⊗̂RB under

the diagonal action of G. Similarly we can define C⊗̌G
D for C, D ∈ DR(G) to be the

invariants of C⊗̌RD.
Induction on CR(G) and coinduction onDR(G) are defined by IndG

H M = R[[G]]⊗̂R[[H]]M

and CoindG
H N = F (G)⊗̌H

N . (The latter is called induced by Serre [27].) They are exact,
dual to each other, and satisfy the customary adjointness properties ([22] 6.10):

HomG(IndG
H M, N) ∼= HomH(M, ResG

H N) M ∈ CR(H), N ∈ CR(G) orDR(G)

HomG(M, CoindG
H N) ∼= HomG(ResG

H M, N) M ∈ CR(G) orDR(G), N ∈ DR(H).

As a consequence, restriction to a subgroup preserves projectives in CR(G) and injectives
in DR(G). Also Ind preserves projectives and Coind preserves injectives. This makes it
easy to show that CR(G) has enough projectives and DR(G) has enough injectives (see
also 2.5 below).

There are the usual formulas IndG
H ResG

H M ∼= R[[G/H]]⊗̂RM and its dual CoindG
H ResG

H M ∼=
F (G/H)⊗̌RM .

2.5. Projectives. The following are equivalent for an object P of CR(G) ([7] 2.2, 3.6):

• (i) P is projective in CR(G),
• (ii) HomG(P,−) is exact on DR(G),
• (iii) HomG(P,−) is exact on FR(G).

The dual formulation is also true. From the formulas in 2.3, we see that projectives are
preserved under products.

Since ER(G) is not abelian, the question of whether HomG(P,−) is exact is more in-
volved, even when P is projective in CR(G). First note that, since P is a summand of
a module induced from the trivial subgroup, it is enough to consider the case without

group action. Let A
i→ B

j→ C be a sequence in ER that is short exact as a sequence of
abelian groups. If we want it to remain exact after applying HomR(P,−) then we need i
to induce a homeomorphism between A and its image under the subspace topology. This
is sufficient if P is finitely generated. Otherwise we also need every compact submodule
of C to be the image of a compact submodule in B, which is guaranteed under several
general conditions, e.g. A compact, the sequence split over R, or R a discrete valuation
ring and B a finite dimensional vector space over the quotient field.

A useful result is that if A ∈ CR(G) and A ∼= lim←−Ai for Ai ∈ CR(G) such that for each
Ai there is an open normal subgroup Ni < G which acts trivially on Ai and such that Ai

is projective over G/Ni, then A is projective. ([7] 3.3, but surjections are not necessary
everywhere: compare A3 there with 2.3.)

Each module D ∈ DR(G) has an injective hull ID ∈ DR(G). This can be seen as
follows [8]. Let I be the injective hull of D as an abstract RG-module, and let ID be its
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smallest submodule in DR(G), i.e. the set of elements that are m-torsion and such that
the stabilizer in G is open. It is straightforward to see that this has the correct properties.
Taking injective hulls commutes with ⊕, by 2.3.

Dually, every C ∈ CR(G) has a projective cover PC ∈ CR(G).
Let S ∈ CR(G) be simple and hence finite; let PS be its projective cover. From the

definition of projective cover it follows that the non-isomorphisms in EndCR(G)(PS) form
an ideal, so EndCR(G)(PS) is local. Let N be a normal open subgroup of G that acts
trivially on S and let PS,N be the be the module of coinvariants, as in 2.4. Then PS,N is
projective over R[G/N ] and there is still a surjection PS,N → S. But the natural map
EndCR(G)(PS) → EndCR(G/N)(PS,N) is surjective, so EndCR(G/N)(PS,N) is local and PS,N is
the projective cover of S as an R[G/N ]-module.

By a similar argument, each projective in Ck(G) is the reduction modulo m of one in
CR(G).

The socle of any D ∈ DR(G) is of the form ⊕i∈ISi, where the Si are simple modules.
Thus ID

∼= ⊕i∈IISi
. Dually, for C ∈ CR(G) we have PC

∼=
∏

i∈I PSi
, where C/ rad(C) ∼=∏

i∈I Si. This expression is unique by 2.4 and every projective has this form.

2.6. Cohomology. We define Ext∗G(A, B) on CR(G) × DR(G) in the usual way, using
either a projective resolution of A or an injective resolution of B. It naturally takes
values in DR, is balanced and has long exact sequences in either variable. We will write
ExtR[[G]] if we need to emphasize the role of R. This Ext∗G is continuous in the sense that

Ext∗G(lim←−Ai, B) ∼= lim−→Ext∗G(Ai, B)

Ext∗G(A, lim−→Bi) ∼= lim−→Ext∗G(A, Bi),

(see [7] 3.4, [22] 6.5.3). In fact, Ext∗G(A, B) can be defined on DR(G)×DR(G), by using
an injective resolution of B, or on CR(G)× CR(G), by using a projective resolution of A.
In these cases it just takes values in abelian groups. Slightly more generally, Ext∗G(A, B)
can even be defined on CR(G) × ER(G), by using a projective resolution of A. Again it
just takes values in abelian groups, although it will take values in CR if A is of type FP∞
in CR(G) and B ∈ CR(G). If these conditions hold then we also have by [31] 3.7.2 that

Ext∗G(A, lim←−Ci) ∼= lim←−Ext∗G(A, Ci).

We obtain long exact sequences in the second variable if the conditions of 2.5 are satisfied,
e.g. if A is of type FP∞ or the terms in the second variable are compact. We can define
restriction maps from Ext∗G to Ext∗H in the usual way for any closed subgroup H, using
the fact that projective modules remain projective after restriction of the group (2.4).

There is also a derived functor TorG
∗ defined on CR(G) × CR(G) and taking values in

CR. By duality, TorG
r (A, B)∗ ∼= Extr

G(A, B∗).
The cohomology of the group is defined to be H∗(G, M) = Ext∗G(R,M). There are the

usual bar resolutions, which can be used to show that if M ∈ DR(G) then H∗(G, M) ∼=
lim−→H∗(G/N,MN) as N runs through the open normal subgroups of G and the maps are
inflations ([22] 6.5.6).

Cup products can be defined in the usual way, by taking the tensor product of the
projective resolutions.
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The usual Eckmann-Shapiro isomorphisms hold:

Ext∗G(IndG
H M, N) ∼= Ext∗H(M, ResG

H N) M ∈ CR(H), N ∈ CR(G) orDR(G)

Ext∗G(M, CoindG
H N) ∼= Ext∗H(ResG

H M, N) M ∈ CR(G) orDR(G), N ∈ DR(H).

There is a Lyndon-Hochschild-Serre spectral sequence Hp(G/H, Hq(H, M))⇒ Hp+q(G, M)
for any closed normal subgroup H and M ∈ DR(G) ([22] 7.2.4). We can also allow
M ∈ CR(G) if G is of type FP∞ and H is open ([31] 4.2.6).

3. Permutation Modules

Let X be a profinite space and M a discrete torsion R-module. Define F (X, M) to be
the R-module of continuous functions X →M . We write F (X) for F (X, T ).

If G is a profinite group that acts continuously on X then X can, in fact, be expressed
as the inverse limit of finite G-sets ([22] 5.6.4).

If G also acts continuously on M then G acts continuously on the discrete torsion
module F (X, M) by (gf)(x) = gf(g−1x), g ∈ G, f ∈ F (X, M), x ∈ X.

Definition 3.1. A discrete permutation G-module is an F (X) as above. An R-permutation
module is a summand of a permutation module. A compact (R)-permutation module is
the Pontryagin dual of a discrete one and we write R[[X]] = F (X)∗.

If H ≤ G also acts on the right of X and M is an H-module, then F (X, M) is a
G×H-module by ((g, h)f)(x) = hf(g−1xh) g ∈ G, h ∈ H, f ∈ F (X, M), x ∈ X.

If X and M are finite then F (X, M) ∼= F (X)⊗̌RM , where H has the diagonal action
and G acts trivially on M . By taking direct limits we see that in general F (X, M) ∼=
F (X)⊗̌RM .

If we take X = G in the above, with the usual left and right actions by multiplication,
then the submodule of H-fixed points F (G, M)1×H is isomorphic to the coinduced G-
module CoindG

H M .
Note that if H ≤ G and X is an H-set then F (G×H X) ∼= CoindG

H F (X).
We only ever consider closed subgroups of G, so the notation H < G will imply that H

is a closed subgroup. We write H <o G to mean that H is an open subgroup of G (so also
closed). Similarly H Co G means that H is open and normal in G. If M is a G-module
and H <o G then we define trG

H : MH → MG by trG
H(m) =

∑
g∈G/H gm, m ∈ M .

Dually, we let MG denote the module of coinvariants and define corG
H : MG → MH by

corG
H(m) =

∑
g∈H\G gm, m ∈M .

Definition 3.2. (Brauer Construction) If M is a (topological) G-module and P ≤ G,

define M [P ] = k ⊗ (MP /
∑

Q�oP trP
Q MQ), where the summation is over all proper open

subgroups of P . Thus M [P ] is a module for NG(P )/P over k. Normally we will have
M ∈ CR(G), in which case M [P ] ∈ Ck(NG(P )/P ). Sometimes M [P ] is referred to as the
Brauer quotient.

Dually, for N ∈ DR(G) we set N[P ] = k⊗̌(∩Q�oP ker(corP
Q : MP →MQ)) ∈ Dk(NG(P )/P ).

In all cases the definition extends to morphisms in the obvious way, yielding a functor.

Remark. (1) Our definition for CR(G) is not quite the usual one because we reduce modulo
m. As a consequence M [1] = k ⊗R M .
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(2) The two definitions will not always agree on FR(G). We will apply the Brauer con-
struction only to R-permutation modules, where the problem does not arise, in view of
3.5 and 3.6.

Lemma 3.3. Let G be a profinite group and H a closed subgroup; all limits are over
G-equivariant directed systems.

(1) (lim−→Mi)[H]
∼= lim−→(Mi[H]) and (lim−→Mi)

[H] ∼= lim−→(M
[H]
i ), where the Mi are discrete.

(2) (lim←−Mi)
[H] ∼= lim←−(M

[H]
i ), where the Mi are compact.

(3) The Brauer construction commutes with products Π for compact modules and with
direct sums ⊕ for discrete modules.

(4) (M∗)[H]
∼= (M [H])∗, where M ∈ CR(G) and ∗ denotes the Pontryagin dual.

Proof. (1) and (2) follow easily from the definitions and (3) is a special case of them. (4)
also follows from the definitions. �

The importance of the Brauer construction is that it allows us to recover F (XP ) from
F (X), as is well known in the finite case (see e.g. [5]).

Lemma 3.4. If X is a profinite space on which G acts continuously and P ≤ G is a
pro-p subgroup then F (X)[P ]

∼= k⊗̌RF (XP ) as discrete NG(P )/P -modules and, dually,

R[[X]][P ] ∼= k[[XP ]].

Proof. This is well known when X is finite, in which case the action of G factors through
that of a finite group. Let X = lim←−Xi. Then F (XP ) ∼= F (lim←−XP

i ) ∼= lim−→F (XP
i ) ∼=

lim−→(F (Xi)[P ]) ∼= (lim−→F (Xi))[P ]
∼= F (X)[P ], by 3.3 (1). �

Lemma 3.5. For an R-permutation module M over a pro-p group P and QCP we have
(M [Q])[P/Q] ∼= M [P ] ∼= (k ⊗R M)[P ] if M is compact and (M[Q])[P/Q]

∼= M[P ]
∼= (k⊗̌RM)[P ]

if M is discrete.

Proof. This follows from 3.4. �

Lemma 3.6. If P is a finite p-group and M ∈ Dk(P ) is a k-permutation module then
there is a natural isomorphism M [P ] ∼= M[P ], i.e. the two sides are isomorphic as functors
on the full subcategory of k-permutation modules.

Proof. Let us write [m]P to denote the class of m ∈ M in MP . We claim that the
assignment m 7→ [m]P for m ∈MP induces a map φ : M [P ] →M[P ].

First we need to check that [m]P is in the kernel of corP
Q for m ∈MP . But corP

Q([m]P ) =
[
∑

g∈Q\P gm]Q = [|P/Q|m]Q = 0.

Second we need to check that [trP
Q m]P = 0 for m ∈ MQ. But again the left hand side

is just |P/Q|[m]P = 0.
It is easy to check that φ is an isomorphism when M = F (P/Q, k), hence also when

M = F (X, k), where X is finite. The case of general M follows by taking direct limits.
Finally, the naturality gives the result for k-permutation modules. �

Lemma 3.7. If H, K < G and H is finite then F (G/H)[K] is isomorphic to some F (X, k),
where X is a profinite NG(K)-set with a finite number of orbits. The stabilizers are of
the form (NG(K) ∩ gH)/K for g ∈ G such that K ≤ gH.
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Proof. Notice that F (G/H)[K]
∼= k ⊗R F ((G/H)K) ∼= F ((G/H)K , k), and (G/H)K con-

sists of the cosets gH such that Kg ≤ H. Thus the stabilizers have the form claimed.
Also NG(K)\(G/H)K is finite because it is in bijection with the conjugacy classes of

subgroups of H whose members are conjugate to K in G, by the map NG(K)gH 7→
Kg. �

Lemma 3.8. Let G be an (abstract) group and suppose that we have subgroups H CG and
S ≤ G such that S ∩H = 1 and also P ≤ G/H. Let SH(P ) denote the set of subgroups
Q ≤ G such that Q ∩ H = 1 and QH/H = P ; H acts on this by conjugation. Then we
have

(G/HS)P ∼= qQ∈SH(P )/HNH(Q)\(G/S)Q.

Proof. Let ρ : G → G/H and σ : G/S → G/HS be the quotient maps. Let Y =
σ−1((G/HS)P ), so that (G/HS)P ∼= H\Y .

Notice that Y = {gS|P ≤ ρ(gS)}. We claim that Y = qSH(Q)(G/HS)Q; the result
follows.

First we show that the (G/S)Q are disjoint for different Q. If gS ∈ (G/S)Q1 ∩ (G/S)G2

then gS ∈ (G/S)〈Q1,Q2〉 and so 〈Q1, Q2〉 ≤ gS. Now 〈Q1, Q2〉 ∩ H ≤ gS ∩ H = 1, so ρ
restricted to 〈Q1, Q2〉 is injective. But ρ(〈Q1, Q2〉) = P , so Q1 = Q2.

Now if gS ∈ (G/S)Q then Q ≤ gS, so P ≤ ρ(gS) and gS ∈ Y . Conversely, if gS ∈ Y
then let Q = (ρ |gS)−1(P ) and we find that gS ∈ (G/S)Q. �

Corollary 3.9. In the circumstances of the previous lemma, but with G profinite, H open
and P a p-group we have

F (G/HS)[P ]
∼=

⊕
Q∈SH(P )/H

(F (G/S)[Q])
NH(Q),

where the sum has only a finite number of non-zero terms.

Proof. This follows from 3.8 and 3.4. Note that, since H is open in G, both sides are
finite dimensional after applying k⊗̌. �

Lemma 3.10. If G acts continuously on the profinite set X and X is finitely generated
under this action then we can write X ∼=

∐n
i=1 G/Si for some finite collection of closed

subgroups Si. We have F (X) ∼= ⊕n
i=1F (G/Si).

Proof. Each orbit is both open and closed. �

We want to generalize the above observation.
Suppose that G acts continuously on X and that ∗ ∈ X is a fixed point. We say that

G acts freely on (X, ∗) if it acts freely on X \ {∗}.
If Y ⊆ X is closed, we define F (X, Y ) to be the kernel of restriction F (X) → F (Y ),

i.e, those functions that vanish on Y . Note that F (X, Y ) ∼= F (X/Y, ∗) (where ∗ denotes
the image of Y ). We write R[[X, Y ]] for the dual of F (X, Y ).

Lemma 3.11. If G acts freely on (X, ∗) then F (X, ∗) is injective as a discrete G-module,
hence isomorphic to a summand of a sum of F (G)’s. Dually, R[[X, ∗]] is projective as a
compact G-module and is isomorphic to a summand of a product of R[[G]]’s.
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Proof. (cf. [22] 5.6). This is well known in the case when X is finite. We will prove the
compact case.

First suppose that G is finite. Then, by [22] (5.6.4(c)), we know that (X, ∗) = lim←−(Xi, ∗)
for some system of finite G-sets Xi such that G acts freely on (Xi, ∗) . Then the result is
true by the result in 2.5 about an inverse limit of projectives.

For the general case, for each N Co G, G/N acts freely on (X/N, ∗) so, by the previous
paragraph, R[[X/N, ∗]] is projective over G/N . Now apply the result from 2.5 again.

For the last part, we saw in 2.5 that any projective cover is a product of PS’s, where S
is a simple and PS is its projective cover. But PS is a summand of R[[G]]. �

Lemma 3.12. If G acts freely on X then F (X) is injective and R[[X]] is projective.
Conversely any injective in DR(G) is a summand of some F (X) and any projective in
CR(G) is a summand of some R[[X]], where G acts freely on X.

Proof. (cf. [22] 5.7.1) The first part follows from 3.11 by adding a disjoint basepoint.
For the second part let I be injective inDR(G), so its dual I∗ is profinite. Notice that the

action map G×I∗ → I∗ induces an equivariant injection I ∼= (I∗)∗ ∼= F (I∗)→ F (G×I∗),
where G acts on G × I∗ by left multiplication on the first factor only. This map splits
because I is injective. �

For any two subgroups A, B of G, we write A ≥G B if some G-conjugate of B is a
subgroup of A. We write A >G B if B is conjugate to a proper subgroup of A. Since G
is compact we can not have A >G A.

Define:

X≥H = {x ∈ X| StabG(x) ≥ H}, X>H = {x ∈ X| StabG(x) > H},
X(≥H) = {x ∈ X| StabG(x) ≥G H}, X(>H) = {x ∈ X| StabG(x) >G H}.

Clearly X≥H = XH is closed. So is X(≥H), because it is the image of the map G×X≥H →
X, (g, x) 7→ gx.

Lemma 3.13. R is a continuous Ẑp-module and F (X,T ) ∼= F (X, Z/p∞)⊗̌Ẑp
T .

Proof. The first part is clear. By duality over Ẑp, T ∼= Z/p∞⊗̌Ẑp
T , thus the natural map

from right to left is an isomorphism if X is finite. The general case follows by taking the
inverse limit of the finite case. �

This means that when dealing with permutation modules we can usually assume that
R = Ẑp and k = Z/p.

Lemma 3.14. Let X be a profinite G-set and Y ⊆ X closed. Suppose that F (X, Y ) is a
summand of a sum of terms F (G/S), where only finitely many different S occur and each
S is finite and satisfies H1(S, R[[Y ]]) = 0. Then F (X) ∼= F (X, Y )⊕ F (Y ) in DR(G).

Proof. There is a short exact sequence F (X, Y )→ F (X)→ F (Y ); we need to show that
it splits in DR(G). The sequence is classified by an element of Ext1

G(F (Y ), F (X, Y )); we
show that this Ext-group is zero.

We can write F (X, Y ) as a summand of a finite sum of terms ⊕λ∈ΛS
F (G/S) for

some indexing sets ΛS. Thus Ext1
G(F (Y ), F (X, Y )) is a summand of a sum of terms
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Ext1
G(F (Y ),⊕λ∈ΛS

F (G/S)) ∼= Ext1
G(F (Y ),⊕λ∈ΛS

CoindG
S T ) ∼= Ext1

G(F (Y ), CoindG
RS ⊕λ∈ΛS

T ) ∼=
Ext1

S(F (Y ),⊕λ∈ΛS
T ) (see 2.6).

Since S is finite, Ext1
S agrees with with the Ext-group in the category of ordinary RS-

modules, which we denote by Ext1
RS−Mod. Also⊕λ∈ΛS

T is injective as an R-module (e.g. by
Baer’s Criterion [32] 2.3.1), so it is a summand of Πλ∈ΛS

T . Hence Ext1
RG(F (Y ), F (X, Y ))

is a summand of a sum of terms Ext1
S−Mod(F (Y ), Πλ∈ΛS

T ) ∼= Πλ∈ΛS
Ext1

S−Mod(F (Y ), T ) ∼=
Πλ∈ΛS

Ext1
S(F (Y ), T ).

By Pontryagin duality, Ext1
S(F (Y ), T ) is isomorphic to Ext1

S(R, R[[Y ]]) ∼= H1(S, R[[Y ]]),
which is zero, by hypothesis. �

Lemma 3.15. If G is finite and R is torsion free then for any profinite G-set Y we have
H1(G, R[[Y ]]) = 0.

Proof. Since G is finite we can certainly use 2.6 to see that if Y ∼= lim←−Yi then H1(G, R[[Y ]]) ∼=
H1(G, lim←−R[Yi]) ∼= lim←−H1(G, R[Yi]).

But Yi is a finite union of G-sets of the form G/H, so H1(G, R[Yi]) is a sum of terms of
the form H1(G, R[G/H]) ∼= H1(G, IndG

H R) ∼= H1(H, R) ∼= Hom(H, R), which is 0 because
R is torsion free. �

Corollary 3.16. Let X be a profinite G-set and Y ⊆ X closed. Suppose that F (X, Y ) is
a summand of a sum of terms F (G/S), where only finitely different S occur and each S
is finite. Then F (X) ∼= F (X,Y )⊕ F (Y ) in Dp(G).

Proof. By 3.13 we may assume that R is Ẑp. Now we can just combine 3.14 and 3.15. �

Now we suppose that the action of G on X has only a finite number of conjugacy classes
of stabilizers, with representatives S1, . . . , Sn. Then each X>Si

is closed, because it is the
intersection of X≥Si

with the union of the X(≥Sj) for which Sj >G Si; hence each X(>Si)

is also closed.

Lemma 3.17. For each i, F (X(≥Si), X(>Si)) is a summand of a sum of F (G/Si)’s.

Proof. The map (G ×NG(Si) X≥Si
)/(G ×NG(Si) X>Si

) → X(≥Si)/X(>Si) is a continuous bi-
jection of compact Hausdorff spaces, hence a homeomorphism. Thus F (X(≥Si), X(>Si))

∼=
F (G×NG(Si)X≥Si

, G×NG(Si)X>Si
) ∼= CoindG

NG(Si)
F (X≥Si

, X>Si
) ∼= CoindG

NG(Si)
F (X≥Si

/X>Si
, ∗).

We have already seen that F (X≥Si
/X>Si

, ∗) is a summand of a sum of F (NG(Si)/Si)’s
in 3.11. �

Lemma 3.18. Let X be a profinite G-set such that there are only finitely many conjugacy
classes of stabilizers and all the stabilizers are finite. Then F (X) ∼=

⊕n
i=1 F (X(≥Si), X(>Si)).

Proof. Use induction on the number of conjugacy classes of stabilizers that appear. The
result is trivial if this number is 0. Otherwise let S1, say, be minimal amongst these
stabilizers, and let Y =

⋃n
i=2 X(≥Si). Now the induction hypothesis shows that F (Y ) ∼=⊕n

i=2 F (X(≥Si), X(>Si)).
Since S1 is minimal, it follows that X(≥S1) is open in X, because its complement is the

union of the X(≥Si) where Si contains no conjugate of S1 as a subgroup. Thus F (X, Y ) ∼=
F (X(≥S1), X(>S1)). Now 3.17 shows that the hypotheses of 3.16 hold, completing the
proof. �
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Lemma 3.19. Discrete R-permutation modules are closed under ⊕, hence compact ones
are closed under Π.

Proof. We need to show that the sum of an arbitrary collection of discrete permutation
modules is an R-permutation module. Let {Xs|s ∈ S} be a set of profinite G-sets, so
Xs ∼= lim←−i∈Is

Xs
i , where the Xs

i are finite G-sets.

To each Is add an element 0s with the property that i > 0s for all i ∈ Is and call the
new directed set I0

s . Let Xs
0s

be a point ∗s; there is just one map Xs
i → Xs

0s
. We still

have that Xs ∼= lim←−i∈I0
s
Xs

i .

For each s ∈ S choose an element f(s) ∈ I0
s in such a way that for all but finitely

many s ∈ S we have f(s) = 0s. Consider the infinite sets Yf =
∐

s∈S Xs
f(s) for all possible

choices of f . These can be made into an inverse system using the obvious maps. Now, in
each Yf , identify all the points ∗s for different s to obtain Ȳf . This is consistent with the
maps, and the Ȳf form an inverse system of finite G-sets. Let Y = lim←− Ȳf .

Y has a fixed point ∗, and it is easy to check that F (Y, ∗) ∼=
⊕

s∈S F (Xs). Also
F (Y ) ∼= T ⊕ F (Y, ∗), because the inclusion ∗ → Y is split by Y → ∗. �

Definition 3.20. A strict discrete permutation module is a sum of discrete permutation
modules of the form F (G/H). A strict compact permutation module is a product of
compact permutation modules of the form R[[G/H]]. As usual, a strict R-permutation
module is a summand of a strict permutation module.

Notice that a strict permutation module is an R-permutation module by 3.19.

Corollary 3.21. If the action of G on X has only a finite number of conjugacy classes
of stabilizers and these stabilizers are finite then R[[X]] is a strict R-permutation module.
If G is finite then any R-permutation module is a strict R-permutation module.

Lemma 3.22. Any strict R-permutation module is a summand of a strict permutation
module on a set on which all the stabilizers are pro-p groups.

Proof. This is well known for finite groups. Because we are dealing with strict permutation
modules, it suffices to deal with the case of one orbit G/H. Let S ≤ H be a Sylow pro-p
subgroup. We want to show that the natural map s : R[[G/S]]→ R[[G/H]] splits.

For any open normal subgroup N Co G we know, from the finite case, that the quotient
map R[[G/H]] → R[G/NH] factors through the map R[G/NS] → R[G/NH]. Let LN

be the set of all such factorizations. Then LN is compact, since R[[G/H]] is finitely
generated, and the LN form an inverse system. Thus their inverse limit is non-empty, and
an element of it is our desired splitting. �

Lemma 3.23. Let U and V be compact R-permutation modules for a finite group G.
Then the reduction map HomR[G](U, V )→ Homk[G](k ⊗ U, k ⊗ V ) is onto.

Proof. By 3.21 we know that V is strict so, because of the way that Hom commutes
with products (2.3), we may assume that U = R[[X]] and V = R[G/H]. But now
HomR[G](R[[X]], R[G/H]) ∼= HomR[H](R[[X]], R), so we are reduced to considering the
map HomR[H](R[[X]], R) → Homk[H](k[[X]], k). But any map k[[X]] → k must factor
through k[Xi], where Xi is some finite quotient of X. But Xi is a finite union of or-
bits, so we can reduce to considering the reduction modulo m of HomR[H](R[H/K], R) ∼=
HomR[K](R,R), where our result is obvious. �
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Lemma 3.24. Let G be finite and M ∈ CR(G). Suppose that M is projective over R and
that M [P ] = 0 for all non-trivial p-subgroups P . Then M is projective.

Proof. It is easy to see, by induction on |P |, that Ĥ0(P, M) = 0. In particular, this is the
case for the Sylow p-subgroup S, so M [1] is projective over kS, by [6] VI 8.5 (see also [4]
2.8), hence M is projective over RG. �

Now we record some results of Bouc, in the form in which we will need them rather
than their most general form. These appeared in [3] for finitely generated modules and
[4] for infinitely generated modules.

Theorem 3.25. Let G be a finite group. If f : L→M is a morphism between two discrete
strict k-permutation kG-modules such that for every p-subgroup P ≤ G the induced map
L[P ] →M [P ] is surjective (resp. injective) then f is a split surjection (resp. split injection).

Proof. See [4] 1.3. �

Note that as long as L and M are k-permutation modules they are bound to be strict,
by 3.21, so this hypothesis is unnecessary.

Corollary 3.26. In the circumstances of the previous theorem we can make either one
of the following alterations.

(1) Each L[P ] →M[P ] is surjective/injective (instead of each L[P ] →M [P ]).
(2) L and M are compact k-permutation modules (rather than discrete).
(3) L and M are compact R-permutation modules and each L[P ] →M [P ] is surjective.

Then f is still split.

Proof. Part (1) follows from 3.6; part (2) is its dual.
For part (3) we reduce modulo m, using 3.5, and obtain a splitting s̄ there. By 3.23

we can lift s̄ to a map s : M → L. But sf is the identity modulo m, so it is surjective,
by Nakayama’s Lemma. It must split over R, so the kernel is a summand, hence 0,
by Nakayama’s Lemma again, so sf is an isomorphism. The splitting that we want is
(sf)−1s. �

Recall that a complex is called bounded if only a finite number of the modules are
non-zero.

Corollary 3.27. Let G be a finite group.

(1) Let C be a bounded below complex of compact R-permutation RG-modules such
that C [P ] is exact for every p-subgroup P of G (including the trivial one). Then C
is split exact.

(2) Let C be a bounded complex of compact R-permutation RG-modules. So for some
n ∈ Z we have Cr = 0 for r > n. Suppose that C [P ] is exact in degrees r < n
for every p-subgroup P of G. Let K be the kernel of Cn → Cn−1. Then K is
a summand of Cn, hence an R-permutation module, and the complex Cn/K →
Cn−1 → · · · is split exact. If, in addition, we assume that C [P ] is exact in degree
n for all non-trivial p-subgroups P then K is projective.
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(3) Let C be a bounded (resp. bounded below) complex of compact R-permutation RG-
modules such that C [P ] is exact for every non-trivial p-subgroup P of G. Then C
is homotopy equivalent to a bounded (resp. bounded below) complex of compact
projective RG-modules.

Proof. We prove (1) and (2) by induction on the length of the splitting, i.e. if we let
Zm denote the kernel of Cm → Cm−1 then we assume that for some m the sequence
Zm → Cm → Cm−1 → · · · is split and use induction on m. The assumption implies
that Zm is an R-permutation module. Since the complex is bounded below, the induction
starts.

But each complex · · · → C
[P ]
m+2 → C

[P ]
m+1 → Z

[P ]
m also satisfies the hypotheses of the

theorem, so, by 3.26, we have a splitting Zm → Cm+1, hence Zm+1 → Cm+1 → Cm → · · ·
is split.

In case (1) we take the union of the splittings for all m.
In case (2) we stop when m = n. The additional hypothesis implies that K is projective,

by 3.24.
For (3), let f : J → C be a projective resolution of C, i.e. J is a bounded below

complex of projectives and f is a quasi-isomorphism. Then our assumptions imply that
each f [P ] : J [P ] → C [P ] is also a quasi-isomorphism. Therefore cone(f) satisfies the
conditions of part (1), so cone(f) is split exact and thus f is a homotopy equivalence.

If C is bounded above, let n be such that Cr = 0 for r ≥ n. Then in degrees greater
than or equal to n, cone(f) is just J with a degree shift. In particular, Jn → Jn−1 is the
same as cone(f)n+1 → cone(f)n, so the kernel K is a summand of Jn and hence projective.

Now K → Jn → Jn−1 → · · · is also a projective cover of C, using the restriction of f
to C as the map. By the argument above, the map is a homotopy equivalence. �

Another approach to permutation modules is taken in [19].

4. Tate Hyper-Cohomology

Definition 4.1. If C is a complex of kG-modules and P ≤ G is a finite p-subgroup then
let q : CP → C [P ] be the quotient map. A base map s : C [P ] → CP is a map of complexes
of vector spaces such that the composite qs : C [P ] → C [P ] is homotopic to the identity .
We say that s is equivariant if it is a map of complexes of NG(P )/P -modules and qs ' Id
equivariantly.

Remark. If P is a finite p-group which acts admissibly on a CW-complex X (i.e. the
stabilizer of each cell fixes it pointwise) and C(X) is the CW-chain complex of X over k
then the inclusion XP ⊆ X induces an isomorphism C(X)[P ] ∼= C(XP ) and hence a base
map.

Lemma 4.2. Let P be a finite p-group and let C be a complex of modules in Ck(P ), zero in
negative degrees. Let C̃ denote the augmented complex · · · → C1 → C0 → H0(C). Suppose
that both C̃P and C̃ [P ] are exact (e.g. if C̃ is split exact over kP ) and that q induces an
isomorphism q−1 : H0(C)P → H0(C)[P ]. Then there is a base map s : C [P ] → CP .

If, in addition, C is a complex of modules in Ck(G) and P < G in such a way that C [P ]

is a complex of projective compact k[[NG(P )/P ]]-modules then the base map can be made
equivariant.
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Proof. The hypotheses imply that both CP and C [P ] are projective resolutions of H0(C)P

over k. Thus the map q : CP → C [P ] must be a homotopy equivalence.
In the presence of the extra hypothesis, C [P ] is a projective resolution over k[[NG(P )/P ]].

Thus (q−1)
−1 lifts to an equivariant chain map s : C [P ] → CP and qs ' Id equivariantly,

by an application of the basic comparison theorem ([32] 2.2.6, [6] I 7.4). �

We define Tate hyper-cohomology groups over a finite group G in the usual way. If
C is a bounded complex (i.e. bounded above and below) of compact G-modules then we

take a complete resolution FC of C over G by compact modules. We define Êxt
∗
G(C, D) =

H∗(HomG(FC , D)) whenever D is a bounded complex of G-modules, either compact or

discrete. When C = R we write Ĥ∗
P (D).

Remark. (a) The complete resolution of a bounded complex C can be formed in the
same way as for a module (see [6] VI,X), and has similar uniqueness properties. Take
a projective resolution P for C and choose a degree n higher than the upper bound on
C. Truncate P by removing all terms in degree less than n. Now add projectives in all
degrees less than n in such a way that the resulting complex is exact, just as in the case
of a single module.

If C is projective over R then there is an alternative description of FC . Let FR be the
complete resolution of the trivial module R. Then we can take FC to be FR⊗̂C.

In full generality the complete resolution should be defined as the total complex of the
complete version of a Cartan-Eilenberg complex (see [32] 5.7), where all the projective
resolutions of modules in the definition are replaced by complete resolutions.

(b) This definition is not quite what we would expect from [6] (VII), which uses the
cohomology of HomG(FR, HomR(C, D)). But this is isomorphic to HomG(FR⊗̂C, D), and
since in [6] C is always projective over R we have that FR⊗̂C is a complete resolution of
C. For us such a definition would have the disadvantage that HomR(C, D) might only be
in ER if D is compact.

(c) The construction of complete resolutions via Cartan-Eilenberg resolutions leads
formally to two cohomology spectral sequences.

IEp,q
1 = ⊕p′−p′′=pÊxt

q

G(Cp′ , Dp′′)⇒ Êxt
p+q

G (C, D),

IIEp,q
2 = ⊕q′−q′′=qÊxt

p

G(Hq′(C), Hq′′(D))⇒ Êxt
p+q

G (C, D).

The Cartan-Eilenberg resolutions are themselves double complexes, so the filtration is
built in. The case of ordinary hyper-Tor is treated in [32] 5.7, and we can proceed
analogously, or simply use the duality of 2.6 to turn our spectral sequence for Ext into
one for Tor.

The boundedness condition on the complexes ensures that there are no convergence
problems.

(d) The first spectral sequence shows that Êxt
∗
G(C, D) ignores projective summands

of the Cp, so it vanishes if C is a complex of projectives. The second shows that it is
invariant under a quasi-isomorphism of C or D.

(e) Since C is quasi-isomorphic to its projective resolution P , remark (d) shows that
there would be problems associated with allowing unbounded complexes.

The next two lemmas are based on [6] VII 10, [28].
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Lemma 4.3. Let P be a cyclic group of order p and let C be a bounded complex of compact
permutation kP -modules with base map s. Then Ĥ∗

P (C) ∼= Ĥ∗
P (C [P ]).

Proof. Since C consists of permutation modules and both k and kP are indecomposable
it follows from 3.21 that, in each degree, Cr

∼= (Πk)⊕ (ΠkP ).
Let cone(s) be the mapping cone of s : C [P ] → C. Consider what happens when we

apply the Brauer construction. From the definition, cone(s)[P ] = cone(s′), where s′ is the
induced map s′ : C [P ] → C [P ]. But s′ = qs is a homotopy equivalence, by the definition
of base map, so cone(s′) is exact.

Now 3.27(3) implies that cone(s) is homotopy equivalent to a bounded complex of

projectives. Since Ĥ∗
P vanishes on such a complex it follows that Ĥ∗

P (s) induces an iso-
morphism. �

Proposition 4.4. Let P be a finite p-group and let C be a bounded complex of discrete
permutation modules over k for P , with a base map for each subgroup of P . Then∑

r

dim Hr(C) ≥
∑

r

dim Hr(C
[P ])

(i.e. if the left hand side is finite then so is the right hand side and the inequality holds).

Proof. Consider a composition series 1 = P0 < P1 < · · · < Pn = P , where |Pi| = pi. Let
s be a base map for C as a Pi+1-module. Then, by 3.5, the composite (C [Pi])[Pi+1/Pi] ∼=
C [Pi+1] s→ CPi+1 → CPi → C [Pi] is a base map for C [Pi] as a Pi+1/Pi-module. Thus we
have a proof by induction on i provided that we can prove the case when |P | = p.

Note that, since P is cyclic, dim Ĥr
P (M) = dim Ĥr(P, M) ≤ dim M , for any finite

dimensional kP -module M .
Consider the spectral sequence

IIEp,q
2 = Ĥp

P (Hq(C))⇒ Ĥp+q
P (C).

We see that ∑
r

dim Hr(C) ≥
∑

r

dim Ĥ−r
P (Hr(C)) ≥ dim Ĥ0

P (C).

Now, by 4.3, dim Ĥ0
P (C) = dim Ĥ0

P (C [P ]). Also, by the Künneth theorem, Ĥ0
P (C [P ]) ∼=

⊕rHr(C
[P ])⊗ Ĥ−r(P ), and dim Ĥ−r(P ) = 1 so dim Ĥ0

P (C [P ]) =
∑

r dim Hr(C
[P ]). �

5. Weak R-Permutation Resolutions

Definition 5.1. A compact weak R-permutation resolution of the profinite group G is
an exact complex of compact G-modules

· · · → Jn → · · · → J1 → J0 → R→ 0 (= J•),

where each Ji is a summand of a permutation module R[[Xi]] for some profinite space Xi

on which G acts with finite stabilizers.
The discrete version is just the Pontryagin dual.
A signed weak R-permutation resolution is similar except that we allow each Ji to be a

summand of a product of modules of the form R[[Xi,j]]⊗ R′, where Xi,j is as before and
R′ is a copy of R on which G acts as ±1.
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Remark. Allowing the sign makes no difference to the class of resolutions unless char k = 2
and 2R 6= 0, but we want it for the next result.

The next theorem uses a method of Swan [29], following Serre. It was first proved in
the profinite case by Scheiderer [25, 24] .

Theorem 5.2. If the profinite group G has finite virtual cohomological dimension over
R then it has a signed weak R-permutation resolution of finite length.

Proof. For some H ≤o G there is a finite projective resolution

0→ Pn → · · · → P1 → P0 → R→ 0,

where each Pi is of the form R[[Xi]] for some profinite space Xi on which H acts freely
(using the Eilenberg swindle).

Take J• to be the tensor induced complex, as defined in [1] or [29]. Note that there is a
rather subtle sign convention. The terms are all summands of R[[(qπΠs

i=1giXπi
]], where

{g1, . . . , gs} are coset representatives of G/H and π : {1, . . . , s} → {1, . . . , n}, except that
they might be twisted by a sign. �

Lemma 5.3. If H < G is closed and M is a discrete G-module and N a compact G-
module then Ext∗H(N, M) = lim−→H<K<oG

Ext∗K(N, M) (the limit over restriction maps).

Proof.

Ext∗H(N, M) ∼= Ext∗G(N, CoindG
H ResG

H M)

∼= Ext∗G(N, F (G/H)⊗̌M) by 2.4

∼= Ext∗G(N, (lim−→H<K<oG
F (G/K))⊗̌M)

∼= Ext∗G(N, lim−→H<K<oG
(F (G/K)⊗̌M))

∼= lim−→H<K<oG
Ext∗G(N, F (G/K)⊗̌M)

∼= lim−→H<K<oG
Ext∗K(N, M)

�

Proposition 5.4. Let G act on the profinite space X and let M be a discrete G-module
and N a compact G-module. Suppose that, for some n and every x ∈ X, Extn

StabG(x)(N, M) =

0. Then Extn
G(N⊗̂RR[[X]], M) = 0.

Similarly, if X is based and Extn
StabG(x)(N, M) = 0 for every x ∈ X \ {∗} then

Extn
G(N⊗̂RR[[X, ∗]], M) = 0.

Proof. The unbased result follows from the based one by adding a disjoint basepoint, so
we prove the based statement.

Let X = lim←−Xi, where i runs through some inverse system I, each Xi is a finite G-set,
and for j ≥ i ∈ I let ρi,j denote the map Xj → Xi and ρj the map X → Xj. Then
Extn

G(N⊗̂R[[X, ∗]], M) ∼= Extn
G(N⊗̂ lim←−R[[Xi, ∗]], M) ∼= Extn

G(lim←−(N⊗̂R[[Xi, ∗]]), M) ∼=
lim−→Extn

G(N⊗̂R[[Xi, ∗]], M).

For H <o G we use the Eckmann-Shapiro isomorphism to obtain Extn
G(N⊗̂R[G/H], M) ∼=

Extn
G(IndG

H ResG
H N, M) ∼= Extn

H(N, M) ∼= (⊕x∈G/H Extn
StabG(x)(N, M))G, where the map
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from the left hand side to the right hand side is induced by restriction to StabG(x) and
then inclusion of the summand N ⊗ x ⊂ N ⊗R[G/H].

Thus lim−→Extn
G(N⊗̂R[[Xi, ∗]], M) ∼= lim−→((⊕x∈Xi\{∗} Extn

StabG(x)(N, M))G) ∼=
(lim−→⊕x∈Xi\{∗} Extn

StabG(x)(N, M))G. We will describe explicitly the maps in the limit sys-
tem in the last term (before taking fixed points).

Let Ai = ⊕x∈Xi\{∗} Extn
StabG(x)(N, M) and x ∈ Xi \ {∗} and let a ∈ Extn

StabG(x)(N, M)
be regarded as an element of Ai. Then for any j > i the image of a in Aj has component

at y ∈ Xj equal to 0 if ρi,j(y) 6= x and equal to res
StabG(x)
StabG(y) a if ρi,j(y) = x.

We need to show that, for every i ∈ I, x ∈ Xi and t ∈ Extn
StabG(x)(N, M) there is a

j > i such that if z ∈ Xj with ρi,j(z) = x then res
Stab(x)
Stab(z) t = 0.

It is helpful if, given i, x, t, we let H = StabG(x) and Yj = (ρi,j)
−1(x), for j ≥ i. Then

the Yj are H-sets and (ρi)
−1(x) ∼= lim←−j≥i

Yj is a profinite H-set. We need to show that

there is a k ≥ i such that if z ∈ Yk then resH
StabH(z) t = 0.

Let y ∈ Y , so StabG(y) ≤ H and, by hypothesis, Extn
StabH(y)(N, M) = 0. By 5.3 there

is an open subgroup Hy <o H such that StabH(y) ≤ Hy and resH
Hy

t = 0. Now there must

be a jy ≥ i such that StabH(ρjy(y)) ≤ Hy.
Let Uy = (ρjy)

−1(ρjy(y)) ⊆ Y . Then {Uy| y ∈ Y } is an open covering of Y . Since
Y is compact we can let {Uy1 , . . . , Uyr} be a finite subcover and let k ∈ I be such that
k ≥ jyi

, i = 1, . . . , r.
Now if z ∈ Yk we have z = ρk(z̃) for some z̃ ∈ Y , so z̃ ∈ Uym for some m and thus

StabH(ρym(z̃)) ≤ Hym . But ρym(z̃) = ρk,ym(z) so StabH(z) ≤ Hym and resH
StabH(z) t =

0. �

Corollary 5.5. If G has a signed weak R-permutation resolution of finite length n, and
M ∈ CR(G) is projective on restriction to each finite elementary abelian subgroup, then
M has projective dimension less than or equal to n in CR(G).

There is a dual result for discrete modules.

Proof. By Chouinard’s Theorem, M is projective on restriction to any finite subgroup. In
particular, it is projective over R so we can tensor the resolution

0→ Jn → · · · → J1 → J0 → R→ 0

with M over R to obtain

0→ Jn⊗̂M → · · · → J1⊗̂M → J0⊗̂M →M → 0.

By 5.4, each Ji⊗̂M satisfies Ext∗G(Ji⊗̂M, N) = 0 for all discrete modules N and so, by
2.5, is projective. �

The next useful lemma is taken from [2].

Lemma 5.6. Let H <o G and suppose that M is a compact module for G of finite
projective dimension whose restriction to H is projective. Then M is projective.

Proof. Let Y be the cokernel of the co-augmentation R → R[G/H]. We obtain a short
exact sequence

0→M → R[G/H]⊗̂M → Y ⊗̂M → 0.
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The middle term is projective by 2.5, and if M has projective dimension r then we can take
a projective resolution of length r and tensor it with Y to see that Y ⊗̂M has projective
dimension at most r. It follows that either M has projective dimension at most r − 1, a
contradiction, or that M is projective. �

Lemma 5.5 and the theory of profinite duality groups discussed in [31] are precisely what
is needed to carry over the algebraic proof of the local cohomology theorem of Benson
and Greenlees [2] from discrete virtual duality groups to profinite ones. In particular we
obtain the following result.

Theorem 5.7. If G is a virtual duality group of virtual dimension n and with dualizing
module I, then for any compact G-module M there is a spectral sequence

E∗,∗
2 = H∗,∗

J (H∗(G, M))⇒ ΣnH∗(G, I⊗̂M),

where J is the ideal of positive degree elements in H∗(G).

6. R-Permutation Resolutions

In this section we consider algebraic analogues of some geometric results of Kropholler
and Mislin [17].

We continue to suppose that char k = p > 0 and we count the trivial group as a finite p-
subgroup. Recall that the Brauer quotient at the trivial group is taken to mean reduction
modulo m.

Definition 6.1. By an R-permutation resolution for G of we mean a complex of compact
G-modules

· · · → Cr → · · · → C1 → C0 → R (= C̃),

where each Ci is an R-permutation module with finite stabilizers.
In addition, if we apply the Brauer quotient at any finite p-subgroup P ≤ G, the

resulting complex C̃ [P ] is required to be exact.
We say that the R-permutation resolution is of finite type if each Ci is finitely generated.

It is of length n if Cn 6= 0 but Cr = 0 for r > n. It is strict if all the Cr are strict.

We adopt the convention that C denotes the unaugmented complex and C̃ the aug-
mented one.

Definition 6.2. The smallest possible length of a strict R-permutation resolution for G
is called the permutation dimension of G over R (possibly ∞), which we abbreviate to
permdim G.

Notice that if H < G then the restriction of an R-permutation resolution or a signed
weak permutation resolution for G to H is still a resolution of the same sort for H.
However it might no longer be of finite type or strict, even if it was before.

A resolution of finite type is necessarily strict, by 3.10.

Lemma 6.3. If C is an R-permutation resolution for G and P < G is a finite P -subgroup
then C [P ] is a k-permutation resolution for NG(P )/P . If C is strict or of finite type then
so is C [P ].

Proof. The first part is by 3.4. The second by 3.7 and 3.10. �
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We have given the definition of an R-permutation resolution in terms of the Brauer
construction, because this is what corresponds better with the geometric methods used
for discrete groups. However, there is an alternative description, by a theorem of Bouc
mentioned previously (3.27).

Proposition 6.4. The condition that the resolution be exact at every Brauer quotient at
a finite p-subgroup is equivalent to the condition that it be split exact on restriction to
every finite p-subgroup (or equivalently on restriction to every finite subgroup).

Remark. Let F denote the class of strict R-permutation modules with finite stabilizers
in CR(G). Then, in the language of relative homological algebra, a strict R-permutation
resolution for G is the same thing as a right F -resolution of R in CR(G) ([11]) or a
projective resolution of R for the class F ([10]).

An obvious analogue for CR(G) of the comparison theorem in relative homological
algebra now tells us that if a strict R-permutation resolution for G exists then it is unique
up to homotopy.

The usual proof that such resolutions always exist only transfers to CR(G) if G has
only a finite number of conjugacy classes of finite p-subgroups, otherwise we run into a
problem with direct sums (cf. the proof of 6.6).

The relative Ext groups are defined by setting Ext∗G,F(R,N) to be the homology of
HomG(C, N), where C is a strict R-permutation resolution for G. Thus permdim G can
be characterized as the largest degree in which not all of these groups vanish.

Definition 6.5. The relative dimension of G over R, reldimR G, is the least integer n
such that every compact module for G that is projective on restriction to every finite
p-subgroup has projective dimension less than or equal to n. If no such n exists then we
set reldimR G =∞.

If M ∈ CR(G) is projective on restriction to every finite P -subgroup then the same is
true of k ⊗R M ∈ Ck(G). Also if M ∈ CR(G) is projective over R then its projective
dimension is the same as that of k⊗R M ∈ Ck(G). It follows that reldimR G ≤ reldimk G.

We saw in 5.5 that reldimk G ≤ permdim G.
Recall that a module M is said to be of type FPn if there is a projective resolution

· · · → P1 → P0 →M in which Pi is finitely generated for i ≤ n (see [6]VIII 4.3).

Proposition 6.6. Let G be a profinite group with only a finite number of conjugacy
classes of finite p-subgroups P , and let N ∈ CR(G). Then there is a short exact sequence

L→M
f→ N such that M is a strict R-permutation module M with finite stabilizers and

f [P ] : M [P ] → N [P ] is surjective for every finite p-subgroup P . This can be done in such a
way as to satisfy the following properties.

(1) If, for some p-subgroup P , we have N [Q] = 0 for all finite p-subgroups Q > P
then also M [Q] = 0 for all Q > P and f [P ] : M [P ] → N [P ] is a projective cover
of k[[NG(P )/P ]]-modules. Also N [P ] is projective on restriction to any Q/P for
P C Q.

(2) If N becomes R-permutation on restriction to some P then f is split over P ,
so L is R-permutation on restriction to P and there is a short exact sequence
L[P ] →M [P ] → N [P ].
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(3) If each N [P ] is finitely generated over k[[NG(P )/P ]] then M is finitely generated.
(4) If each N [P ] is of type FPn over k[[NG(P )/P ]] for some n ≥ 1 then each ker(f [P ] :

M [P ] → N [P ]) is of type FPn−1. If, in addition, we assume that N is R-permutation
on restriction to each P then L[P ] is of type FPn−1.

Proof. For each P , let KP
i→ N [P ] be the projective cover of N [P ] as an R[[NG(P )/P ]]-

module, which we inflate to an R[[NG(P )]]-module. Lift i to KP
φ→ NP and let IndG

NG(P ) KP
φ̃→

N be the adjoint map.
Let M = ΠP∈P/G IndG

NG(P ) KP and let f be the product of the φ̃P ’s. This is permissible
because P/G is finite. Then L = ker(f) and the surjectivity condition is guaranteed by
lemma 6.8 below.

For (1), the first two conditions are consequences of lemmas 6.7 and 6.8 below. The last

is because the hypothesis implies that Ĥ0(Q/P, N [P ]) = 0 so the claim follows by 3.24.
(2) follows from 3.26 and (3) is by construction.
For (4), notice that, since M is a finitely generated R-permutation module with finite

stabilizers, so is each M [P ], by 3.7. Since G contains only a finite number of conjugacy
classes of finite p-groups, there is an open normal p-torsion-free subgroup U . Given P ,
let H be the image of U ∩NG(P ) in NG(P )/P , which is still an open subgroup.

An NG(P )/P -module is of type FPr if and only if its restriction to H is of type FPr

(cf. [6] VIII 5.1). On restriction to H, M [P ] is finitely generated and projective. Thus
ker(f [P ]) is of type FPn−1 over H, and hence over NG(P )/P , by Schanuel’s Lemma (see
[6] VIII 4.3). �

We still need to prove the two lemmas, so let P be a finite p-subgroup of G and K a
projective module in CR(NG(P )/P ), which we inflate to an NG(P )-module.

Lemma 6.7. If Q is another p-subgroup of G that is not conjugate to a subgroup of P
then (IndG

NG(P ) K)[Q] = 0.

Proof. It suffices to treat the case when K = R[[NG(P )/P ]], so IndG
NG(P ) K ∼= R[[G/P ]].

But, by 3.4, R[[G/P ]][Q] ∼= k[[(G/P )Q]] = 0. �

Continuing with the same notation, suppose that N is a G-module and that there is

an NG(P )-module map i : K → N [P ]. Suppose that i factors as K
φ→ NP q→ N [P ], where

q is the quotient map. Let IndG
NG(P ) K

φ̃→ N be the adjoint map to φ.

Lemma 6.8. The map φ̃[P ] : (IndG
NG(P ) K)[P ] → N [P ] has the same image as i, and

(IndG
NG(P ) K)[P ] ∼= k ⊗R K.

Proof. First we treat the case when K = R[[X]], where X is a profinite NG(P )/P -
set with a free action. Then IndG

NG(P ) K ∼= R[[G ×NG(P ) X]]. The inclusion of X in

G×NG(P ) X as NG(P )×NG(P ) X yields an isomorphism j : k[[X]]→ R[[G×NG(P ) X]][P ] ∼=
(k[[G]]⊗̂k[[NG(P )]]k[[X]])[P ], and φ̃[P ]j = i.

There is a map Endk[[NG(P )/P ]](k[[X]])→ Endk[[G]](k[[G]]⊗̂k[[NG(P )]]k[[X]]) given by f 7→
Id ⊗̂f , and this is compatible with j.
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In the general case, K is a summand of such an R[[X]] and the isomorphism j is
compatible with the idempotent splitting off K. �

Theorem 6.9. Suppose that there are only finitely many conjugacy classes of finite p-
subgroups P of G. Then the following are equivalent.

(1) Each NG(P )/P has a signed weak k-permutation resolution of finite length.
(2) G has a strict R-permutation resolution of finite length.
(3) Each reldimk NG(P )/P is finite.

Proof. (2) implies (1) by 6.3 and (1) implies (3) by 5.5, so we assume that each reldimk NG(P )/P
is finite and construct a strict R-permutation complex for G.

In fact, starting with any module N ∈ CR(G) that is an R-permutation module on
restriction to each finite p-subgroup, we will construct a complex with all the same prop-
erties except that the last term is N instead of R.

Define r(N) to be the smallest r for which N [P ] = 0 for all finite p-subgroups P with
|P | ≥ pr. The size of the finite p-subgroups is bounded, so r exists.

Use 6.6 repeatedly to produce a resolution · · · → Cr → · · · → C1 → C0 → N (= C̃)
by R-permutation modules with finite stabilizers. In fact, in the notation of 6.6, if N is
R-permutation with finite stabilizers on restriction to any finite subgroup then so is L
and r(L) ≤ r(N). Each C̃ [P ] is exact, by 6.6(2), so the problem is to show C̃ is of finite
length.

If r(N) = 0 then N [1] = 0, so N = 0.
If r(N) ≥ 1 then for any P of order pr(N)−1, 6.6(1) shows that C̃ [P ] is the mini-

mal projective resolution of N [P ] in Ck(NG(P )/P ). The last part of 6.6(1) also shows
that N [P ] is projective on restriction to any finite p-subgroup, so our assumption that
reldimk NG(P )/P is finite implies that the resolution C̃ [P ] stops.

Since there are only finitely many subgroups of order pr(N)−1 up to conjugacy, if we
progress far enough along the resolution then N ′ = ker(Cn → Cn−1) will satisfy r(N ′) <
r(N). But · · · → Cn+2 → Cn+1 → N ′ is the resolution for N ′, so it must stop, by
induction. �

Lemma 6.10. Let G be a group of finite virtual cohomological dimension t over R and let
P be a finite p-subgroup of G. Then NG(P )/P has finite virtual cohomological dimension
less than or equal to t.

Proof. Let U < G be open and of cohomological dimension t. Then H = U ∩ NG(P )
is open in NG(P ) and has cohomological dimension less than or equal to t. But H can
contain no p-torsion, so it is isomorphic to its image in NG(P )/P . �

The next construction is similar to one in [23] for finite p-groups.

Proposition 6.11. Let G be a profinite group of finite virtual cohomological dimension
such that its Sylow pro-p-subgroup has only a finite number of conjugacy classes of finite
p-subgroups P , and let N ∈ CR(G). Assume that N is R-permutation on restriction to
each P and that each N [P ] is projective on restriction to some open subgroup of NG(P )/P .
Then N is an R-permutation module with finite stabilizers.
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Proof. Let S denote the Sylow pro-p-subgroup of G. From 3.22 we know that R is a
summand of R[[G/S]], so N is a summand of R[[G/S]]⊗̂N ∼= IndG

S ResG
S N , thus it is

enough to prove the result for N restricted to S, and we will assume that G is a pro-p-
group.

We follow the proof of 6.6, but we construct M in a more economical way. By downward
induction on r we will construct an R-permutation module with finite stabilizers Mr,
which is in fact a product of modules R[[G/P ]] for finite p-subgroups P with |P | ≥ pr,

and a map fr : Mr → N such that f
[P ]
r : M

[P ]
r → N [P ] is an isomorphism for all finite

p-subgroups P with |P | ≥ pr.
For large enough r we can take Mr = 0, so the induction starts. Suppose that we have

fr+1 and we want to construct fr.

Let P be a subgroup of order pr and consider f
[P ]
r+1 : M

[P ]
r+1 → N [P ]. Let q : N [P ] →

N [P ]/ Im(f
[P ]
r+1) be the quotient map and let π : KP → N [P ]/ Im(f

[P ]
r+1) be a projective

cover in CR(NG(P )/P ). Lift this to a map i : KP → N [P ], which factors through a

map K̄P = k ⊗ KP → N [P ], and combine the latter with f
[P ]
r+1 to obtain a surjection

g : K̄P ⊕M
[P ]
r+1 → N [P ]. We claim that g is an isomorphism.

In order to prove this, let LP be the kernel of g, so we have a short exact sequence

LP → K̄P ⊕M
[P ]
r+1 → N [P ] in Ck(NG(P )/P ). If we restrict to any p-subgroup Q/P then

this is split and LP is projective over Q/P , by 3.27.
By hypothesis, N [P ] is projective over some open subgroup H < NG(P )/P . Also K̄P

and M
[P ]
r+1 are projective over H, by construction, so LP is projective over H. It follows

from 5.5, using 5.2, 5.5 and 6.10, that LP is projective over NG(P )/P .
Thus LP is injective relative to H and, since the short exact sequence is split over H,

it is also split over NG(P )/P .

Let V be an indecomposable factor of LP and let α : V → K̄P ⊕M
[P ]
r+1 be the inclusion

map and β a splitting. Let eK and eM be the idempotent endomorphisms of K̄P ⊕M
[P ]
r+1

corresponding to the summands. So IdV = βα = βeKα + βeMα. Since End(V ) is local,
at least one of βeKα and βeMα must be an automorphism.

If it is βeKα then eKα(V ) is a summand of K̄P . But 0 = qgα = qgeKα + qgeMα =

qieKα + qf
[P ]
r+1eMα = πeKα. This contradicts the definition of π as a projective cover.

Therefore eMα(V ) is a summand of M
[P ]
r+1. This is not possible either, by lemma 6.12

below.
We have proved that g is an isomorphism, (so, in fact, N [P ]/ Im(f

[P ]
r+1) was projective

and q was split from the beginning).
Now consider KP as an NG(P )/P -module and lift i to a map φP : KP → NP . Let

φ̃P : IndG
NG(P ) KP → N be the adjoint map. Let Mr = Mr+1 ⊕ ΠP∈Pr/G IndG

NG(P ) KP ,
where Pr is the set of p-subgroups of order pr. There is an obvious map fr : Mr → N

with components fr+1 and the φ̃P ’s. This fr induces an isomorphism M
[P ]
r → N [P ] when

|P | ≥ pr.
This completes the induction, so we have a map f0 : M0 → N that is an isomorphism

modulo m, hence an isomorphism. �
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This construction of Mr can be used, instead of the one in 6.6, in the proof of 6.9, to
produce a smaller resolution.

Lemma 6.12. Let G be a pro-p group and P a finite subgroup of order pr. Suppose that
M ∈ CR(G) is a product of R[[G/Q]]’s for finite subgroups Q with |Q| > pr. Then M [P ],
considered as a module for NG(P )/P , does not contain a projective summand.

Proof. Since we are dealing with pro-p groups, each R[[(NG(P )/P )/S]] is indecomposable.
This is because there is only one simple module k and Hom(R[[(NG(P )/P )/S]], k) has
dimension 1.

In particular, the only indecomposable projective is the free module of rank 1, so,
to obtain a contradiction, assume that R[[NG(P )/P ]] is isomorphic to a summand of a
product of R[[G/Q]][P ]’s.

We have a surjection
∏

R[[G/Qλ]]
[P ] → R[[NG(P )/P ]]. Compose this with the augmen-

tation R[[NG(P )/P ]]→ k. Since k is finite and the maps are continuous, the composition
factors through a finite product. But now one of this finite set of factors must map onto
k, and, by Nakayama’s Lemma, it maps onto R[[NG(P )/P ]]. The latter is projective, so
the map is split, and R[[NG(P )/P ]] is a summand of some R[[G/Q]][P ] ∼= R[[(G/Q)P ]].

But, by 3.7, StabNG(P )/P (gQ) = (NG(P )∩ gQ)/P , where P < gQ. Since Q is a p-group,
NgQ(P ) is strictly bigger than P , so the stabilizer is non-trivial. Thus R[[(G/Q)P ]] is
a finite sum of terms R[[(NG(P )/P )/S]] for some non-trivial S ≤ NG(P )/P , and each
of these is indecomposable. This contradicts the assumption that R[[NG(P )/P ]] is a
summand. �

Corollary 6.13. Suppose that there is a bound on the number of conjugacy classes of
finite p-subgroups of a Sylow p-subgroup of G. If G has virtual cohomological dimension
t over R then permdim G = reldimk G = reldimR G = t.

Proof. Let · · · → Cr → · · · → C1 → C0 → R (= C̃) be any strict permutation resolution.
Let N = ker(Ct−1 → Ct−2).

For each P we know that N is R-permutation on restriction to P . Also NG(P )/P
contains an open subgroup H of cohomological dimension less than or equal to t, by 6.10;
if we restrict C̃ [P ] to H we see that N is the tth syzygy of k, so is projective.

Now 6.11 shows that N is an R-permutation module with finite stabilizers, so we can
finish the resolution with 0→ N → Ct−1 → Ct−2 → · · · .

Thus permdim G ≤ t, and reldimk G ≤ permdim G by 5.5. Also reldimR G ≤ reldimk G,
by the remark after 6.5. Finally, it is easy to see that t ≤ reldimR G, by considering
IndG

H R, where H Co G is of cohomological dimension t. �

Example. Let p = 3 and G = PSL2(Ẑ3). The structure of this group is well known (see
[15] for example), but the reader can also consider this example as applying to any group
with the following properties. G is virtually pro-3, and (by the theory of Lazard [18]),
vcd G = 3. It is easy to verify that there is only one non-trivial finite 3-subgroup up to

conjugacy, Q ∼= Z/3 (generated by

(
0 1
−1 −1

)
), and NG(Q) ∼= Q × Ẑ3. By 5.2 and 5.5,

G satisfies condition (3) of 6.9.
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We apply the construction of 6.6. R[Q] ∼= k and its projective cover over NG(Q)/Q ∼= Ẑp

is Ind
NG(Q)/Q
1 R ∼= R[[NG(Q)/Q]], which we inflate to an NG(Q)-module. Also R[1] ∼= k

and we denote the projective cover of this by Pk. We could in fact use any projective
module that maps onto k, such as a free module. So our resolution starts · · · → Pk ⊕
R[[NG(Q)/Q]]→ R. Let N be the kernel.

Now N [Q] = 0, so N is projective on restriction to Q. Since reldimk G is finite, N has
a finite projective resolution Cr → · · · → C1 → N (any one will do), and we have an
R-permutation resolution Cr → · · · → C1 → Pk ⊕R[[NG(Q)/Q]]→ R.

Let K = ker(C2 → C1). Let H be an open subgroup of finite cohomological dimension.
Over H, the module K is a third syzygy, so must be projective. It follows from 5.6 that
K is projective over G.

So we have an R-permutation resolution K → C2 → C1 → Pk ⊕R[[NG(Q)/Q]]→ R.
If we use the construction of 6.11 instead, the only significant difference is that we do

not use Pk at the first stage, so we obtain a resolution of the form K ′ → C ′
2 → C ′

1 →
R[[NG(Q)/Q]]→ R.

Recall that a group G is said to be of type FP (over R) if there is a projective resolution
of R in CR(G) of finite type and finite length. It is of type vFP if it possesses an open
subgroup of type FP . G is of type FP∞ if there is a projective resolution of R of finite
type.

Theorem 6.14. The following are equivalent.

(1) G has a strict R-permutation resolution of finite type and finite length.
(2) G has only finitely many conjugacy classes of finite p-subgroups P and each NG(P )/P

(including G) is virtually of type FP .
(3) There are only finitely many conjugacy classes of finite p-subgroups P and each

NG(P )/P (including G) is of type FP∞ and reldimk NG(P )/P <∞.

Proof. (1)⇒ (2): Let C be a strict R-permutation resolution for G of finite type and finite

length and let P < G be a finite p-subgroup. Exactness of C̃ [P ] implies that C
[P ]
0 6= 0. But

if C0 is a summand of ⊕n
i=1R[[G/Si]] then P must be conjugate to a subgroup of some Si.

Thus there are only a finite number of conjugacy classes of finite p-subgroups.
Now we can find an open subgroup H ≤ G that avoids all the finite p-subgroups. The

restriction of the resolution to H is then a projective resolution, and still of finite type,
so G is virtually of type FP .

Now C [P ] is a strict k-permutation resolution for NG(P )/P of finite type and finite
length by 6.3, so the same argument shows that NG(P )/P is virtually of type FP .
(2)⇒ (3): This follows the fact that type vFP implies type FP∞ ([6] VIII 5.1) and from
5.2 and 5.5.
(3) ⇒ (1): The construction of Theorem 6.9 yields a complex of finite type at each step
by 6.6 parts (3) and (4). �

Let H be a profinite group, Q a finite group and X a finite Q-set. We write H wrX Q
for the wreath product HX oQ, where the commutation relation is given by (qfq−1)(x) =
f(q−1x), q ∈ Q, f ∈ HX , x ∈ X.

If Sn denotes the symmetric group on the set n = {1, . . . , n} then H o Sn = H wrn Sn.
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Lemma 6.15. If H is p-torsion free then H oSn has only finitely many conjugacy classes
of finite p-subgroups.

Proof. Any finite p-subgroup maps isomorphically to its image in Sn, so we only need to
show that any two finite p-subgroups with the same image, P say, in Sn are conjugate.
This is equivalent to showing that all sections of H wrn P → P are conjugate, which in
turn is equivalent to showing that the non-abelian cohomology group H1(P, Hn) is trivial
(see [27] I 5).

But H1(P, HXtY ) ∼= H1(P, HX)×H1(P, HY ), so we can reduce to the case of a tran-
sitive P -set P/Q. But then H1(P, HP/Q) ∼= H1(Q,H) ∼= Hom(Q,H), by [27] I 5.7, so is
trivial. �

Corollary 6.16. If H is of finite cohomological dimension over R then H oSn has a strict
R-permutation resolution of finite length.

Proof. H o Sn is of finite virtual cohomological dimension, so by 6.10 so is each NG(P )/P
for each finite p-subgroup P . In view of 6.15 we can apply 6.9; condition (1) is satisfied,
by 6.10, and condition (2) is our desired conclusion. �

Corollary 6.17. If G is of finite virtual cohomological dimension then it has an R-
permutation resolution of finite length.

Proof. Let H < G be open of finite cohomological dimension and set n = |G/H|. Then
H oSn has an R-permutation resolution of finite length, by 6.16. But G embeds in H oSn,
so we can restrict this resolution to G. �

From now on we write H∗(G) for H∗(G, k).

Proposition 6.18. If G has an open normal subgroup of finite cohomological dimension
and with finite dimensional homology (i.e. finite dimensional in each degree and zero in
large degrees), then there are only finitely many conjugacy classes of finite p-subgroups P ,
and each NG(P ) has an open normal subgroup of finite cohomological dimension and with
finite dimensional homology. If G is virtually pro-p then this subgroup may be taken to be
pro-p.

Proof. (cf. [6] IX 13.2) Let H Co G be of finite cohomological dimension and with finite
homology, hence p-torsion free; (H can be chosen to be pro-p if G is virtually pro-p).
Let X be a compact R-permutation resolution of G of finite length, which exists by 6.17.
The restriction of X to H is a projective resolution of R. Let Y = k ⊗H X, so that
H∗(Y ) ∼= H∗(H), by the definition of homology, and so H∗(Y ) is finite.

Let P be a p-subgroup of G/H. We claim that Y has a base map over P . Recall from
3.8 that SH(P ) is the set of finite p-subgroups of G that map isomorphically to P < G/H,
and H acts on this by conjugation. Assume for the moment that SH(P )/H is finite.

Observe that each module in X is a summand of a module of the form R[[V ]], where V is
a profinite G-set with finite stabilizers. Now 3.8 becomes (V/H)P ∼= qQ∈SH(P )/HV Q/NH(Q),
and this is a homeomorphism because the union is finite. The dual of 3.9 is thus

(†) R[[V/H]][P ] ∼= ⊕Q∈SH(P )/Hk ⊗NH(Q) R[[V ]][Q]

and so
Y [P ] ∼= ⊕Q∈SH(P )/Hk ⊗NH(Q) X [Q].
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Now X [Q] is a complex of projectives over NH(Q)/Q, so each XQ → X [Q] has an
NH(Q)/Q-equivariant base map, by 4.2, and these piece together to give a base map

Y [P ] ∼= ⊕Q∈SH(P )/Hk ⊗NH(Q) X [Q] → ⊕Q∈SH(P )/Hk ⊗NH(Q) XQ → (k ⊗H X)P = Y.

It follows that H∗(Y
[P ]) is finite, by 4.4.

Now from the identity † and the fact that X [Q] is a projective resolution of NH(Q)/Q
we see that

H∗(Y
[P ]) ∼= ⊕Q∈SH(P )/HH∗(NH(Q)).

It follows that for each Q, H∗(NH(Q)) is finite.
It remains to prove our assertion that SH(P )/H is finite. Our argument is based on the

one in [20], but is technically more elementary (see the remark before 6.20). Notice that
this claim for all P of order pr is equivalent to the claim that G has only finitely many
conjugacy classes of finite p-subgroups of that order. The proof is by induction on the
order of P . We know that H∗(G) is finitely generated by a spectral sequence argument
and the theory of Evens [12, 13, 1], so a theorem of Quillen [21] implies that the number
of conjugacy classes of elementary abelian p-subgroups is finite (see also [20]).

Otherwise P , of order pr, contains a central cyclic subgroup C of order p, and P ≤
NG(C). We may conjugate in such a way that C is one of a given finite set of repre-
sentatives. It now suffices to show that there are only finitely many conjugacy classes of
subgroups of NG(C) of order pr containing C or, equivalently, that there are only finitely
many conjugacy classes of subgroups of NG(C)/C of order pr−1.

Since SH(C) is finite, we can certainly apply the argument above with C in place of P .
We find that NH(C)Eo NG(C) is open normal of finite cohomological dimension and with
finite homology, and this injects into NG(C)/C. Our induction hypothesis now applies to
NG(C)/C and we are done. �

Theorem 6.19. If G is a virtual pro-p group then the following conditions are equivalent.

(1) G has a strict R-permutation resolution of finite type and finite length.
(2) G is virtually of type FP .
(3) There are only finitely many conjugacy classes of finite p-subgroups P and

reldimk NG(P )/P <∞ and for each simple R[[NG(P )/P ]]-module S each H i(NG(P )/P, S)
is of finite dimension.

(4) For each simple R[[G]]-module S its cohomology H∗(G, S) is noetherian as a mod-
ule over H∗(G).

Proof. We claim that conditions (1),(2) and (3) are equivalent to those of 6.14 under the
hypothesis that G is a virtual pro-p-group.

Clearly (1) is the same in both. Also the present (2) is equivalent to 6.14 (2) using 6.18,
because if H is a torsion free pro-p subgroup of NG(P ) with finite dimensional homology
then it injects into NG(P )/P , and for a pro-p group finite homology implies type FP .

The two conditions (3) are equivalent, because the H i(NG(P )/P, S) measure the growth
of the minimal projective resolution ([31] 4.2.3).

Now (2) implies (4), by considering the Lyndon-Hochschild-Serre spectral sequence.
The converse is shown for pro-p groups in [20]. In fact, the method of that paper shows
that there is an open pro-p subgroup K <o G such that res : H∗(G)→ H∗(K) is zero in
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positive degrees. This can be seen by using 5.3 with H = 1. Let x1, . . . , xm generate H∗(G)
as a k-algebra. For each xi there is an open subgroup Ki <o G such that resG

Ki
xi = 0.

Let K = ∩iKi. Since H∗(K) ∼= H∗(G, CoindG
K k) and CoindG

K k has a finite filtration by
simple modules it follows that H∗(K) is finitely generated over H∗(G). Since the xi act
as 0, we see that H∗(K) must be finite-dimensional and K must be of type FP . �

Remark. The deeper part of [20] shows that if G is a pro-p group and H∗(G) is finitely
generated then the number of conjugacy classes of finite p-subgroups of G is finite. It
uses results of Dwyer and Wilkerson [9], and also work of Lannes on unstable algebras
over the Steenrod algebra, to obtain a version of 6.20 below (see also [15]). The method
of the present paper bypasses that.

We simplify the statement of the next result by restricting ourselves to pro-p groups.

Theorem 6.20. Let G be a pro-p group with finitely generated cohomology as a ring.
Then there are only finitely many conjugacy classes of finite p-subgroups P , and for each
one H∗(NG(P )/P ) is finitely generated as a ring and H∗(NG(P )) is finitely generated as
a module over H∗(G).

Proof. The first claim is just part of 6.19. For the second assertion we use 6.19 to change
the question to one about the existence of a strict k-permutation resolution of finite type
and finite length. But this is inherited by NG(P )/P , by 6.3.

For the third claim, let U Co G be pro-p of type FP (using 6.19 condition (2)). Now
NG(P )/P is virtually of type FP, by the first claim and 6.19 again. It follows that the
image of U ∩NG(P ) in NG(P )/P is of type FP, and this is isomorphic to U ∩NG(P ).

Consider the diagram

U ∩NG(P ) −−−→ NG(P ) −−−→ NG(P )/(U ∩NG(P ))y y y
U −−−→ G −−−→ G/U

The Lyndon-Hochschild-Serre spectral sequence for the top row has E2 page H∗(NG(P )/(U∩
NG(P )), H∗(U ∩NG(P ))). This is noetherian over H∗(NG(P )/(U ∩NG(P ))) via inflation,
hence so is H∗(NG(P )), by the theory of Evens [12, 13, 1].

By the same theory, H∗(NG(P )/(U ∩NG(P ))) is noetherian over H∗(G/U) via restric-
tion (we are dealing with finite groups here).

Combining these, we find that H∗(NG(P )) is noetherian over H∗(G/U) via the natural
map NG(P )→ G/U . But this map factors through G, so H∗(NG(P )) must be noetherian
over H∗(G). �

7. Tate-Farrell Cohomology

For any group of finite virtual cohomological dimension we can construct a complete
resolution as in [6] X and so deal with the Tate-Farrell cohomology or hypercohomology,
just as we did for the Tate cohomology of a finite group in §4. This was first considered
for profinite groups by Scheiderer [25], but the approach given here is more elementary
and allows compact coefficients, as required in certain applications, [30] for example.
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This cohomology has the expected properties, as in [6]. In particular it can be calculated
using subgroup complexes, but in order to state this we need to define the chain complex
of the Quillen complex.

For any group U , let ∆(U) denote the usual Quillen complex for U , with n-simplices
corresponding to the elements of ∆n(U), the chains of elementary abelian p-subgroups
of U . For U finite and X a finite poset with an action of U , let T → D0 → · · · →
Dr (= D̃(|X|)) denote the complex of cochains on |X| with coefficients in T , and Cr →
· · · → C0 → R (= C̃(|X|)) the dual complex of chains over R. These are complexes of
permutation modules over U .

For N Co G p-torsion free, let ∆N
n (G) denote the image of ∆n(G) in ∆n(G/N). If

M < N there are natural maps ∆M
n (G) → ∆N

n (G). Notice that ∆n(G) ∼= lim←−∆N
n (G) as

sets, and in this way we give ∆n(G) a profinite topology.
Define D̃(∆(G)) = lim−→ D̃(∆N(G)) and C̃(∆(G)) = lim←− C̃(∆N(G)). Thus Dn(∆(G)) ∼=

lim−→F (∆N
n (G)).

Lemma 7.1. For any non-trivial finite p subgroup P ≤ G both D̃(∆(G))[P ] and C̃(∆(G))[P ]

are exact.

Proof. Let ∆N,P
n (G) denote the image of ∆n(G)P in ∆N

n (G), so ∆n(G)P ∼= lim←−∆N,P
n (G).

The simplicial complex ∆N,P (G) is contractible via the usual poset maps

E ≥ EP ≤ EP Zp(P ) ≥ Zp(P ), where bars denote images in G/N , E is an elementary
abelian p-subgroup of G invariant under conjugation by P and Zp(G) is the maximal cen-
tral elementary abelian p-subgroup of P . Notice that EP Zp(P ) is actually an elementary
abelian subgroup of G, and if E and E ′ have the same image in G/N then so do EP Zp(P )

and E ′P Zp(P ). Thus D̃(∆N,P (G)) is exact.

Now F (∆n(G))[P ]
∼= F (∆n(G)P ) ∼= F (lim←−∆N,P

n (G)) ∼= lim−→F (∆N,P
n (G)), so D̃(∆(G))[P ]

∼=
lim−→ D̃(∆N,P (G)) is exact.

The compact case is dual. �

Lemma 7.2. If there are only finitely many conjugacy classes of elementary abelian p-
subgroups then Dn(∆(G)) ∼= ⊕σ∈∆(G)n/GF (G/ StabG(σ)) and
Cn(∆(G)) ∼= ⊕σ∈∆(G)n/GR[[G/ StabG(σ)]].

Proof. Dn(∆(G)) = lim−→Dn(∆N(G)) ∼= lim−→F (∆N
n (G)) ∼= F (lim←−∆N

n (G)) ∼= F (∆n(G)) and
F (∆n(G)) has the form claimed by 3.10.

The compact case is dual. �

Remark. In [20] it is shown that a pro-p group has a finite number of conjugacy classes
of elementary abelian p-subgroups if and only if its cohomology is finitely generated as a
ring modulo nilpotent elements.

Let C(∆(G)) denote the complex C̃(∆(G)), but without the augmentation. By analogy
with the case of discrete groups we expect the following result.

Theorem 7.3. Let M be a G-module, discrete or compact. Then Êxt
∗
G(C(∆(G)), M) ∼=

Ĥ∗(G, M).
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Proof. From the long exact sequence associated to C → C̃ → R we see that it suffices to

show that Êxt
∗
G(C̃(∆(G)), M) = 0.

By induction on r we can add projectives to C̃(∆(G)) in degrees less than or equal to r
in such a way that the resulting complex C̃r(∆(G)) is exact in degrees strictly less than r.
Let d be the length of the longest chain of elementary abelian p-subgroups and consider
C̃d(∆(G)). This is zero in degrees greater than d and has homology only in degree d; call
this homology group K.

By 3.27(2), K is projective over any finite p-subgroup, so, by 5.2 and 5.5, K has finite
projective dimension, e say, over G.

Now consider C̃d+e(∆(G)). It has only one homology group, L say, in degree d + e.
But L is the eth syzygy of K, so is projective. Let C̄(∆(G)) be the complex obtained
from C̃d+e(∆(G)) by adding L in degree d+ e+1, with the obvious boundary map. Then
C̄(∆(G)) is exact.

But adding projective modules to a complex does not effect Ext, since it need not change

the complete resolution, so Êxt
∗
G(C̃(∆(G)), M) ∼= Êxt

∗
G(C̄(∆(G)), M), and a complete

resolution for C̄(∆(G)) is just 0, so Êxt
∗
G(C̄(∆(G)), M) = 0. �

Remark. Êxt
∗
G(C(∆(G)), M) can be computed using the spectral sequence

IEp,q
1 = Êxt

q

G(C(∆(G))p, M)⇒ Êxt
p+q

G (C(∆(G)), M).
If there are only a finite number of conjugacy classes of elementary abelian p-subgroups

then, by 7.2, IEp,q
1
∼= ⊕σ∈∆p(G)/GĤq(StabG(σ̃), M), (where σ̃ denotes a chain in the class

σ).
This is known to be a powerful tool for calculation in the case of discrete groups. In

the context of profinite groups, the case of p-rank 1 and coefficients k already appears in
the work of Henn [15], where it is used to make calculations.
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[9] Dwyer, W.G. and Wilkerson, C., Smith Theory and the functor T , Comm. Math. Helvetici 66 (1991),

1-17.
[10] Eilenberg, S. and Moore, J.C., Foundations of Relative Homological Algebra, Memoirs Amer. Math.

Soc. 55 (1965).
[11] Enochs, E.E. and Jenda, O.M.G., Relative Homological Algebra, De Gruyter, Berlin (2000).
[12] Evens, L., The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239.



PERMUTATION COMPLEXES FOR PROFINITE GROUPS 30

[13] Evens, L., The cohomology of groups, Oxford U. P. (1991).
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