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Abstract. Draft, 24 March 2006. A more recent version might be obtain-
able at http://www.ma.umist.ac.uk/pas/preprints. Consider a group acting on
a polynomial ring over a finite field. We study the polynomial ring as a module for
the group and prove a structure theorem with several striking corollaries. For example,
any indecomposable module that appears as a summand must also appear in low degree
and so the number of isomorphism types of such summands is finite. There are also
applications to invariant theory, giving a priori bounds on the degrees of the generators.

1. Introduction

We consider a polynomial ring S in n variables over a finite field k of characteristic
p and an action of a finite group G on S by homogeneous linear substitutions. This is
equivalent to taking the symmetric powers of an n-dimensional kG-module.

We want to understand S as a kG-module in a manner as explicit as possible. The
ideal solution would be to give a decomposition into indecomposable summands. We are
primarily interested in the modular case, when p divides the order of G, so the problem
is much harder than that of determining the composition factors.

The case of two variables was studied by Glover [13] and Alperin and Kovacs [2] and
the case of three variables by the authors in [11]. This paper generalizes the results of [11]
to any number of variables and we prove a strong finiteness property as a consequence.

Theorem (17.1). The kG-module S has only finitely many isomorphism types of inde-
composable summands, provided that k is finite.

Particularly notable are the applications to invariant theory.

Theorem (17.4). The invariants SG are generated as a ring by elements in degrees less
than or equal to qn−1

q−1
(nq − n− 1), (2q2 − q − 2 if n = 2), where q is the order of k.

It is well known that the invariants are finitely generated and, since k is finite, there
are only finitely many possible actions for a given n, so some bound on the degrees of
the generators must exist for given n and k. The point of the corollary is that it gives
an explicit bound (|G| is such a bound in characteristic 0). For a long time no such
bound was known (except in particular cases), but recently one was given by Derksen and
Kemper, although it is very large (see Section 17 for more details).

There are more precise results if we replace the general finite group G by a p-group P .

Theorem (17.2). Any indecomposable kP -module which is a summand of S is isomorphic
to one occuring in degree less than or equal to qn−1

q−1
− n.
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Theorem (17.3). If we can compute the decomposition into indecomposables of S as a
kP -module in degrees less than or equal to qn−1−n then we can compute it in all degrees.

Thus what is a priori an infinite problem becomes a finite one. Unfortunately the com-
putation in the range required is beyond the capabilities of most computers in interesting
cases with more than three variables.

All of the above results are obtained as corollaries of a Structure Theorem for the
action of the group of upper triangular matrices with 1’s on the diagonal, Un. The ring
of invariants under this group, for which we write SUn , is known to be polynomial in
generators {di | i = 1, . . . , n}, where the degree of di is qi−1. Note that any p-group P
acting on S may be considered to be a subgroup of Un after a change of variables. Our
Structure Theorem describes the kP -module structure of S for any such P :

Theorem 1.1 (§10). There is an isomorphism of graded kP -modules

S ∼=
⊕
J⊆I

k[di | i ∈ I ∪ {n} − J ]⊗k X̄J(I),

where X̄J(I) is a finite dimensional graded kP -module, P acts trivially on k[di], and I is
{1, 2, . . . , n− 1}.

This should be read as saying that S contains one copy of X̄J(I) for each monomial in
the di with i ∈ I ∪ {n} − J .

In fact we have a lot more information about the modules X̄J(I). For example, they
are induced from certain subgroups and we have explicit bounds on the degrees of the
elements.

The idea behind the proof of the Main Theorem is that first we formulate a version for
certain subgroups UI of Un that correspond to a subset I ⊆ {1, . . . , n − 1} and in which
only the rows indexed by elements of I can have non-zero off-diagonal entries. Next we
construct the pieces X̄J(I) by induction on |I|, controlling them via the leading monomials
(in an appropriate sense) of the elements of their socles, and by their Poincaré series. To
show that the pieces fit together exactly is a complicated exercise in accounting.

At one point in the construction we need to know that a certain monomial is the leading
monomial of a trace (or orbit sum) over a subgroup. That this is the case is guaranteed
by the Trace Lemma 16.1. The proof of this lemma fills a seemingly disproportionate
part of the paper, comprising sections 11 to 16. Although the Trace Lemma appears as
a difficult technical point in this context, it might be of independent interest in invariant
theory.

It is a pleasure to thank all our colleagues who have listened patiently to our ideas on
the subject, especially Stephen Siegel, who introduced us to the problem and suggested
Theorem 17.1 in 1995. The first author would also like to thank Matt Brin for listening
to a very detailed series of lectures on trace lemmas. The Trace Lemma and its proof are
based on extensive calculations with Magma [4], in particular code for working with rings
of invariants which was developed by Gregor Kemper (and has since been incorporated
into Magma with help from Allan Steel).

Finally we thank the referee for his meticulous reading of the manuscript.
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2. Background

The fundamental result about group actions on rings from our point of view is the
Normal Basis Theorem in Galois Theory. Let S be a field and G a finite group of au-
tomorphisms of S and let R denote the invariant subfield. The Normal Basis Theorem
states that S is a free RG-module of rank one.

One generalization of this in algebraic number theory is a theorem of Noether. Let S
be the ring of integers in a number field and G a group of automorphisms with R as ring
of invariants. If the extension S/R is tamely ramified then S is locally free of rank one
as an RG-module. The study of this sort of problem is known as Galois Module Theory
and contains a large number of deep results from number theory, particularly class field
theory, and algebraic geometry.

Another generalization is described in [10, 5, 18]. If S is a polynomial ring over a field
k and G is a finite group of automorphisms of S with R as ring of invariants then if we
consider S as a kG-module we find that it is mostly projective in an asymptotic sense; it
is even mostly free when viewed in the right way.

We emphasize that we are really only concerned with the modular case, when the
characteristic p of k divides the order of G, otherwise all modules would be projective.

Of course, the study of group actions on polynomial rings leads to the vast classical
subject of invariant theory, which we will not discuss here. We just mention that for the
groups UI that we consider the rings of invariants are easy to calculate and are polynomial.
In general, neither property holds.

It is essential to distinguish between the two different problems of describing the com-
position factors of S and describing its indecomposable summands. The former is dealt
with in principle by a generalization of Molien’s formula (see e.g. [7] 3.2.5), although it
can still be very difficult. It is the latter that concerns us here. For most groups it is
not even possible to classify the indecomposable representations, so the problem could
become very complicated.

The case of two variables was considered in detail by Glover [13], when p = q, and for
general q by Alperin and Kovacs [2]. It turns out that S is periodic modulo projectives.

Rather than restricting the number of variables, one can restrict the group G. The case
whenG is of prime order p was dealt with by Almkvist and Fossum [1]. If the homogeneous
component of S of degree 1 is indecomposable then again S is periodic of period p modulo
projectives, although the periodic part is complicated to describe. There are also partial
results for other cyclic groups [1, 14, 15, 19]. In this case, if S is indecomposable in degree
1 then the action is periodic modulo summands induced up from proper subgroups. This
is a conjecture of Kemper that was proved in [19] as a corollary of the Main Theorem of
the present paper. This periodicity does not extend to more complicated groups, however.

But cyclic groups have only finitely many isomorphism classes of indecomposable mod-
ules. Siegel and Totaro calculated many examples for the Klein four group, where there
are infinitely many isomorphism types of indecomposables, but they can be classified.
They observed that whenever they decomposed S as a sum of indecomposables only a
finite number of isomorphism types of indecomposable summands actually occurred.
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Motivated by this, we produced a theorem for polynomial rings in three variables [11],
showing, in particular, that only a finite number of isomorphism types of indecompos-
able summands could arise. Instead of periodicity modulo projectives there is a more
complicated system of multiple periodicities, which we called a structure theorem.

The main result of the present paper is a generalization of this structure theorem to an
arbitrary number of variables, Theorem 10.1.

A commentary on the proof, together with some examples, generalizations and appli-
cations is given in [12].

When the field k is infinite and the group G is allowed to be infinite then the situation is
quite different. Doty [8] calculates the submodule lattice for the natural action of SL(n, k)
when k is algebraically closed, and it follows that S is indecomposable in each degree. In
particular, there are infinitely many non-isomorphic summands.

The theory has been generalized in two directions. One is in [20], where finitely gen-
erated graded modules over a ring RG are considered. These do not have to satisfy any
finiteness property on the summands, but it is shown that the property of having only
a finite number of isomorphism types of indecomposable summands is equivalent to the
seemingly stronger property that there is a structure theorem of a similar form to that of
Theorem 1.1.

The other direction is due to Bleher and Chinberg [3]. The polynomial ring S can be
considered as the ring of regular functions on projective space Pn−1(k), and the group G
acts on Pn−1(k). This generalizes to the ring of regular functions on any projective variety
with an action of a finite group G. The authors of [3] prove that there are only finitely
many isomorphism types of indecomposable kG-summands for curves, and for surfaces
where the Sylow p-subgroup has a fixed point.

3. Organization of the Paper

Section 4 is devoted to various subgroups of Un and their invariants. Section 5 intro-
duces the parameter space P (I) which indexes the monomials in the invariants, and we
show how to partition it into pieces SJ(I). Section 6 explains a convenient reduction from
S to a truncated version T .

In Section 7 we order the monomials in the invariants and and show how to deal with
the socle of a submodule in terms of the least monomials of its elements. This is one
of the tools that we use to control the pieces; the other is their Poincaré series, and the
lemmas that we will need to manipulate these are proved in Section 8.

Sections 9 and 10 use all this machinery to define the pieces XJ(I) of T that correspond
to the SJ(I) and to prove the Main Theorem, assuming the validity of the Trace Lemma.
Here XJ(I) for J 6= I is produced inductively from XJ(J) using the Trace Lemma. We
then show that ⊕J$IXJ(I) is a summand of T using our control over the socles to show
that the pieces are linearly independent and our computation of the Poincaré series to
show that they span in high degrees. Then XI(I) is defined to be the complement.

Sections 11 through 16 contain the proof of the Trace Lemma, and Section 17 contains
the proofs of the corollaries.

The reader might first wish to examine the proof of the Main Theorem in the case when
n = 3 and q = 3, as is presented in [12]; this case should help shed light on many of the
intricacies of the paper, even though the higher terms in the trace lemma are zero in this
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case. (But note that in all references in [12] to specific results in this paper the section
number should be increased by 1.)

There is an index of notation at the end.

4. Groups and Polynomials

In this section we define the groups whose representations we will be studying and
describe their invariants.

Let k be the finite field of q elements, where q = ps for some prime p. Let S = ⊕Sr =
k[x1, . . . , xn] denote the polynomial ring over k in n variables, graded by degree. This
notation will remain fixed throughout the paper.

All the groups that we study are subgroups of the upper-triangular n×n matrices over
k with 1’s on the diagonal, denoted by Un. This group is a Sylow p-subgroup of GLn(k).
The group Un is taken to act on the degree-1 part of the polynomial ring S1 (not on its
dual, as is often the case in invariant theory) in the natural way and this extends to the
whole of S.

To be explicit, let aij(λ) be the matrix with λ ∈ k in row i, column j, 1’s on the
diagonal and 0’s elsewhere: then aij(λ) · xj = xj + λxi, while aij(λ) · xl = xl if l 6= j.

Notation 4.1. [I, J,K] I, J,K will always be subsets of {1, . . . , n−1} such that I = Jq
K. We enumerate their elements in ascending order: I = 〈i1, . . . , i|I|〉, J = 〈j1, . . . , j|J |〉,
K = 〈k1, . . . , k|K|〉. The notation 〈. . .〉 is used to imply that the elements are listed in
order and without repetition.

Thus, by convention, K = I − J throughout this paper.

Notation 4.2. [UI ] UI is the subgroup of Un with non-zero off-diagonal entries only in
the rows corresponding to I.

Thus UI contains the aij(λ) with i ∈ I and j > i.

Notation 4.3. [J<i] For any i ∈ N, let J<i = {j ∈ J | j < i}, and similarly for >,≤,≥.

Notation 4.4. [θ(z; I)] If I = 〈i1, . . . , i|I|〉 ⊆ {1, 2, . . . n − 1}, we define θ(z; I) ∈
k[z, xi1 , . . . , xi|I| ] by

θ(z; I) =
∏

(λi1
,...,λi|I| )∈k

I

(z + λi1xi1 + · · ·+ λi|I|xi|I|).

When I = ∅ we interpret this to mean that θ(z; ∅) = z.

Definition 4.5. [di] For i = 1, . . . , n let di = θ(xi; I
<i).

Proposition 4.6. The di are algebraically independent and generate the invariant ring
of the group UI , i.e. SUI = k[d1, . . . , dn].

Proof. This result is well known in invariant theory: see, for example, [16] or [7] 3.7.5.
For the convenience of the reader we sketch a proof.

In order to simplify the notation, let U = UI and let R be the purported ring of
invariants and R̄ = SU the true ring of invariants. Clearly R ⊆ R̄. We will use the letter
Q to denote the field of fractions of a ring.
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From Lemma 6.4 below we know that S is a free R-module with a basis consisting of
|U | elements. It follows that Q(S) is a Q(R)-vector space of dimension |U | so, by Galois
Theory, Q(R) = Q(S)U = Q(R̄).

Suppose that R̄ 6= R, so there is an r ∈ R̄ that is not in R. By expressing r in terms
of the basis we see that it is not in Q(R), hence not in Q(R̄), a contradiction. �

5. The Parameter Space

Here we develop the machinery needed to describe the pieces X̄J(I) in the Main Theo-
rem. We maintain control of these recursively constructed pieces in part by knowing the
leading monomials of bases of their socles. The parameter space P (I) (5.2) will index the
monomials, and X̄J(I) will correspond to a subset S̄J(I) ⊆ P (I).

Definition 5.1. [µ] Let J ⊆ {1, . . . , n − 1} and l ∈ Z. Write J>l = 〈j1, . . . , jm〉 (4.3).
Then µ(J, l) ∈ Z is defined by

µ(J, l) = [(n+1− jm−1)qm+(jm− jm−1)qm−1 + · · ·+(j2− j1−1)q+(j1− l−1)](q−1).

(If m = 0, then µ(J, l) = (n− l)(q − 1).)

Equivalently, µ(J, l) = nqm(q − 1)− qm + 1− (jmq
m−1 + · · ·+ j1)(q − 1)2 − l(q − 1).

Definition 5.2. [P (I)] For any I ⊆ {1, . . . , n−1}, the parameter space on I is P (I) = NI
0,

i.e. the set of all N0-valued functions on I.

We shall often write ~a = (ai1 , . . . , ai|I|) for an indeterminate element of P (I). The

restriction of ~a to P (J) will be denoted by ~aJ , or just by ~a when no no confusion is likely
to arise (and similarly for any other subset).

Definition 5.3. [ψ] If J = 〈j1, . . . , j|J |〉 and ~a ∈ P (I) we define ψ(J,~a) ∈ Z[aj1 , . . . , aj|J| ]

to be (aj1 + qaj2 + · · ·+ q|J |−1aj|J|)(q − 1). (So ψ(∅,~a)) = 0.)

Equivalently, ψ(J,~a) = (q − 1)
∑

j∈J q
|J<j |aj.

Definition 5.4. [λ] λ(J,~a, l) = µ(J, l)−ψ(J>l,~a). We can also regard this as a function

in the last coordinate to obtain ~λ(J,~a) ∈ P (I).

Definition 5.5. [SJ(I), S̄J(I), IEJ,i,EJ,i] We associate to J ⊆ I a set SJ(I) ⊆ P (I)
defined by |I| linear inequalities IEJ,i in the coordinates of ~a ∈ P (I), one for each i ∈ I.

IEJ,i is

{
ai + ψ(J>i,~a) < µ(J, i) if i ∈ J,
ai + ψ(J>i,~a) ≥ µ(J, i) if i /∈ J.

Similarly S̄J(I) is defined by |I| linear (in)equalities EJ,i, where

EJ,i is

{
ai + ψ(J>i,~a) < µ(J, i) if i ∈ J,
ai + ψ(J>i,~a) = µ(J, i) if i /∈ J.

In a context where I is fixed, we write SJ for SJ(I).

It bears emphasizing that µ(J, i) is a constant. It depends on the elements of J , but
not on the coordinates aj.
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Lemma 5.6. If we consider P (K) as the subset of P (I) consisting of the vectors with
coordinates 0 on elements of J , then there is a bijective map S̄J(I)×P (K) → SJ(I) given
by (~s, ~n) 7→ ~s+ ~n.

Proof. Notice that ak for k ∈ K appears only in the defining inequality IEJ,k of SJ(I),
and this is ak + ψ(J>i,~a) ≥ µ(J, k), whereas ak appears only in the defining (in)equality
EJ,k of S̄J(I) and this is ak + ψ(J>i,~a) = µ(J, k). �

Lemma 5.7. SJ(J) = S̄J(J) and S̄J(I) = {~a ∈ P (I) | ~aJ ∈ SJ(J), ~aK = ~λ(J,~aJ)}.

Proof. The first claim follows from the definitions (or from 5.6).
S̄J(I) is defined by |I| linear (in)equalities. The inequalities are the EJ,j for j ∈ J

and these are exactly the |J | (in)equalities that define SJ(J). The equalities are the EJ,k
for k ∈ K and these are of the form ak + ψ(J>k,~a) = µ(J, i), which can be written
ak = λ(J,~a, k). �

Lemma 5.8. (1) IEJ,i depends only on the set J≥i and i; i.e. it is independent of J<i.
(2) If i 6∈ J then IEJ,i and IEJ∪{i},i differ only in that the inequality sign ≥ is replaced

by <.

Proof. Examine the definitions. �

Definition 5.9. [X(L, v)] If I = 〈i1, . . . , it〉 and L ⊂ 〈iv, . . . , it〉 where 1 ≤ v ≤ t+ 1, we
write X(L, v) for the subset of P (I) defined by IEL,iv , . . . , IEL,it .

Proposition 5.10. [Partitions] Let I = 〈i1, . . . , it〉 be a sequence of positive integers,
and {SJ | J ⊆ I} the collection of 2t subsets of P (I) defined above. Then this collection of
subsets is a partition of P (I), i.e. if J and J ′ are distinct subsets of I, then SJ ∩SJ ′ = ∅,
and

⋃
J⊆I SJ = P (I).

We are not simply cutting up P (I) along t hyperplanes, so this is not obvious.

Proof. This is a special case of the following lemma, since P (I) = X(∅, t+ 1). �

Notation 5.11. [Q(L, v)] If v ≤ t + 1 and L ⊂ {iv, . . . , it} we write Q(L, v) for the
following collection of subsets of P (I): {SJ(I) | L ⊆ J ⊆ L ∪ {i1, . . . , iv−1}}.

Lemma 5.12. If L ⊂ 〈iv, . . . , it〉 then Q(L, v) is a partition of X(L, v).

Proof. We work by induction on v (but for all eligible L). The initial case (v = 1) is
immediate since both X(L, 1) and Q(L, 1) are just SL(I).

To prove the general case we note that, for L ⊂ 〈iv, . . . , it〉, X(L, v) = X(L∪{iv−1}, v−
1)qX(L, v− 1), because IEL,i and IEL∪{iv−1},i are the same for i ≥ iv, while IEL,iv−1 and
IEL∪{iv−1},iv−1 are opposites, by 5.8.

Also it is easy to verify that Q(L, v) = Q(L ∪ {iv−1}, v − 1) q Q(L, v − 1). By the
induction hypothesis, Q(L ∪ {iv−1}, v − 1) is a partition of X(L ∪ {iv−1}, v − 1) and
Q(L, v − 1) is a partition of X(L, v − 1). �

Lemma 5.13. S̄J(I) is a finite set.

Proof. All the defining inequalities are of the form < and all the ai and their coefficients
are non-negative, so certainly 0 ≤ ai ≤ µ(J, i) for each i ∈ I. �



THE MODULE STRUCTURE OF A GROUP ACTION ON A POLYNOMIAL RING 8

Lemma 5.14. S̄∅(I) consists of just one point ~p = ~pI , with coordinates (~pI)i = (n −
i)(q − 1). (We will mostly omit the subscript I.)

Proof. The defining equalities reduce to this. �

It will be convenient to make a change of coordinates on our parameter space P (I).
We think of (ai1 , . . . , ai|I|) as the standard coordinates, and for each J ⊆ I, we define new

coordinates (bJi1 , . . . , b
J
i|I|

) in terms of these.

Definition 5.15. [bJi ] For any J ⊆ I and i ∈ I we set bJi = ai − λ(J,~a, i) = ai +
ψ(J>i,~a)− µ(J, i).

We can evaluate the b’s at the point ~p from 5.14.

Lemma 5.16. bJi (~p) = q|J
>i| − 1.

Proof. Let J>i = 〈j1, . . . , js〉 and substitute the values given in 5.14 into the definitions
of the constituent parts of bJi (5.15, 5.3, 5.1):

pi + ψ(J>i, ~p) = (n− i)(q − 1) + [(n− j1) + · · ·+ (n− js)q
s−1](q − 1)2

= −i(q − 1)− [j1 + · · · jsqs−1](q − 1)2 + nqs(q − 1),

µ(J, i) = nqs(q − 1)− [jsq
s−1 + · · ·+ j1](q − 1)− i(q − 1)− qs + 1.

The difference is bJi (~p) = qs − 1, as required. �

Lemma 5.17. For any J ⊆ I and i ∈ I we have ai−pi = (bJi −bJi (~p))−(q−1)
∑

j∈J>i(bJj −
bJj (~p)).

Proof. Both sides are linear combinations of ai, the aj for j ∈ J>i and a constant.
Clearly the coefficients of ai match, and the constant will look after itself by construc-

tion, so we calculate the coefficient of al on the right hand side for l ∈ J>i. If we set
J̄ = (J>i)<l, for convenience, then the coefficient of al in b

J
j for j ∈ J̄ or j = i is (q−1)q|J̄

>j |

and the coefficient of al in bJl is 1.

Thus the total coefficient of al on the right hand side is (q− 1)q|J̄ |− (q− 1)((
∑

j∈J̄(q−
1)q|J̄

>j |)+1). But this is equal to (q− 1)(q|J̄ |− ((q− 1)(
∑|J̄ |

u=1 q
u−1)+1)), which collapses

to 0. �

Lemma 5.18. If ~a ∈ SJ(I) then ak ≥ pk for k ∈ K.

Proof. By definition of SJ(I), we know that bJk ≥ 0 for k ∈ K and bJj ≤ −1 for j ∈ J .
Now substitute this information into the statement of 5.17 with k in place of i to obtain
ak − pk ≥ −bJk (~p)− (q − 1)

∑
j∈J>k(−1− bJj (~p)).

By 5.16, the right hand side is 1−q|J>k|+(q−1)
∑

j∈J>k q|J
>j |, which collapses to 0. �

Definition 5.19. [degI(~a)] For ~a ∈ P (I) we define degI(~a) = 1
q−1

ψ(I,~a).

degI(~a) will be the degree of the monomial associated to ~a when this is defined in 7.1.
The next few lemmas are elementary, but tricky, and will only be used to obtain explicit

bounds in the corollaries to the Main Theorem. The reader who is not interested in this,
or who is willing to take Lemmas 5.21 and 5.22 on trust, can skip to 5.23.
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Lemma 5.20. For any J ⊆ I we have degI(~a) − degI(~p) =
∑

i∈I ω
J
i (bJi − bJi (~p)), where

ωJi = 1 if i ∈ J and ωJi = q|I
<i| if i 6∈ J .

Proof. The right hand side is a linear combination of the bJi and the constant term is
correct by construction. Using the definitions and 5.17 we obtain

degI(~a)− degI(~p) =
∑
i∈I

(ai − pi)q
|I<i|

≡
∑
i∈I

[
bJi − (q − 1)

∑
j∈J>i

bJj

]
q|I

<i| modulo a constant.

If l 6∈ J then bJl appears only once, with coefficient q|I
<l|. If l ∈ J then the total coefficient

of bJl is q|I
<l| − (q − 1)

∑
i∈I<l q|I

<i|, which collapses to 1. �

Lemma 5.21. For ~a ∈ S̄J(I) we have degI(~a) ≤ degI(~p) ≤ qn−1
q−1

− n.

Proof. By definition of S̄J(I) we know that each bJi ≤ 0. Using 5.16, we see that bJi (~p) ≥ 0,
hence the right hand side of the expression in 5.20 is less than or equal to 0, and the first
inequality follows.

From 5.14 we obtain the formula degI(~pI) =
∑

i∈I(n − i)(q − 1)q|I
<i| and we see that

if we add an element to I then each term corresponding to i ∈ I can not decrease and
the new term is positive. Repeating this we see that degI(~pI) ≤ deg〈1,...,n−1〉(~p〈1,...,n−1〉).

Finally, deg〈1,...,n−1〉(~p〈1,...,n−1〉) =
∑n−1

i=1 (n− i)(q− 1)qi−1 = (
∑n−1

i=0 q
i)− n = qn−1

q−1
− n. �

Lemma 5.22. For ~a ∈ S̄J(I) we have degI(~a) ≤ degI(~p)−
∑

j∈J q
|I<j | and for ~a ∈ S̄I(I)

we have degI(~a) ≤ (n− |I|)q|I| − n ≤ qn−1 − n.

Proof. From 5.16 and 5.20, we know that

degI(~a)− degI(~p) =
∑
i∈J

(bJi − q|J
>i| + 1) +

∑
i∈K

q|I
<k|(bJi − q|J

>i| + 1).

Since ~a ∈ S̄J(I), we know from 5.5 and 5.15 that if i ∈ J then bJi < 0, hence bJi ≤ −1,
and if i ∈ K then bJi = 0.

Thus degI(~a)− degI(~p) ≤ −
∑

i∈J q
|J>i| −

∑
i∈K q

|I<i|(q|J
>i| − 1), so

degI(~a)− degI(~p) +
∑
j∈J

q|I
<j | ≤ −

∑
i∈J

(q|J
>i| − q|I

<i|)−
∑
i∈K

q|I
<i|(q|J

>i| − 1).

Let A denote the negative of the right hand side. We need to show that A ≥ 0, but in
fact we claim that A = 0.

Since I<i = J<i qK<i and for i ∈ K we have J = J<i q J>i we find that

A =
∑
i∈J

(q|J
>i| − q|I

<i|) +
∑
i∈K

(q|K
<i|q|J | − qI

<i|)

=
∑
i∈J

q|J
>i| + q|J |

∑
i∈K

q|K
<i| −

∑
i∈I

q|I
<i|

= 1
q−1

[
(q|J | − 1) + q|J |(q|K| − 1)− (q|I| − 1)

]
= 0.



THE MODULE STRUCTURE OF A GROUP ACTION ON A POLYNOMIAL RING 10

For the second claim of the lemma we have J = I, so the first claim yields degI(~a) −
degI(~p) ≤ −

∑
i∈I q

|I<i|.

From 5.14 and 5.19, we obtain degI(~p) =
∑

i∈I piq
|I<i| =

∑
i∈I(n− i)(q − 1)q|I

<I |.

So degI(~a) ≤
∑

i∈I((n−i)(q−1)−1)q|I
<i|. Observe that, as I varies but t = |I| remains

constant, the sum on the right hand side is largest when I = 〈1, . . . , t〉 and then its value
is B =

∑t
i=1((n− i)(q − 1)− 1)qi−1. Notice, for later use, that this increases with t.

B =
[
n(q − 1)− 1

] t∑
i=1

qi−1 −
t∑
i=1

i(q − 1)qi−1

=
[
n(q − 1)− 1

] t∑
i=1

qi−1 −
[
tqt −

t∑
i=1

qi−1

]
= (n− t)qt − n.

We have remarked that this increases with t: the largest value of t allowed is n−1, which
gives qn−1 − n. �

The remaining results in this section are technical observations, which will only be used
in the proof of the Trace Lemma.

We define a slight variation on λ(·, ·, ·) (5.4) to emphasize the dependency on the last
variable. This function will frequently occur as an exponent in the proof of the Trace
Lemma.

Definition 5.23. [f(l)] For fixed J and ~a ∈ P (J) we define f(l) = λ(J,~a, l − 1). (See
5.4.)

Thus f(l) depends implicitly on J≥l and ~aJ≥l as well as on l.

Lemma 5.24. f(n+ 1) = 0 and f satisfies:

f(l) =

{
qf(l + 1)− al(q − 1) l ∈ J
f(l + 1) + q − 1 l /∈ J.

Proof. The first part follows from the definitions and the second from Lemma 5.25, which
is straightforward to prove. �

Lemma 5.25. µ satisfies

µ(J, l − 1) =

{
qµ(J, l) l ∈ J
µ(J, l) + q − 1 l /∈ J

and ψ satisfies

ψ(J>l−1,~a) =

{
qψ(J>l,~a) + (q − 1)al l ∈ J,
ψ(J>l,~a) l /∈ J.

We will also need another variation on this theme. Recall our convention that I = JqK.

Definition 5.26. [SJ(J)-k-compatible] Let ~a ∈ P (J) and let k ∈ I. We say that ~a is
SJ(J)-k-compatible if IEJ,j is satisfied for each j ∈ J>k.
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Lemma 5.27. If ~a is SJ(J)-(l− 1)-compatible then f(l+ 1) < f(l) and if also l ∈ J then
al < f(l + 1).

Proof. By hypothesis and the definition of IE we know that if l ∈ J then al +ψ(J>l,~a) <
µ(J, l). Now move the ψ term to the other side of the inequality and apply the definition
of f (5.23) to see that al < f(l + 1).

For the first inequality use 5.24. If l 6∈ J the result is clear and if l ∈ J then f(l) =
qf(l + 1)− al(q − 1) > qf(l + 1)− f(l + 1)(q − 1) = f(l + 1). �

Lemma 5.28. If ~a is SJ(J)-k-compatible, then it is SJ(J)-l-compatible for any l ≥ k and
f(l) ≥ 0 for any l > k.

Proof. The first claim follows from the definitions. The second is because f(n + 1) = 0
(5.24) and f(l) > f(l + 1) > · · · > f(n+ 1), by 5.27. �

Lemma 5.29. The SJ(J)-k-compatibility of ~a ∈ P (J) depends only on the values of aj
for j ∈ J>k.

Proof. Examine the definitions. �

For the next two lemmas we write K = 〈k1, . . . , k|K|〉 and suppose that 1 < m ≤ |K|.
We are given ~a ∈ P (J) and define ~α ∈ P (J ∪K≤km−1) to have i-th coordinate ai if i ∈ J
and λ(J,~a, i) if i ∈ K≤km−1 .

Lemma 5.30. λ(J ∪K≤km−1 , ~α, km) = λ(J,~a, km).

Proof. Note that (J ∪K≤km−1)>km = J>km and apply the definition of λ. �

Lemma 5.31. If ~a is SJ(J)-k1-compatible, then α is SJ∪K≤km−1 (J∪K≤km−1)-km-compatible.

Proof. Since none of k1, . . . , km are strictly greater than km, the ki-coordinates do not
matter (5.29), and to see that ~α is SJ∪K≤km−1 (J ∪ K≤km−1)-km-compatible it is enough
to show that ~a is SJ(J)-km-compatible. But ~a is SJ(J)-k1-compatible by hypothesis, and
this is a stronger condition (5.28). �

6. The Splitting of the Polynomial Ring

There is a certain easily defined kUI-submodule of S, which we denote by T (I), from
which we can recover the whole of S as a kUI-module. Recall that the invariants under
UI are denoted by d’s.

Definition 6.1. [T (I)] Let T (I) = ⊕Tr be the k-subspace of k[x1, . . . , xn] spanned by
{xa1

1 · · ·xan
n | au < deg du for u /∈ I}.

Lemma 6.2. T (I) is a kUI-submodule of k[x1, . . . , xn]. It is closed under multiplication
by xi for each i ∈ I.

Proof. Note that if g ∈ UI and v /∈ I, then g · xv = xv +
∑

i∈I<v cixi for some ci ∈ k. �

Lemma 6.3. T (I) is closed under multiplication by di for i ∈ I, and also under multi-
plication by hj for j ∈ J .

Proof. Apply Lemma 6.2 and the formula for the invariants (4.5). �
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If we order the x’s by x1 < x2 < · · · < xn, and monomials lexicographically, then
du = xdeg du

u + (lower terms), and the lower terms are monomials in xu and the xi with
i ∈ I.

Lemma 6.4. k[x1, . . . , xn] ∼= k[du | u /∈ I]⊗ T (I) as a graded k[di1 , . . . , di|I| ]UI-module.

Proof. The multiplication map from the right hand side to the left is k[di1 , . . . , di|I| ]UI-
equivariant, so we need only show that it is a bijection.

Let H ⊆ {1, . . . , n} be disjoint from I. Let T (I,H) be the subspace of S spanned by
{xa1

1 · · ·xan
n | au < deg du for u ∈ H}.

We claim that S ∼= k[di | i ∈ H] ⊗ T (I,H) by the multiplication map. The proof is
by induction on |H|; the case H = ∅ is trivial and the case I q H = {1, . . . , n} is the
statement of the lemma.

Let u ∈ H and let H ′ = H − {u}. For the induction step it suffices to show that
T (I,H) ∼= k[du]⊗ T (I,H ′). But we mentioned above that du = xdeg du

u + ( lower terms ),
and the lower terms are in T (I) ⊆ T (I,H ′). Also, it is clear from the definitions that
T (I,H) = k[xdeg du

u ]⊗ T (I,H ′). It is easy to check that duT (I,H) ∩ T (I,H ′) = 0, hence
T (I,H) = duT (I,H) ⊕ T (I,H ′), by considering the dimension in each degree. The
induction step follows by repeated substitution for T (I,H). �

Lemma 6.5. T (I)UI = k[di1 , . . . , di|I| ].

Proof. T (I)UI = k[x1, . . . , xn]
UI ∩ T (I) = k[d1, . . . , dn] ∩ T (I) = k[di1 , . . . , di|I| ]. �

Lemma 6.6. If J ⊆ I, then T (J) is a UJ-submodule of T (I).

Proof. By Lemma 6.2, T (J) is a UJ -module and so is T (I), by restriction. From the
definition of T (J) (6.1), it is clear that T (J) ⊆ T (I). �

7. Monomials

In this section we make the association of a collection of monomials to a submodule
of one of our polynomial rings precise. We also prove that we can perform certain con-
structions (most notably that of direct complements, 7.19) in a way that preserves this
leading-monomial information.

We will apply the results of this section to several different groups and their rings of
invariants; for convenience here we will take the group to be UI and so the polynomial
generators of the invariant ring are d’s.

Notation 7.1. [dI , d
~a
I ] We write dI = {di | i ∈ I}. For ~a ∈ P (I), we write d~aI for the

monomial
∏

i∈I d
ai
i .

The map ~a 7→ d~aI gives a one-to-one correspondence between the elements of P (I) and
monomials in the di for i ∈ I. Notice that this is compatible with 5.19 in the sense that
deg(d~aI) = degI(~a).

Definition 7.2. [Ordering] We legislate that the di are ordered as d1 < d2 < · · · < dn
and then the monomials in k[d1, . . . , dn] are lexicographically ordered. We regard 0 as the
least element of the set of monomials. This ordering is transferred to P (I).
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Lemma 7.3. Suppose that ~v = (vl+1, . . . , vn) and ~a = (al+1, . . . , an) are in P ({l +
1, . . . , n}) and that m,m′ are any monomials involving only d1, . . . , dl. If d~v > d~a, then
we have m · d~v > m′ · d~a.

Definition 7.4. [H(~a)] Given ~a ∈ P (I), we write H(~a) for the vector space spanned by
{d~vI | ~v ∈ P (I) and ~v > ~a}. Sometimes for clarity we write H(~a, k[dI ]), or H(d~a, k[dI ]).

Lemma 7.5. H(~a) is an ideal in k[dI ].

We refer to H(~a) as the ideal of “higher terms”, or the “error ideal” corresponding to
~a.

Notation 7.6. [LM] For f ∈ k[dI ], we write LM(f) for the least monomial of f in
the ordering described above, i.e. the monomial lowest in the ordering which appears
with non-zero coefficient in the expression for f as a sum of monomials. If f = 0 then
LM(f) = 0.

Notice that LM ignores any coefficient that this monomial may have. We may choose
to regard the value of LM as an element of P (I) when it is convenient to do so.

Lemma 7.7. Let {f1, . . . , fr} ⊂ k[dI ] and suppose that the LM(fi) are distinct and non-
zero. Let λi ∈ k for i = 1, . . . , r. Then

(1) LM(
∑r

i=1 λifi) = min{LM(fi) | λi 6= 0}.
(2) The fi are linearly independent.

Proof. The first assertion is clear. The second follows from the first since
∑
λifi = 0

implies that 0 = LM(
∑
λifi) = min{LM(fi) | λi 6= 0}, so all the λi must be 0. �

Lemma 7.8. If f,m ∈ k[dI ] and m is a monomial, then LM(mf) = mLM(f).

Definition 7.9. [soc] Recall that the socle of a kG-module M, denoted by socM , is the
sum of the irreducible submodules.

The socle has the following well-known properties.

Lemma 7.10. Let G be a finite group and let M and N be kG-modules. Then

(1) If socM = 0 then M = 0.
(2) If f : M → N is injective on socM then it is injective.
(3) If G is a p-group then socM is just the submodule of invariants, MG.

The next lemma is also well known.

Lemma 7.11. Let G be a finite group, H ≤ G and let M be a kH-module. Then
(IndGHM)G = {

∑
g∈G/H g ⊗m | m ∈MH} ∼= MH , by the morphism m 7→

∑
g∈G/H g ⊗m,

m ∈MH .

Proof. We concentrate on the equality, since the isomorphism is clear. Certainly the right
hand side is contained in the left hand side. Fix a set of representatives {gi} for G/H with

g1 = 1, so any x ∈ IndGHM can be written uniquely as
∑|G/H|

i=1 gi ⊗mi for some mi ∈M .
If x is invariant under H then m1 must be invariant under H and if x is invariant under

gi then gi ⊗mi = gi(1 ⊗m1) = gi ⊗m1, so mi = m1. Thus if x is invariant under G it
must have the form claimed. �
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Notation 7.12. [suppX] Let X be a graded kUI-submodule of T (I), so socX ⊆ k[dI ].
We write suppX for {LM(x) | x ∈ socX, x 6= 0}.

Lemma 7.13. Suppose that for each m ∈ suppX we are given an element sm ∈ socX
with LM(sm) = m. Then {sm | m ∈ suppX} is a basis for socX.

Proof. {sm | m ∈ suppX} is a linearly independent set by 7.7. To see that this set spans
socX, fix a degree r (in order to make socXr finite-dimensional) and let s ∈ socXr be
outside the span of {sm} with LM(s) maximal. Then there is a c ∈ k such that s−csLM(s)

has a higher least monomial and is also outside the span of {sm}, a contradiction. �

Lemma 7.14. If X and Y are graded submodules of T (I) then

(1) supp(X ∩ Y ) ⊆ suppX ∩ suppY .
(2) If suppX ∩ suppY = ∅ then X+Y is a direct sum and supp(X+Y ) = suppXq

suppY .

Proof. Since soc(X ∩ Y ) = socX ∩ socY , (1) follows from the definition of supp.
To prove (2), note that X and Y are linearly independent by part (1) and Lemma 7.10.

Now the result follows from 7.7(1). �

Lemma 7.15. Let {Xi | i = 1, . . . , r} be graded submodules of T (I) with suppXi pairwise
disjoint. Then the sum of the Xi is direct.

Proof. We prove by induction on r that
∑r

i=1Xi is direct and that supp(
∑r

i=1Xi) =
qr
i=1 suppXi. The case r = 1 is vacuous, and the case r = 2 is Lemma 7.14.
The general case follows by applying the case r = 2 to the modules

∑r−1
i=1 Xi andXr. �

Suppose that X ⊆ T (I) is a UI-submodule and D ⊆ dI . Then k[D] · X is also a
kUI-submodule of T (I).

Notation 7.16. [Propagation] When the multiplication map k[dK ] ⊗k X → T (I) is an
injection we say that X is propagated by dK , and we call k[dK ] ·X the propagation of X
by dK .

Lemma 7.17. The support of the propagation of X by dK is k[dK ] · suppX.

Proof. Apply Lemma 7.8. �

Lemma 7.18. Let X ⊆ T (I)m be a kG-submodule and let d be a monomial of k[dI ]
of degree M . Suppose that d · X has a complement Y ⊆ T (I)m+M . Then X has a
complement Y ′ ⊆ T (I)m. If supp(d · X) ∩ suppY = ∅ then Y ′ can be chosen to satisfy
suppX ∩ suppY ′ = ∅.

Proof. By hypothesis we have (d·X)⊕Y = T (I)m+M ; there is a projection π : T (I)m+M →
d ·X corresponding to this decomposition with ker π = Y . Then the map d−1 · π(d · ( ))
on T (I)m is idempotent with image X, so we can take Y ′ = kerπ(d · ( )).

To prove the last claim, note that if x ∈ suppX ∩ suppY ′ then d · x ∈ supp(d · X) ∩
suppY = ∅, a contradiction. �

Lemma 7.19. Suppose that Xi and Yi are graded kUI-submodules of T (I) such that
T (I) = Xi ⊕ Yi for i = 1, . . . ,m, such that

(1) suppXi ∩ suppXj = ∅ when i 6= j and
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(2) suppT (I) = suppXi q suppYi for each i.

Then

(1) T (I) = (⊕m
i=1Xi)⊕ (∩mi=1Yi) as kUI-modules and

(2) suppT (I) = (qm
i=1 suppXi)q supp(∩mi=1Yi).

Proof. It is sufficient to prove this degree by degree, so we may restrict our attention
to T (I)r. Using the given conditions we see that suppT (I)r = (qm

i=1 supp(Xi)r) q
(∩mi=1 supp(Yi)r). (This is just a statement about sets.) So the sum of the modules
∩mi=1(Yi)r, (X1)r, . . . , (Xm)r is direct, by 7.15.

Writing codim for the codimension of a subspace of T (I)r, we have

codim∩mi=1(Yi)r ≤
m∑
i=1

codim(Yi)r =
m∑
i=1

dim(Xi)r.

So, by dimension-counting, T (I)r = (
∑m

i=1(Xi)r) + (∩mi=1(Yi)r) for each degree r, proving
(1). Part (2) now follows from 7.14(2). �

8. Poincaré Series Lemmas

Notation 8.1. [PS] If Y = ⊕n∈ZYn is a graded k-module, finite dimensional in each
degree, then we define its Poincaré series to be the formal power series in t defined by
PS(Y ) =

∑
n∈Z(dimYn)t

n. (In some contexts this is traditionally called the Hilbert series
instead.)

Lemma 8.2. The propagation of the X by dK (in 7.16) has Poincaré series
(∏

k∈K
1

1−tdeg dk

)
·

PS(X).

Proof. By the definition of propagation, it is isomorphic to k[dK ]⊗X. �

Lemma 8.3. Let W be a graded submodule of T (I), and let X1, . . . , Xr be graded sub-
modules of W such that

PS(X1) + · · ·+ PS(Xr) = PS(W ) and supp(Xi) ∩ supp(Xj) = ∅ when i 6= j.

Then W is the direct sum of the submodules X1, . . . , Xr.

Proof. The sum of the Xi is direct, by 7.15, and
∑

dimXi = dimW in each degree by
hypothesis. �

Definition 8.4. [γ(t)] Let γ(t) = 1 + t+ · · ·+ tq−1.

Definition 8.5. [κ
(n−i)
a ] Let κ

(n−i)
a be the coefficient of ta in the formal power series

γ(t)n−i

1−t =
∑

a≥0 κ
(n−i)
a ta.

Lemma 8.6. If a ≥ (n− i)(q − 1) then κ
(n−i)
a = qn−i.

Proof. Multiplying out the denominator in 8.5 we have γ(t)n−i = κ
(n−i)
0 +

∑
a≥1(κ

(n−i)
a −

κ
(n−i)
a−1 )ta.

But γ(t)(n−i) is a polynomial of degree (q − 1)(n − i), so we must have κ
(n−i)
a = κ

(n−i)
a−1

for a > (q − 1)(n − i) and also γ(t)n−i = κ
(n−i)
0 +

∑(q−1)(n−1)
a=1 (κ

(n−i)
a − κ

(n−i)
a−1 )ta.. Setting

t = 1 gives qn−i = κ
(n−i)
0 +

∑(q−1)(n−1)
a=1 (κ

(n−i)
a − κ

(n−i)
a−1 ) = κ

(n−i)
(q−1)(n−i). �
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Lemma 8.7. If ~a ∈ SJ(I) then κ
(n−k)
ak = qn−k for each k ∈ K.

Proof. Just combine 8.6, 5.18 and 5.14. �

Lemma 8.8. We have PS(T (I)) =
∑

~a∈P (I)

∏
i∈I κ

(n−i)
ai

∏
i∈I t

q|I
<i|ai .

Proof. It follows from Definition 6.1 that

PS(T (I)) =
∏
i∈I

(
1

1− tdeg di
) ·

n∏
l=1

(1 + t+ · · ·+ tdeg dl−1).

We study the second part of the product and find that, since deg(dl) = q|I
<l|,

1 + t+ · · ·+ tdeg dl−1 =

|I<l|−1∏
a=0

γ(tq
a

) =
∏
i∈I<l

γ(tq
|I<i|

).

We also have
n∏
l=1

∏
i∈I<l

γ(tq
|I<i|

) =
∏
i∈I

n∏
l=i+1

γ(tq
|I<i|

) =
∏
i∈I

γ(tq
|I<i|

)n−i.

Returning to our expression for PS(T (I)), i.e. restoring the first product, we have

PS(T (I)) =
∏
i∈I

γ(t|I
<i|)n−i

1− t|I<i| =
∏
i∈I

∑
ai≥0

κ(n−i)
ai

t|I
<i|ai ,

by the definition of κ (8.5), completing the proof. �

9. Assembly

In this section we state and prove the key ingredients (9.1, 9.4, 9.5) for the proof
by induction on |I| of Theorem 10.1. Here we use the Trace Lemma (16.1): the key
application is in Proposition 9.4. This lemma is the only result from Sections 11 through
16 that we need to prove our Structure Theorem (10.1).

Proposition 9.1. Let X1, . . . , Xr be kUI-submodules of T (I) that are obtained via prop-
agation (7.16), i.e. there are finite-dimensional kUI-submodules X̄1, . . . , X̄r and subsets
Di of dI such that Xi is the propagation k[Di] · X̄i

∼= k[Di]⊗ X̄i. Suppose also that

(1) suppXi ∩ suppXj = ∅ if i 6= j and
(2) there is a polynomial F ∈ Z[t] such that F + PS(X1) + · · ·+ PS(Xr) = PS(T (I)).

Then there is a kUI-submodule B ⊂ T (I) such that

(1) PS(B) = F ,
(2) suppB is the complement of ∪i suppXi in supp(T (I)) and
(3) T (I) is the direct sum of the submodules B,X1, . . . , Xr.

Proof. Since F is a polynomial, its coefficients are zero in sufficiently large degrees. There-
fore, the coefficients of ta in

∑r
i=1 PS(Xi) and in PS(T (I)) are the same for sufficiently

large powers of t. By 8.3, it follows that T (I) is the direct sum X1 ⊕ · · · ⊕ Xr in large
degrees.

By 7.18, theXi are individually summands in all degrees, with complements Yi such that
suppXi∩ suppYi = ∅. We can therefore apply 7.19 to see that the Xi are simultaneously
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summands, i.e. their direct sum is a summand. We write B for the complement of ⊕Xi

in T (I) and note that conclusion 2 of 7.19 implies that B satisfies conclusion 2 of the
present proposition. From hypothesis 2 it is immediate that B satisfies conclusion 1. By
construction, B satisfies conclusion 3, so we have completed the proof. �

The least element of K will always be denoted by k1.

Definition 9.2. [G(I, J), G(J)] For J $ I let

G(I, J) =
∏

k1<i≤n, i/∈J

θ(xi; I
<i)

θ(xi; J<i)
.

We will often write just G(J) when I is understood.

Note that G(I, J) is a polynomial, since θ(xi; J
<i) divides θ(xi; I

<i) from the definition.

Definition 9.3. [Tr] As usual, if G is a finite group, H < G and M is a kG-module then
TrG/H : MH →MG is the map m 7→

∑
g∈G/H gm. If H = 1 we write just TrG.

The proof of the next proposition depends on the Trace Lemma, which will eventually
be proved in Section 16. (We ignore the sign in equation (1).)

First we define hi = θ(xi; J
<i), so SUJ = k[h1, . . . , hn], by Proposition 4.6.

Lemma (Trace Lemma, 16.1). If ~a ∈ P (J) is SJ(J)-k1-compatible then

(1) TrUI/UJ

[
G(I, J) · h~aJ

]
= ±dλ(J,~a)

K d~aJ + x,

where x ∈ H(d
λ(J,~a)
K d~aJ , k[dI ]). Furthermore,

(2) TrUI/UJ

[
G(I, J) ·H(h~aJ , k[hJ ])

]
⊂ H(d

λ(J,~a)
K d~aJ , k[dI ]).

Proposition 9.4. Let T (I) be the kUI-submodule of the polynomial ring S defined in
Section 6, and suppose that B is a UJ-submodule of T (J) with suppB = SJ(J). Then
there are UI-submodules X̄J(I) and XJ(I) of T (I) such that

(1) X̄J(I) =
⊕

g∈UI/UJ
g · G(I, J) · B, which is isomorphic to IndUI

UJ
B (but with a

change of grading),
(2) XJ(I) ∼= k[dK ]⊗ X̄J(I),
(3) supp X̄J(I) = S̄J(I) and suppXJ(I) = SJ(I), and
(4) PS(XJ(I)) = PS(B) · [UI : UJ ] ·

∏
k∈K( 1

1−tdeg dk
) · tdegG(I,J).

Notice that, sinceB is a UJ -submodule, suppB is calculated with respect to k[h1, . . . , hn],
but supp X̄J(I) and suppXJ(I) are calculated with respect to k[d1, . . . dn].

Proof. We define a map ρ : IndUI
UJ
B → T (I) using the inclusion T (J) ⊆ T (I), (6.6); if

g⊗ b ∈ IndUI
UJ
B = kUI ⊗kUJ

B then we set ρ(g⊗ b) = g · (G(I, J) · b). (Note that the first
dot is the group action and the second dot multiplication of polynomials.) This map is
well defined since G(I, J) is UJ -invariant.

We claim that ρ is injective; by 7.10, it suffices to show that ρ is injective on the socle
and soc IndUI

UJ
B = (IndUI

UJ
B)UI = {

∑
g∈UI/UJ

g ⊗ b | b ∈ BUJ} ∼= socB, by 7.11. We

need to show that the map that takes (
∑

g∈UI/UJ
g)⊗ b to TrUI/UJ

[G(I, J) · b] is injective.

By hypothesis, suppB = SJ(J), so there is a basis {b(~a) | ~a ∈ SJ(J)} for socB with
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LM(b(~a)) = h~aJ and hence a basis {(
∑

g∈UI/UJ
g)⊗ b(~a) | ~a ∈ SJ(J)} for soc IndUI

UJ
B with

LM(b(~a)) = h~aJ .
By the Trace Lemma (16.1), the least monomial of

ρ
( ∑
g∈UI/UJ

g ⊗ b(~a)
)

= TrUI/UJ
[G(I, J) · b(~a)] is d

~λ(J,~a)
K d~aJ .

In particular, for different ~a the least monomials are distinct so, by 7.13, we have shown
that the given basis of soc IndUI

UJ
B is mapped to a linearly independent set in T (I). It

follows that ρ is injective and we have therefore produced a module X̄J(I) = ρ(IndUI
UJ
B) ⊂

T (I), with the socle having a basis with least terms as specified above.
By the construction of X̄J(I) it follows that

supp X̄J(I) = {d
~λ(J,~a)
K d~aJ | ~a ∈ SJ(J)}

and, by 5.7 this is equal to {d~aI | ~a ∈ S̄J(I)}.
Consider the multiplication map k[dK ]⊗X̄J(I) → T (I) and denote its image by XJ(I).

Clearly

suppXJ(I) = {d~bKd~aI | ~b ∈ P (K), ~a ∈ S̄J(I)},
so suppXJ(I) = SJ(I) by 5.6. Also soc(k[dK ] ⊗ X̄J(I)) = k[dK ] ⊗ soc X̄J(I), which has
a basis consisting of elements m ⊗ b, where m is a monomial in k[dK ] and b is from our
basis for B. The images of these have distinct least monomials, so the multiplication map
is injective by the same argument as was used for ρ.

To see that (4) holds, note that PS(X̄J(I)) = tdegG(I,J)[UI : UJ ] · PS(B), and that the
extra factor in condition (4) comes from the propagation of X̄J(I) by k[dK ] using 8.2. �

Corollary 9.5. With the hypotheses of Proposition 9.4, if we have in addition

PS(B) =
∑

~a∈SJ (J)

∏
j∈J

κ(n−j)
aj

tq
|J<j |aj ,

then we may refine conclusion (4) to state that

PS(XJ(I)) =
∑

~a∈SJ (I)

∏
i∈I

κ(n−i)
ai

tq
|I<i|ai .

To give the proof of Corollary 9.5 we require several lemmas, which we state now.

Definition 9.6. [ν(J, j, k)] Let

ν(J, j, k) =

{
(q − 1)q|(J

<j)>k| if k < j

0 otherwise.

Lemma 9.7. We have ψ(J>k,~a) =
∑

j∈J ν(J, j, k)aj.

Proof. By definition of ψ (5.3), ψ(J>k,~a) = (q − 1)
∑

j∈J>k q|(J
>k)<j |. �

Lemma 9.8. We have deg hj = deg dj −
∑

k∈K deg d
ν(J,j,k)
k .
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Proof. Observe that deg hj = q|J
<j | and deg dj = q|I

<j |. By the definition of ν (9.6), we
have ∑

k∈K

deg d
ν(J,j,k)
k =

∑
k∈K<j

q|I
<k|(q − 1)q|(J

<j)>k|.

It is easily verified that, for k < j, I<k q (J<j)>k = J<j qK<k and it follows that∑
k∈K

deg d
ν(J,j,k)
k =

∑
k∈K<j

q|J
<j∪K<k|(q − 1) =

|I<j |−1∑
u=|J<j |

qu(q − 1) = q|I
<j | − q|J

<j |.

�

Lemma 9.9. We have degG(I, J) =
∏

k∈K deg d
µ(J,k)
k .

Proof. A direct proof is possible, but it is easier to apply the Trace Lemma (16.1) with
~a = 0 and note that λ(J, 0, k) = µ(J, k) (see 5.4). Thus the degree of TrUI/UJ

G(I, J)
is the right hand side of the equation of the lemma. Since G(I, J) is homogeneous, this
must be degG(I, J). �

Proof of Corollary 9.5. To simplify this proof, instead of powers of t in the Poincaré series
we will write invariants, where each invariant d is meant to stand for tdeg d.

Using conclusion (4) of Proposition 9.4 and the expression for PS(B) in the hypothesis,
we obtain:

PS(XJ(I)) =
∑

~a∈SJ (J)

[( ∏
j∈J

κ(n−j)
aj

)
· h~aJ · [UI : UJ ] ·

( ∏
k∈K

1

1− dk

)
· tdegG(I,J)

]
.

Using 9.9 we can replace tdegG(I,J) by
∏

k∈K d
µ(J,k)
k and by 9.8 we can replace hj by

dj
∏

k∈K d
−ν(J,j,k)
k . (All that this means is that the degrees are the same.) We know

from the definition of the groups that [UI : UJ ] = |UK | =
∏

k∈K q
n−k. We can also write∏

k∈K
1

1−dk
=

∑
~b∈P (K) d

~b
K . Therefore we have:

PS(XJ(I)) =
∑

~a∈SJ (J)

[∏
j∈J

κ(n−j)
aj

·
∏
j∈J

(dj
∏
k∈K

d
−ν(J,j,k)
k )aj ·

∏
k∈K

qn−k ·
∑

~b∈P (K)

d
~b
K ·

∏
k∈K

d
µ(J,k)
k

]
.

But
∏

j∈J d
−ν(J,j,k)aj

k = d
∑

j∈J −ν(J,j,k)aj

k = d
−ψ(J>k,~a)
k , by 9.7, and combining this with d

µ(J,k)
k

and dbkk we obtain d
bk+λ(J,~a,k)
k .

Now set αk = bk + λ(J,~a, k) for k ∈ K. We combine this with ~a to form a new vector
~α ∈ P (I). The condition bk ≥ 0 for k ∈ K now becomes αk ≥ λ(J, ~α, k), which is IEJ,k

for ~α, and the condition ~a ∈ SJ(J) yields IEJ,j for j ∈ J .
Thus

∑
~a∈SJ (J)

∑
~b∈P (K) can be replaced by

∑
~α∈SJ (I) and we obtain:

PS(XJ(I) =
∑

~α∈SJ (I)

[( ∏
j∈J

κ(n−j)
aj

)
·
( ∏
k∈K

qn−k
)
· d~αI

]
.

But, since ~α ∈ SJ(I), we can apply 8.7 to replace
∏

k∈K q
n−k by

∏
k∈K κ

(n−k)
αk and combine

it with the other κ-term to obtain
∏

i∈I κ
(n−i)
αi .

All that remains is to replace the di by powers of t. �
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10. The Main Theorem

We can now put all of this together to prove the promised Structure Theorem.

Theorem 10.1. For all I ⊆ {1, . . . , n− 1} there is a direct sum decomposition as graded
kUI-modules T (I) ∼= ⊕J⊆IXJ(I), where

(1) XJ(I) ∼= k[dk | k ∈ K]⊗ X̄J(I) by the multiplication map,
(2) X̄J(I) =

⊕
g∈UI/UJ

g · G(I, J) · XJ(J), which is isomorphic to IndUI
UJ
XJ(J) (but

with a change of grading),
(3) supp X̄J(I) = S̄J(I) and suppXJ(I) = SJ(I),

(4) PS(XJ(I)) =
∑

~a∈SJ (I)

∏
i∈I κ

(n−i)
ai tq

|I<i|ai.

Proof. We prove the theorem by induction on t = |I|, the number of rows. Let J $ I, so
that UJ is a group with fewer than t rows. By induction, we may apply the Theorem to
UJ and obtain a direct sum decomposition of T (J) and, in particular, a finite-dimensional
submodule XJ(J). Applying Proposition 9.4 and Corollary 9.5, we obtain a submodule
XJ(I) ⊆ T (I) with the properties required by the statement of the Theorem. It remains
to exhibit the module XI(I).

By Proposition 5.10 the complement of ∪J$ISJ(I) in P (I) is SI(I) and since, by 8.8,

PS(T (I)) =
∑

~a∈P (I)

∏
i∈I

κ(n−i)
ai

tq
|I<i|ai ,

it follows that

PS(T (I))−
∑
J$I

PS(XJ(I)) =
∑

~a∈SI(I)

κ(n−i)
ai

tq
|I<i|ai .

Now set

F =
∑

~a∈SI(I)

κ(n−i)
ai

tq
|I<i|ai

and apply Proposition 9.1 to obtain a module B. We set XI(I) = B and note that, by
construction, XI(I) has the properties required, by the statement of the present theorem.

�

Combining this with 6.4 we obtain the Main Theorem of the Introduction 1.1.

11. Overview of the Trace Lemmas

Our aim in the next part of the paper is to prove the Trace Lemma (16.1), which will
complete the proof of Theorem 10.1. In order to prove this lemma, we start with an
elementary fact about finite fields (12.3), which can be considered as computing a trace
over the additive group of k. Since we can obtain the group UK over which we must
compute a trace by repeated extensions by groups isomorphic to k+, we can perform a
proof by induction.

More explicitly, the group UK can be written as a product U{k1} ·U{k2} · · ·U{k|K|}, break-
ing it up row by row. We refer to the result for U{ki} as the “One-Row” Trace Lemma
(15.3). In order to obtain this we need a result for groups with one row having only m
positions with nonzero entries, which we call the “m-Step” Lemma (15.2). The key point
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in the proof of the m-Step Lemma is the induction step, or “One-Step” Lemma (14.1).
This is where almost all of the bookkeeping is concentrated.

Once the proof of the One-Row Trace Lemma is complete, we must do a second induc-
tion to prove the “m-Row” Lemma (16.2). This lemma follows in a completely formal
way from the One-Row Lemma, and the Trace Lemma (16.1), which is our ultimate goal,
is a special case of the m-Row Lemma.

The reader should note that the only result in Sections 12 to 16 that is used in any other
part of the paper is the Trace Lemma itself (16.1). Furthermore, the extra bookkeeping
(starting in Lemma 12.18) required to get the sign in the Trace Lemma is not necessary
for our application.

In principle, the traces we need can be calculated by the elegant method of [17], but
the change of basis required seems difficult to formulate explicitly.

Now we fix the notation for the invariants of all the different groups that we will
consider. We start with the invariants of UJ , which are denoted by h’s. As we move to
larger groups, we move the letters used to denote the invariants down the alphabet, so that
g’s denote invariants of UJ∪{k1}, f ’s denote invariants of UJ∪K≤km−1 , e’s denote invariants
of UJ∪K≤km , and d’s denote invariants of UI (consistently with 4.5). To summarize:

Definition 11.1. [di, ei, fi, gi, hi] For given km ∈ K, let hi = θ(xi; J
<i), gi = θ(xi; (J ∪

{k1})<i), fi = θ(xi; (J ∪K≤km−1)<i), ei = θ(xi; (J ∪K≤km)<i), di = θ(xi; I
<i).

By Proposition 4.6, the di, ei, fi, gi, and hi are algebraically independent and generate
the invariant rings of the groups UI , UJ∪K≤km , UJ∪K≤km−1 , UJ∪{k1}, and UJ , i.e.:

SUI = k[d1, . . . , dn] SUJ∪{k1} = k[g1, . . . , gn]
SUJ∪K≤km = k[e1, . . . , en] SUJ = k[h1, . . . , hn]

S
U

J∪K
≤km−1 = k[f1, . . . , fn].

We also need some basic subgroups, from which the other groups are built.

Notation 11.2. [A(xi, xj)] A(xi, xj) is the subgroup of Un consisting of matrices with
just one non-zero off-diagonal entry in position (i, j). (Mnemonic: Add xi to xj.)

Thus A(xi, xj) = {aij(λ) | λ ∈ k} (see §4).

12. Trace Lemmas

Many of the results in this section are well known.

Notation 12.1. [θ(y, x)] We write θ(y, x) for
∏

λ∈k(y+λx). (This is just a slight variation
on the definition of θ in 4.4.)

Lemma 12.2. θ has the following properties:

(1) θ(y, x) = yq − yxq−1,
(2) θ(v; I) = 0 if v is a linear combination of the xi for i ∈ I,
(3) θ(t; I) is linear in t over k,
(4) θ(t; I) = θ(θ(t; I − {i}), θ(xi; I − {i})) for i ∈ I.

Proof. (1) The expression yq−yxq−1 vanishes whenever y = λx, λ ∈ k, so must be divisible
by θ(y, x). But both expressions have the same degree and the same coefficient of yq, so
must be equal.
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(2) This is clear from the definition.
We prove (3) and (4) together by induction on the size of I. If I = {i} then θ(t; I) =

θ(t, xi), so (3) is true by (1) and (4) is clear from the definitions. If |I| > 1 then it follows
from the induction hypothesis that θ(θ(t; I − {i}), θ(xi; I − {i})) is linear in t. Suppose
that t = v + λxi, where v is a linear combination of {xj | j ∈ I − {i}}. Then

θ(θ(t; I−{i}), θ(xi; I−{i})) = θ(θ(v; I−{i}), θ(xi; I−{i}))+λθ(θ(xi; I−{i}), θ(xi; I−{i})),
and we see that the right hand side is zero using property (2). So θ(θ(t; I −{i}), θ(xi; I −
{i})) is divisible by all expressions t − v − λxi, hence by θ(t; I). Since both expressions

have the same degree and the same coefficient of tq
|I|

, they must be equal. �

Lemma 12.3. If i > 0, then∑
λ∈k

λi =

{
0 i 6≡ 0 mod q − 1,

−1 i ≡ 0 mod q − 1.

Proof. Let ω be a generator of the cyclic multiplicative group F×
q , so

∑
λ∈k λ

i =
∑q−1

j=1 ω
ij.

If i ≡ 0 mod q − 1, then ωi = 1 so this sum is −1. Otherwise we sum the geometric
series to obtain ωi(1− ωi(q−1))(1− ωi)−1 = 0. �

Definition 12.4. [TrA(x,y)] Let R be a commutative k-algebra without zero-divisors,
and let TrA(x,y) : R[x, y] → R[x, y] be the function defined by f 7→

∑
λ∈k f(x, y + λx) for

f ∈ R[x, y]. This extends to the field of fractions of R[x, y].

Observe that this definition is consistent with Definition 9.3 and Notation 11.2 if we
regard A(x, y) as the additive group of k and let it act on R[x, y] in such a way that λ ∈ k
sends x 7→ x and y 7→ y + λx.

Lemma 12.5. Let f ∈ R[x, y] and write

f(x, y + h) = a0(x, y) + a1(x, y)h+ a2(x, y)h
2 + · · ·

in R[x, y, h], where ai(x, y) ∈ R[x, y]. Then

TrA(x,y) f = −[aq−1(x, y)x
q−1 + a2(q−1)(x, y)x

2(q−1) + a3(q−1)(x, y)x
3(q−1) + · · · ]

Proof. Note that TrA(x,y) f = qa0(x, y) + a1(x, y)(
∑

λ∈k λ)x + a2(x, y)(
∑

λ∈k λ
2)x2 + · · · ,

and apply 12.3. �

Lemma 12.6. We have

TrA(x,y) y
i =

{
0, i < q − 1

−xq−1, i = q − 1

Proof. Use the binomial expansion for (y + h)i and 12.5. �

Lemma 12.7. Let 〈u, v〉 ⊆ R[u, v] denote the k-vector space spanned by u and v. If
f ∈ R[y], φ : 〈u, v〉 → R is linear over k and TrA(x,y) f = g(x, y) then

TrA(u,v) f(φ(v)) = g(φ(u), φ(v)).

Proof. TrA(u,v) f(φ(v)) =
∑
λ∈k

f(φ(v + λu)) =
∑
λ∈k

f(φ(v) + λφ(u)) = g(φ(u), φ(v)). �
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Lemma 12.8. TrA(x,y) θ(y; I)
i = 0 if i < q − 1, while TrA(x,y) θ(y; I)

q−1 = −θ(x; I)q−1.

Proof. Apply 12.6 and 12.7 with θ(·; I) as φ : k〈x, y〉 → R. �

Lemma 12.9. In the field of fractions of k[x, y],

TrA(x,y)
1

y
=
−xq−1

θ(y, x)
.

Proof. Note that TrA(x,y)
1

y
=

1

θ(y, x)
TrA(x,y)

θ(y, x)

y
= TrA(x,y)(y

q−1 − xq−1) and use 12.6.

�

Lemma 12.10. If l, t 6∈ I, l 6= t then in the field of fractions of k[x1, . . . , xn] we have

TrA(xt,xl)
1

θ(xl; I)
=
−θ(xt; I)q−1

θ(xl; I ∪ {t})
.

Proof. Use Lemmas 12.9 and 12.7 with θ(·; I) as φ : k〈xt, xl〉 → R to obtain

TrA(xt,xl)
1

θ(xl; I)
=

−θ(xt; I)q−1

θ(θ(xl; I); θ(xt; I))
.

By 12.2(4), this is equal to the form claimed. �

Lemma 12.11. Write B for the group of automorphisms of k[x, y] given by y 7→ µy+λx,
x 7→ x, µ, λ ∈ k, µ 6= 0. Then the invariant ring k[x, y]B is k[x, θ(y, x)q−1].

Proof. First note that B = A o C, where C ∼= k× is the subgroup for which λ = 0
and A is the subgroup with µ = 1. Now notice that k[x, y]A = k[x, θ(y, x)] has a basis
{xiθ(y, x)j | i ≥ 0, j ≥ 0} consisting of eigenvectors for the action of C. The invariant
ring k[x, θ(y, x)]C is the +1 eigenspace, which is just k[x, θ(y, x)q−1]. Alternatively, use
the method of 4.6 or of [7] 3.7.5. �

Lemma 12.12. TrA(x,y)((x
q−1 − yq−1)a) = x(q−1)a + θ(y, x)q−1P (x, θ(y, x)q−1), for some

polynomial P in two variables.

Proof. Notice that yq−1 is already invariant under y 7→ µy for µ ∈ k, µ 6= 0. So, in the
notation of 12.11, TrA((xq−1 − yq−1)a) is B-invariant and lies in k[x, θ(y, x)q−1].

Regarding TrA(x,y)((x
q−1−yq−1)a) as a polynomial in x and θ(y, x)q−1 it suffices to check

that the coefficient of x(q−1)a is 1. Since we are checking a polynomial identity, we can set
y = 0, so θ(y, x) = 0 also. We have

[TrA((xq−1 − yq−1)a)]|y=0 =
∑
λ∈k

(xq−1 − (λx)q−1)a

= x(q−1)a +
∑
λ∈k×

(xq−1 − λq−1xq−1)a

= x(q−1)a,

and the coefficient of x(q−1)a is indeed 1. �

Lemma 12.13. If l, t /∈ I then, for some polynomial P ,

TrA(xt,xl) [θ(xt; I ∪ {l})a] = θ(xt; I)
qa+θ(xl; I∪{t})q−1·θ(xt; I)a·P (θ(xt; I), θ(xl; I∪{t})q−1).
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Proof. First observe that, by Lemma 12.2 parts (1) and (4), θ(xt; I∪{l})a = θ(xt; I)
a[θ(xt; I)

q−1−
θ(xl; I)

q−1]a. Now θ(xt; I) is invariant under A(xt, xl) so, by 12.12 and 12.7,

TrA(xt,xl) [θ(xt; I ∪ {l})a] =

θ(xt; I)
a[θ(xt; I)

(q−1)a + θ(θ(xl; I), θ(xt; I))
q−1 · P (θ(xt; I), θ(θ(xl; I), θ(xt; I))

q−1)].

But θ(θ(xl; I), θ(xt; I)) = θ(xl, I ∪ {t}), by 12.2(4). �

Lemma 12.14. Let 1 ≤ k, l ≤ n − 1 but k, l 6∈ I. Then θ(xl; I ∪ {k}) · θ(xk; I) =
−θ(xl; I) · θ(xk; I ∪ {l}).
Proof.

θ(xl; I ∪ {k}) · θ(xk; I) =
[
θ(xl; I)

q − θ(xk; I)
q−1θ(xl; I)

]
· θ(xk; I) by Lemma 12.2(4)

= θ(xl; I) ·
[
θ(xl; I)

q−1θ(xk; I)− θ(xk; I)
q
]

= −θ(xl; I)θ(xk; I ∪ {l}) by Lemma 12.2(4).

�

Recall from 11.1 that hi = θ(xi; J
<i), gi = θ(xi; (J ∪ {k1})<i).

Lemma 12.15. If l /∈ J then

TrA(xk1
,xl)

1

hl
=
−θ(xk1 ; J<(l+1))q−1

gl
.

Proof. Apply Lemma 12.10. �

Notation 12.16. [J̃ ] Let J̃ denote J>k1 .

Lemma 12.17 (Theta Lemma). θ(xk1 ; J
<l) is an element of k[hk1 , hJ̃<l ]. As an element

of k[h1, . . . , hn], its least term is hq
|J̃<l|

k1
.

Proof. We prove the result by induction on |J̃<l|. If |J̃<l| = 0 then θ(xk1 ; J
<l) = hk1 , so

the initial case is clear. To prove the induction step, let j be the largest number in J̃<l

and apply Lemma 12.2 parts (1) and (4) to get the equation

θ(xk1 ; J
<l) = θ(xk1 ; J

<l − {j})q − θ(xj; J
<l − {j})q−1 · θ(xk1 ; J<l − {j}).

By the induction hypothesis, we have an expression θ(xk1 ; J
<l−{j}) = hq

|J̃<l|−1

k1
+f , where

f ∈ k[hk1 , hJ̃<l−{j}] is a polynomial with deghk1
f < q|J̃

<l|−1. In any case, θ(xj; J
<l−{j}) =

hj. Thus we can write θ(xk1 ; J
<l) = (hq

|J̃<l|−1

k1
+ f)q − hq−1

j (hq
|J̃<l|−1

k1
+ f) = hq

|J̃<l|

k1
+ f q −

hq−1
j hq

|J̃<l|−1

k1
− hq−1

j f.

Because of the condition on deghk1
f , we see that hq

|J̃<l|

k1
is the least term of the last

expression, and this proves the lemma. �

Lemma 12.18 ((a, b)-Lemma). Let l ∈ J̃ . If a < b then

(1) TrA(xk1
,xl)

[
hal θ(xk1 ; J

<l+1)b
]

= (−1)agal θ(xk1 ; J
<l)a+q(b−a) mod ga+1

l k[gk1 , hJ̃<l , gl].

If, instead, a ≥ b then, for some polynomial Q,

(2) TrA(xk1
,xl)

[
hal θ(xk1 ; J

<l+1)b
]

= gbl θ(xk1 ; J
<l)b ·Q(gl, θ(xk1 ; J

<l)).
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Proof. Since l > k1 we have, by Lemma 12.14, that hl · θ(xk1 ; J<(l+1)) = −gl · θ(xk1 ; J<l).
Case 1: a < b. From the observation above, we have

TrA(xk1
,xl)

[
hal θ(xk1 ; J

<(l+1))b
]

= (−1)agal θ(xk1 ; J
<l)a TrA(xk1

,xl)

[
θ(xk1 ; J

<(l+1))b−a
]
,

and now we use Lemma 12.13 to obtain

(−1)agal θ(xk1 ; J
<l)a

[
θ(xk1 ; J

<l)q(b−a) + gq−1
l θ(xk1 ; J

<l)b−aP (θ(xk1 ; J
<l), gq−1

l )

]
.

We know that θ(xk1 ; J
<l) ∈ k[hk1 , hJ̃<l ] by 12.17 and gk1 = hk1 from the definitions.

Case 2: a ≥ b. From the observation again, we get

TrA(xk1
,xl)

[
hal θ(xk1 ; J

<(l+1))b
]

= (−1)bgbl θ(xk1 ; J
<l)b TrA(xk1

,xl)

[
ha−bl

]
= gbl θ(xk1 ; J

<l)bQ(gl, θ(xk1 ; J
<l)).

The last step perhaps requires a little explanation, even though the reason it works is quite
general. Consider the action of A(xk1 , xl) on k[hl, θ(xk1 ; J

<l)]. This has the effect hl 7→
hl+λθ(xk1 ; J

<l), where λ ∈ k. The invariant subring under this action is k[gl, θ(xk1 ; J
<l)],

and so TrA(xk1
,xl)[h

a−b
l ] = Q(gl, θ(xk1 ; J

<l)) for some polynomial Q (which is possibly

0). �

13. Preparations for the One-Step Lemma

The purpose of this section is to set up some notation that will be used for the One-Step
Lemma (14.1) and establish some simple properties of this notation.

Definition 13.1. [G(I, J)l] For l = k1 + 1, . . . , n+ 1, let

G(I, J)l =
∏

k1<i<l i/∈J

θ(xi; I
<i)

θ(xi; J<i)

∏
l≤i≤n i/∈J

θ(xi; I
<i)

θ(xi; J<i ∪ {k1})
.

We will usually write just G(J) for short, since I will not vary.

Lemma 13.2. G(J)n+1 = G(J) and G(J)k1+1 = G(J ∪ {k1})

Lemma 13.3. For l > k1 both G(J)l and gl are A(xk1 , xl)-invariant.

Notation 13.4. [wl,i, wl,X ] Let wl,i = hi if i < l and wl,i = gi if i ≥ l.
For X ⊆ {1, . . . , n}, we write wl,X for the set {wl,i | i ∈ X} and for X ⊆ Y and

~a ∈ P (Y ) we write w~al,X for
∏

i∈X w
ai
l,i.

Lemma 13.5. If l /∈ J then

(1) θ(xk1 ; J
<l+1) = θ(xk1 ; J

<l) is A(xk1 , xl)-invariant (3) G(J)l+1 = G(J)l
gl

hl

(2) w~a
l+1,J̃

= w~a
l,J̃

is A(xk1 , xl)-invariant (4) J̃≥l = J̃≥l+1 and J̃<l = J̃<l+1

Lemma 13.6. If l ∈ J then

(1) w~a
l+1,J̃

= w~a
l,J̃

(hl

gl
)al (3) G(J)l+1 = G(J)l

(2) w~a
l,J̃

is A(xk1 , xl)-invariant
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Lemma 13.7. If l /∈ J, l > k1 then

G(J)l+1θ(xk1 ; J
<l+1)f(l+1)w~a

l+1,J̃
= G(J)lglw

~a
l,J̃
· θ(xk1 ; J

<l+1)f(l+1)

hl
,

and everything on the right hand side before the dot is A(xk1 , xl)-invariant.

Proof. Apply Lemmas 13.5 and 13.3. �

Lemma 13.8. If l ∈ J, l > k1 then

G(J)l+1θ(xk1 ; J
<l+1)f(l+1)w~a

l+1,J̃
= G(J)lw

~a
l,J̃

1

gal
l

· hal
l θ(xk1 ; J

<l+1)f(l+1),

and everything on the right hand side before the dot is A(xk1 , xl)-invariant.

Proof. Apply Lemmas 13.6 and 13.3. �

The One-Step Lemma will compute certain traces up to an error term which lies in a
certain ideal Rl(~a) over which we have some control. We now define this ideal.

Remark 13.9. In reading the following definition, recall that hk1 = gk1 and also the
ordering on elements of P (I) (7.2).

If ~a ∈ P (J) and J ′ ⊂ J we will write ~aJ ′ ∈ P (J ′) for the obvious restriction, and
sometimes just ~a when no confusion is likely to arise. We will also on occasion extend ~a
by 0 to give a vector ~a0 ∈ P (J ∪ {k1}).

Definition 13.10. Given k1,J̃ , ~a ∈ P (J̃) and l such that k1 < l ≤ n + 1 and f(l) ≥ 0,
we write Rl(~a) for the k-subspace of k[gk1 , wl,J̃ ] spanned by elements of the form

(1) gck1w
~v
l,J̃

where ~v ∈ P (J̃), ~vJ̃≥l > ~aJ̃≥l , and c ≥ 0,

and elements of the form

(2) gdk1θ(xk1 ; J
<l)f(l)w~v

l,J̃
where ~vJ̃≥l = ~aJ̃≥l , ~vJ̃<l > ~aJ̃<l , and d ≥ 0.

Thus Rl(~a) depends implicitly on k1 and J̃ , although they do not appear in the notation.

Remark 13.11. The extreme cases l = n + 1 and l = k1 + 1 are of special interest in the
above definition.

By definition, Rn+1(~a) is spanned by elements of types 1 and 2. If l = n+1 then J̃≥l is
empty and thus ~vJ̃≥l = ~aJ̃≥l . In particular, ~vJ̃≥l > ~aJ̃≥l is impossible and so there are no
elements of type 1. As for the elements of type 2, f(n+ 1) = 0 (5.24) and gk1 = hk1 and
so Rn+1(~a) is the ideal in k[hk1 , hJ̃ ] generated by monomials with exponent vector greater
than ~a0. In other words, Rn+1(~a) = H(~a0, k[hk1 , hJ̃ ]), (see 7.4).

If l = k1 + 1 then J̃<k1+1 is empty and ~vJ̃<k1+1 > ~aJ̃<k1+1 is impossible. It follows
that there are no elements of type 2. Similarly, this means that Rk1+1(~a) is the ideal
in k[gk1 , gJ̃ ] generated by monomials with exponent vector greater than ~aJ̃ . That is,
Rk1+1(~a) = H(~a0, k[gk1 , gJ̃ ]).

Lemma 13.12. Rl(~a) is an ideal in k[gk1 , wl,J̃ ].
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Proof. In order to prove that a sub-vector-space of k[gk1 , wl,J̃ ] is an ideal, it is enough to

show that the subspace is closed under multiplication by gk1 and wl,i for i ∈ J̃ .
First we show that the span of the elements of type 1 forms an ideal. Let gck1w

~v
l,J̃

be

an element of type 1 in Rl(~a), so ~vJ̃≥l > ~aJ̃≥l . Consider the product of this element with
each of the following:

(1) gk1 : The product is again an element of type 1 in Rl(~a).
(2) hi, i < l: Write ~v′ for the exponent vector of w~v

l,J̃
· hi. Then ~v′

J̃≥l = ~vJ̃≥l > ~aJ̃≥l

and so the product is still an element of type 1 in Rl(~a).
(3) gi, i ≥ l: Write ~v′ for the exponent vector of w~v

l,J̃
· gi. Then ~v′

J̃≥l > ~vJ̃≥l > ~aJ̃≥l and

so the product is still an element of type 1 in Rl(~a).

Thus we have shown that the elements of type 1 form an ideal in k[gk1 , wl,J̃ ].

Now let gdk1θ(xk1 ; J
<l)f(l)w~v

l,J̃
be an element of type 2. We have the conditions ~vJ̃≥l =

~aJ̃≥l , ~vJ̃<l > ~aJ̃<l . Consider the product of this element with each of the following:

(1) gk1 : The product is again an element of type 2 in Rl(~a).
(2) hi, i < l: Write ~v′ for the exponent vector of w~v

l,J̃
· hi. Then ~v′

J̃≥l = ~vJ̃≥l = ~vJ̃≥l

and ~v′
J̃<l > ~vJ̃<l > ~aJ̃≥l so the product is still an element of type 2.

(3) gi, i ≥ l: This is the only tricky part. Write ~v′ for the exponent vector of w~v
l,J̃
· gi.

Then ~v′
J̃≥l > ~vJ̃≥l = ~aJ̃≥l and so w~v

l,J̃
· gi is an element of type 1 in Rl(~a). We

have already shown that the span of the elements of type 1 forms an ideal in
k[gk1 , wl,J̃ ]. By the Theta Lemma (12.17), θ(xk1 ; J

<l) ∈ k[gk1 , wl,J̃ ]. Hence the

product gdk1θ(xk1 ; J
<l)f(l)w~v

′

l,J̃
is a linear combination of elements of type 1 and

therefore lies in Rl(~a).

�

14. The One-Step Lemma

Lemma 14.1 (One-Step Lemma). Let ~a ∈ P (J̃) be SJ(J)-(l − 1)-compatible and k1 <
l ≤ n. Then we have

(1) TrA(xk1
,xl)

[
G(J)l+1θ(xk1 ; J

<l+1)f(l+1)w~a
l+1,J̃

]
= G(J)l

[
(−1)σθ(xk1 ; J

<l)f(l)w~a
l,J̃

+ x
]
,

where x ∈ Rl(~a) and σ = 1 if l /∈ J , σ = al if l ∈ J . Furthermore,

(2) TrA(xk1
,xl) [G(J)l+1Rl+1(~a)] ⊆ G(J)lRl(~a).

Notice that both f(l) and f(l + 1) are non-negative, by 5.28.

Proof of the One-Step Lemma. Formula (1). In this part we compute a trace up to an
element of Rl(~a). We divide the calculation into two cases, according to whether l ∈ J or
not.
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Case l /∈ J . By Lemma 13.7, it is enough to compute:

TrA(xk1
,xl)

θ(xk1 ; J
<l+1)f(l+1)

hl
= −θ(xk1 ; J

<l+1)f(l+1)+q−1

gl
by Lemma 12.15

= −θ(xk1 ; J
<l)f(l)

gl
by Lemmas 5.24 and 13.5(1).

Thus TrA(xk1
,xl)

[
G(J)l+1θ(xk1 ; J

≤l+1)f(l+1)w~a
l+1,J̃

]
= −G(J)lθ(xk1 ; J

<l)f(l)w~a
l,J̃

exactly, with

no error term.

Case l ∈ J . By Lemma 13.8, we need to compute TrA(xk1
,xl)

[
hal
l θ(xk1 ; J

<l+1)f(l+1)
]
.

Since ~a is SJ(J)-(l − 1)-compatible, 5.27 applies and we know that f(l + 1) > al. So
from the first part of the (a, b)-Lemma (12.18(1)), the required trace is equal to
(−1)algal

l θ(xk1 ; J
<l)al+q(f(l+1)−al) + gal+1

l X, where X ∈ k[gk1 , wl,J̃ ].
Now we apply 5.24 to simplify the exponent; we obtain (−1)algal

l θ(xk1 ; J
<l)f(l) +gal+1

l X
and so

TrA(xk1
,xl)

[
G(J)l+1θ(xk1 ; J

<l+1)f(l+1)w~a
l+1,J̃

]
= G(J)l

[
(−1)alθ(xk1 ; J

<l)f(l)w~a
l,J̃

+ w~a
l,J̃
glX

]
.

To complete this part of the proof, we must show that w~a
l,J̃
glX ∈ Rl(~a). Note that the

power of gl in the monomial w~a
l,J̃
gl is greater than al, so w~a

l,J̃
gl is a generating element of

Rl(~a) of type 1. In particular, w~a
l,J̃
gl ∈ Rl(~a). Since X ∈ k[gk1 , wl,J̃ ] and Rl(~a) is an ideal

in this ring (13.12), w~a
l,J̃
glX ∈ Rl(~a).

This completes the proof of the first formula; we now turn to the second one.

Formula (2). There are two types of traces, corresponding to the two types of generators
of Rl(~a).

Type 1. The first type is TrA(xk1
,xl)

[
G(J)l+1g

c
k1
w~v
l+1,J̃

]
for ~vJ̃≥l+1 > ~aJ̃≥l+1 .

The calculation splits into two cases, depending on whether l ∈ J or not.

Type 1, l /∈ J . If l /∈ J we apply Lemmas 13.3 and 13.5 and obtain:

TrA(xk1
,xl)

[
G(J)l+1g

c
k1
w~v
l+1,J̃

]
= TrA(xk1

,xl)

[
G(J)l

gl
hl
gck1w

~v
l+1,J̃

]
= G(J)lglg

c
k1
w~v
l,J̃

TrA(xk1
,xl)

1

hl
.

By 12.15, TrA(xk1
,xl)

1
hl

= −θ(xk;J≤l)q−1

gl
, so

TrA(xk1
,xl)

[
G(J)l

gl
hl
gck1w

~v
l+1,J̃

]
= −G(J)lg

c+q−1
k1

w~v
l,J̃
.

Since J̃≥l = J̃≥l+1 we have ~vJ̃≥l > ~aJ̃≥l and therefore gc+q−1
k1

w~v
l,J̃
∈ Rl(~a).
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Type 1, l ∈ J . If l ∈ J we apply Lemma 13.6 and get:

TrA(xk1
,xl)

[
G(J)l+1g

c
k1
w~v
l+1,J̃

]
= G(J)lg

c
k1

w~v
l,J̃

gvl
l

TrA(xk1
,xl) h

vl
l .

Note that
w~v

l,J̃

g
vl
l

is a polynomial (13.4), which contains g~v
J̃≥l+1 as a factor. Since gck1w

~v
l+1,J̃

is

of type 1 in Rl+1(~a) by hypothesis, it follows that ~vJ̃≥l+1 > ~aJ̃≥l+1 and hence that g~v
J̃≥l+1 is

an element of Rl(~a) of type 1. Since Rl(~a) is an ideal in k[gk1 , wl,J̃ ] (13.12),
w~v

l,J̃

g
vl
l

∈ Rl(~a).

Now we have to study the trace of hvl
l . We apply the (a, b)-Lemma (12.18) with a = vl,

b = 0 to conclude that TrA(xk1
,xl) h

vl
l lies in k[gl, θ(xk1 ; J

<l)], which in turn is contained in

k[hk1 , hJ̃<l , gl] by the Theta Lemma (12.17). Now k[hk1 , hJ̃<l , gl] ⊂ k[gk1 , wl,J̃ ] and, since

Rl(~a) is an ideal in k[gk1 , wl,J̃ ] (13.12), the product gck1
w~v

l,J̃

g
vl
l

TrA(xk1
,xl) h

vl
l lies in Rl(~a).

Type 2. The second type of trace is TrA(xk1
,xl)

[
G(J)l+1g

d
k1
θ(xk1 ; J

<l+1)f(l+1)w~v
l+1,J̃

]
, where

~vJ̃≥l+1 = ~aJ̃≥l+1 but ~vJ̃<l+1 > ~aJ̃<l+1 .

Type 2, l /∈ J . Since l /∈ J we can apply Lemma 13.5 and get

TrA(xk1
,xl)

[
G(J)l+1g

d
k1
θ(xk1 ; J

<l+1)f(l+1)w~v
l+1,J̃

]
= TrA(xk1

,xl)

[
G(J)l

gl
hl
gdk1θ(xk1 ; J

<l)f(l+1)w~v
l,J̃

]
= G(J)lg

d
k1
glw

~v
l,J̃

TrA(xk1
,xl)

θ(xk1 ; J
<l)f(l+1)

hl
by Lemmas 13.3 and 13.5

= −G(J)lg
d
k1
glw

~v
l,J̃

θ(xk1 ; J
<l)f(l+1)+q−1

gl
by Lemma 12.15

= −G(J)lg
d
k1
θ(xk1 ; J

<l)f(l)w~v
l,J̃

by Lemma 5.24.

Since we started with an element of type 2 in Rl+1(~a), ~vJ̃≥l+1 = ~aJ̃≥l+1 and ~vJ̃<l+1 > ~aJ̃<l+1 .
In view of 13.5(4), this gives us the same two conditions on ~v and ~a but with l+1 replaced
by l. Thus the trace lies in G(J)lRl(~a).

Type 2, l ∈ J . Using Lemmas 13.3 and 13.6 we reduce the problem to computing

G(J)lg
d
k1

w~v
l,J̃

gvl
l

TrA(xk1
,xl)

[
hvl
l θ(xk1 ; J

<l+1)f(l+1)
]
.

Recall that
w~v

l,J̃

g
vl
l

is a polynomial (13.4).

The problem now splits into two cases again, depending on whether vl < f(l + 1) or
not.

Type 2, l ∈ J , vl < f(l + 1). The computation here is analogous to that for Formula 1,
l ∈ J .
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We need to compute

TrA(xk1
,xl)

[
hvl
l θ(xk1 ; J

<l+1)f(l+1)
]
.

Since f(l+ 1) > vl, the first part of the (a, b)-Lemma (12.18(1)) tells us that the required
trace is

(−1)vl
[
gvl
l θ(xk1 ; J

<l)vl+q(f(l+1)−vl) + gvl+1
l X

]
,

where X ∈ k[gk1 , wl,J̃ ]. Returning to the original trace computation, we have shown that

TrA(xk1
,xl)

[
G(J)l+1θ(xk1 ; J

<l+1)f(l+1)gdk1w
~v
l+1,J̃

]
= ±G(J)lg

d
k1

[
w~v
l,J̃
θ(xk1 ; J

<l)vl+q(f(l+1)−vl) + w~v
l,J̃
glX

]
.

It is sufficient to show that w~v
l,J̃
θ(xk1 ; J

<l)vl+q(f(l+1)−vl) and w~v
l,J̃
glX lie in Rl(~a). We start

with the easy case, w~v
l,J̃
glX.

If ~v′ is the exponent vector of w~v
l,J̃
gl, we have immediately that v′l > vl ≥ al and

hence that ~v′
J̃≥l > ~aJ̃≥l . This implies that w~v

l,J̃
gl is an element of Rl(~a) of type 1. Since

X ∈ k[gk1 , wl,J̃ ] and Rl(~a) is an ideal in this ring (13.12), w~v
l,J̃
glX ∈ Rl(~a).

To see that the term w~v
l,J̃
θ(xk1 ; J

<l)vl+q(f(l+1)−vl) lies in Rl(~a) is slightly trickier. There

are two possibilities: first, that vl > al and second, that vl = al but also ~vJ̃<l > ~aJ̃<l .
If vl > al then w~v

l,J̃
satisfies the definition of an element of type 1 in Rl(~a). By the

Theta Lemma (12.17), θ(xk1 ; J
<l) ∈ k[gk1 , wl,J̃ ], and Rl(~a) is an ideal in this ring (13.12),

so w~v
l,J̃
θ(xk1 ; J

<l)vl+q(f(l+1)−vl) ∈ Rl(~a).

Now suppose that vl = al, but also ~vJ̃<l > ~aJ̃<l . By 5.24, w~v
l,J̃
θ(xk1 ; J

<l)vl+q(f(l+1)−vl) =

w~v
l,J̃
θ(xk1 ; J

<l)f(l), which is an element of Rl(~a) of type 2, so we are done.

Type 2, l ∈ J , vl ≥ f(l + 1). Just as in the case vl < f(l + 1), we need to compute
TrA(xk1

,xl) h
vl
l θ(xk1 ; J

<l+1)f(l+1). Since vl ≥ f(l + 1), the second part of the (a, b)-Lemma

(12.18(2)) shows us that the required trace is g
f(l+1)
l θ(xk1 ; J

<l)f(l+1)Q, whereQ ∈ k[gk1 , θ(xk1 ; J<l)],
which is contained in k[gk1 , wl,J̃ ] by the Theta Lemma (12.17). Returning to the original
trace computation we have shown that

TrA(xk1
,xl)

[
G(J)l+1θ(xk1 ; J

<l+1)f(l+1)gdk1w
~v
l+1,J̃

]
= G(J)lg

d
k1

[
w~v
l,J̃

gvl
l

g
f(l+1)
l θ(xk1 ; J

<l)f(l+1)Q

]
.

Again, recall that
w~v

l,J̃

g
vl
l

is a polynomial (13.4).

We must now show that
w~v

l,J̃

g
vl
l

g
f(l+1)
l θ(xk1 ; J

<l)f(l+1)Q is an element of Rl(~a). First we

show that
w~v

l,J̃

g
vl
l

g
f(l+1)
l ∈ Rl(~a).
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By 5.27, f(l + 1) > al, so if we define ~v′ to be the same as ~v except that vl is replaced

by f(l + 1), we can write w~v
′

l,J̃
=

w~v
l,J̃

g
vl
l

g
f(l+1)
l and we have ~v′

J̃≥l > ~aJ̃≥l . This means that

w~v
l,J̃

g
vl
l

g
f(l+1)
l is an element of Rl(~a) of type 1.

Since θ(xk1 ; J
<l)f(l+1)Q ∈ k[gl, wl,J̃ ] andRl(~a) is an ideal in this ring (13.12), the product

w~v
l,J̃

g
vl
l

g
f(l+1)
l θ(xk1 ; J

<l)f(l+1)Q lies in Rl(~a), as we have argued before in this proof.
�

15. The One-Row Trace Lemma

For groups A,B < C we write C = A · B to signify that C ∼= A × B as sets and that
the bijection is given by multiplication. This happens if and only if |C| = |A| · |B| and
A ∩B = 1.

The induction argument in this section is based on the decomposition U{i} =
∏n

j=i+1A(xi, xj)

(where
∏

signifies repeated ·).
The next lemma is easy and well known.

Lemma 15.1. If C = A ·B then TrC = TrA TrB and also TrC/B = TrA on B-invariants.

Lemma 15.2 (m-Step Lemma). Let ~a ∈ P (J) be SJ(J)-(l − 1)-compatible and k1 < l ≤
n+ 1. Then we have

(1) TrA(xk1
,xl) TrA(xk1

,xl+1) · · ·TrA(xk1
,xn)

[
G(J) · h~aJ

]
= G(J)lh

~a
J<k1

[
(−1)τθ(xk1 ; J

<l)f(l)w~a
l,J̃

+ x
]
,

where x ∈ Rl(~a) and τ = τ(l, J,~a) = n+ l + 1 +
∑

j∈J≥l(aj + 1) (mod 2). Furthermore,

(2) TrA(xk1
,xl) TrA(xk1

,xl+1) · · ·TrA(xk1
,xn) [G(J) ·Rn+1(~a)] ⊆ G(J)lRl(~a).

If l = n+ 1 we interpret the left hand side of (1) as G(J) · h~aJ .
Proof. The result is proved by downward induction on l. In the initial case, l = n+1, the
left hand side is G(J) · h~aJ and, on the right hand side, G(J)n+1 = G(J) by 13.2, τ = 0,
f(l) = 0 by 5.24 and w~a

n+1,J̃
= h~a

J̃
by definition (13.4). The latter combines with h~a

J<k1
to

give h~aJ , so the two sides are equal when x = 0.
The induction step is a formal application of the One-Step Lemma (14.1). �

Up until now we have always extended ~a ∈ P (J) to a vector in P (J ∪ {k1}) by giving
it the value 0 on k1. But now we want it to take the value λ(J,~a, k1) on k1. The simplest

way to express this is to use monomials and to write g
λ(J,~a,k1)
k1

g~aJ .

Lemma 15.3. (One-Row Trace Lemma) Let ~a ∈ P (J) be SJ(J)-k1-compatible. Then we
have

(1) TrU{k1}

[
G(J) · h~aJ

]
= G(J ∪ {k1})

[
(−1)τ(k1+1,J,~a)g

λ(J,~a,k1)
k1

g~aJ + x
]
,

where x ∈ H(g
λ(J,~a,k1)
k1

g~aJ , k[gk1 , gJ ]) and τ = τ(k1 + 1, J,~a) is as in Lemma 15.2. Further-
more,

(2) TrU{k1}

[
G(J) ·H(h~aJ , k[hk1 , hJ ])

]
⊆ G(J ∪ {k1})H(g

λ(J,~a,k1)
k1

g~aJ , k[gk1 , gJ ]).
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Proof of the One-Row Trace Lemma. We just need to interpret the result of the m-Step
Lemma (15.2) in the case when l = k1 + 1. We are calculating the correct trace by
Lemma 15.1 and the fact that U{k1} =

∏n
j=k1+1A(xk1 , xj). Notice also that G(J)k1+1 =

G(J ∪{k1}) (Lemma 13.2), h~a
J<k1

= g~a
J<k1

, θ(xk1 ; J
<k1+1) = gk1 and f(k1 +1) = λ(J,~a, k1)

(by the definition of f (5.23)).
Also Rk1+1(~a) = H((~aJ̃)0, k[gk1 , gJ̃ ]) and Rn+1(~a) = H(~a0, k[hk1 , hJ̃ ]) (Remark 13.11).

The old x (in 15.2) is inRk1+1(~a), so the new x (in 15.3) is in h~a
J<k1

Rk1+1(~a) = H(~a, k[gk1 , gJ ]) =

H(g~aJ , k[gk1 , gJ ]). In fact, it is in H(g
λ(J,~a,k1)
k1

g~aJ , k[gk1 , gJ ]), since there is some j greater
than k1 for which gj occurs to a higher power than aj and we are using the lexicographic
ordering. �

The λ inside the H-terms is not necessary at this stage, but we want it for use later.

16. The Trace Lemma

In this section we will finally be able to prove the Trace Lemma (16.1), which is a
partial calculation of TrUI/UJ

: SUJ → SUI . Recall that the notation in the statement
of the result was introduced in Section 7 (7.1, 7.4), in particular the definitions of the
invariants di, ei, fi, gi, and hi. We will regard λ(J,~a,−) as a function on K (or some

subset), denoted by ~λ(J,~a).

Lemma 16.1 (Trace Lemma). Let ~a ∈ P (J) be SJ(J)-k1-compatible. Then we have

(1) TrUI/UJ

[
G(J) · h~aJ

]
= (−1)τ̂d

~λ(J,~a)
K d~aJ + x,

where x ∈ H(d
~λ(J,~a)
K d~aJ , k[dI ]) and τ̂ = τ̂(I, J,~a) = ns +

∑
k∈K k +

∑
j∈J |K<j|(aj + 1).

Furthermore,

(2) TrUI/UJ

[
G(J) ·H(h~aJ , k[hJ ])

]
⊆ H(d

~λ(J,~a)
K d~aJ , k[dI ]).

The above result is the special case, m = |K|, of the following slightly more general
lemma, which is a partial calculation of TrU

J∪K≤km /UJ
: SUJ → SUJ∪K≤km .

The idea of the proof is that UI = UK · UJ and if we write K = 〈k1, . . . , k|K|〉 then
UK = U{k|K|} ·U{k|K|−1} · · ·U{k2} ·U{k1}. So, using 15.1, we can decompose TrUI/UJ

= TrUK

as the composition TrU{k|K|}
TrU{k|K|−1}

. . .TrU{k2}
TrU{k1}

and compute the trace bit by bit.

Lemma 16.2. (m-Row Trace Lemma, P (m)) Let ~a be SJ(J)-k1-compatible and let km ∈
K. Then we have

(1) TrU
J∪K≤km /UJ

[
G(J) · h~aJ

]
= G(J ∪K≤km) ·

[
(−1)τ

(m)

e
~λ(J,~a)

K≤kme
~a
J + x

]
,

where x ∈ H(e
~λ(J,~a)

K≤kme
~a
J , k[eK≤km , eJ ]) and τ (m) =

∑m
i=1 τ(k + 1, J,~a). Furthermore,

(2) TrU
J∪K≤km /UJ

[
G(J) ·H(h~aJ , k[hJ ])

]
⊂ G(J ∪K≤km) ·H(e

~λ(J,~a)

K≤kme
~a
J , k[eK≤km , eJ ]).

We prove the m-Row Trace Lemma by induction on m. Of course, all that we actually
need to prove is that P (m− 1) ⇒ P (m), since P (1) is the One-Row Trace Lemma. Here
we record what we need to show for the induction step of the proof of Lemma 16.2, which
is a partial calculation of TrU{km} = TrU

J∪K≤km /U
J∪K

≤km−1
: S

U
J∪K

≤km−1 → SUJ∪K≤km .
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Lemma 16.3. (P (m− 1) ⇒ P (m)) Let ~a be SJ(J)-k1-compatible. Then

(1) TrU{km}

[
G(J ∪K≤km−1) · f

~λ(J,~a)

K≤km−1
f~aJ

]
= G(J∪K≤km)·

[
(−1)τ(km+1,J,~a)e

~λ(J,~a)

K≤kme
~a
J + x

]
,

where x ∈ H(e
~λ(J,~a)

K≤kme
~a
J , k[eK≤km , eJ ]). Furthermore,

(2) TrU{km}

[
G(J ∪K≤km−1) ·H(f

~λ(J,~a)

K≤km−1
f~aJ , k[fK≤km−1 , fJ ])

]
⊆

G(J ∪K≤km) ·H(e
~λ(J,~a)

K≤kme
~a
J , k[eK≤km , eJ ]).

Finally,
(3) P (m− 1), 1, and 2 together imply P (m).

Proof of Lemma 16.2. Use induction onm: Lemma 15.3 is the initial case and Lemma 16.3
is the induction step. �

Proof of Lemma 16.3. For convenience, we write K ′ = K≤km−1 and K ′′ = K≤km .
To prove part 1 we use the One-Row Trace Lemma (15.3), with J replaced by J ∪K ′.

In order to apply this lemma we must verify that f
~λ(J,~a)
K′ f~aJ is SJ∪K′(J ∪K ′)-compatible.

This is true by Lemma 5.31. We may therefore conclude that

TrU{km}

[
G(J ∪K ′) · f

~λ(J,~a)
K′ f~aJ

]
=

G(J ∪K ′′) ·
[
(−1)τ(km+1,J∪K′,~α)e

λ(J∪K′,~α,km)
km

e
~λ(J,~a)
K′ e~aJ + x

]
,

where ~α ∈ P (J ∪ K ′) is the exponent vector associated to the monomial f
~λ(J,~a)
K′ f~aJ , and

x ∈ H(e
λ(J,~a,km)
km

e
~λ(J,~a)
K′ e~aJ , k[eK′′ , eJ ]).

Observe that λ(J ∪K ′, ~α, km) = λ(J, ~α, km) by Lemma 5.30. Also observe that τ(km +
1, J ∪K ′, ~α) = τ(km + 1, J,~a) by definition of τ (15.2).

Up to a change of notation, we have now proved Part 1 of Lemma 16.3.
Part 2 of Lemma 16.3 is likewise an application of the One-Row Trace Lemma. We

apply Lemma 15.3(2), with J replaced by J ∪K ′ and k1 replaced by km. This gives the
desired equation.

The proof of part 3 is easy and therefore left to the reader. �

17. Consequences

Perhaps the most surprising corollary is the following result.

Theorem 17.1. For any finite group G acting on S, only a finite number of (isomorphism
types of) indecomposable kG-modules can occur as a summand of S.

Proof. First we deal with the case of a p-group P , so we may assume that P ⊆ Un.
Taking the statement of the Main Theorem 10.1 and restricting it to P , we see that any
indecomposable summand must be a summand of some ResUn

P IndUn
UJ
XJ(J). Since there

are only finitely many possible J and each XJ(J) is finite, the result follows for P .
For general G, let P be a Sylow p-subgroup of G. Then, as kG-modules, S is a summand

of IndGP ResGP S and the result follows from the one for P . �
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Given a finite group G, let A be an abelian group (often Z). We will consider an
additive homomorphism χ : ak(G) → A from the Green ring to A, that is a function
on the isomorphism classes of finite dimensional kG-modules with values in A which is
additive on direct sums.

For any Z-graded kG-module M , finite dimensional in each degree, the Poincaré series
relative to χ is PSχ(M, t) =

∑
n∈Z χ(Mn)t

n.
Interesting possibilities for χ include the dimension of the invariants or coinvariants,

dimHn(G,−) or the multiplicity of a given indecomposable kG-module as a summand.
We can even take the identity function id : ak(G) → ak(G), in which case PSid(M, t)
expresses the isomorphism class of M .

Theorem 17.2. For any p-group P acting on S, the Poincaré series relative to χ has the
form

PSχ(S, t) =
f(t)∏n

i=1(1− tqi−1)
,

where f(t) is a polynomial of degree at most qn−1
q−1

− n.

If we can calculate PSχ(S, t) in degrees up to and including qn−1
q−1

− n then we know it

in all degrees.

Proof. We may assume that P ⊆ Un. By the Main Theorem (10.1) with I = {1, . . . , n−1},

(A) S ∼= k[dn]⊗ T (I) ∼=
⊕
J⊆I

k[dk|k ∈ (I − J) ∪ {n}]⊗ X̄J(I),

as kP -modules. Applying PSχ we find that

PSχ(S, t) =
∑
J⊆I

PSχ(X̄J(I), t)∏
i∈(I−J)∪{n}(1− tqi−1)

.

If we put each term over the common denominator
∏n

i=1(1 − tq
i−1

) then the numerator

becomes PSχ(X̄J(I), t)
∏

j∈J(1− tq
j−1

); this is bounded as required, by 5.21 and 5.22.

The last claim comes from the observation that f(t) = PSχ(S, t)
∏n

i=1(1− tq
i−1

), so we
can calculate f(t). �

We can reduce the bound on the degree at the cost of a more complicated formulation.

Theorem 17.3. If we know the decomposition into indecomposables of S as a kUI-module
in degrees less than or equal to qn−1 − n (or even just degI(~p)), then we know the decom-
position into indecomposables of S in all degrees.

Proof. We show by induction on |I| that we know all the XJ(I) for J ⊆ I; this proves the
claim and the case |I| = 0 is trivial.

Since we know S as a kUI-module in the range of degrees given, we certainly know it as
a kUJ -module for J ⊂ I and by induction we know XJ(J) up to isomorphism for J $ I.
But this tells us XJ(I), since the latter is constructed by induction and propagation from
the former in the Main Theorem 10.1.

We can now identify XI(I) up to isomorphism as the remainder since, according to
Lemma 5.22, the degree of an element of XI(I) is bounded by the two expressions given
in the statement of the theorem. �
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Describing the ring structure of the invariants is a classical problem.

Theorem 17.4. For any p-group P acting on S, the invariants SP are generated as a
ring by elements of degree less than or equal to qn−1

q−1
− n if n ≥ 3, (q if n = 2).

For any group G acting on S, the invariants SG are generated as a ring by elements of
degree less than or equal to qn−1

q−1
(nq − n− 1) if n ≥ 3, (2q2 − q − 2 if n = 2).

Proof. Taking invariants in formula A above we obtain SP =
⊕

J⊆I k[dk|k ∈ (I − J) ∪
{n}] · X̄J(I)

P . Thus SP is generated by the di and X̄J(I)
P . The degrees of the former

are bounded by qn−1. The degrees of the latter are bounded by qn−1
q−1

−n, by Lemma 5.21.

This is greater unless n = 2.
For general G, let P be a Sylow p-subgroup of G. Now SG ⊆ SP , and is, in fact, a

summand as an SGLn-module. The splitting is given by |G : P |−1 TrGP (where TrGP s =∑
g∈G/P gs).

Thus it suffices to show that SP is finitely generated as an SGLn-module by elements of
the claimed degree (since SGLn is generated by the Dickson invariants, which have degree
at most qn − 1).

But we have already seen that every s ∈ SP can be expressed as s =
∑

i λiai with

λi ∈ SUn and deg ai ≤ qn−1
q−1

− n. To finish we note that it is shown in [6] that every

λi ∈ SUn can be written as
∑

j µi,jbi,j with µi,j ∈ SGLn and bi,j ∈ SUn such that deg bi,j ≤
nqn− 2 q

n−1
q−1

. So s =
∑

i,j µi,jbi,jai and SP is generated over SGLn by elements of the form

ba with deg a ≤ qn−1
q−1

− n and deg b ≤ nqn − 2 q
n−1
q−1

. These have the degrees claimed. �

Of course, it is well known that SG is finitely generated: it is the explicit bound on the
degrees of the generators that is relevant here. For a long time no such a priori bound
was known, but recently Derksen and Kemper [7], using forgotten work of Hermann [9],
produced the bound

(B) n(|G| − 1) + |G|n·2n−1+1 · n2n−1+1.

It is curious that this bound depends only on the order of the group and not the field,
while the bound in Theorem 17.4 depends only on the field and not the group.

For “large” groups the bound in Theorem 17.4 is very much smaller than Derksen and
Kemper’s bound (B). For example, for Un, where the best possible bound is qn−1, it is of

order qn−1 in q, while Derksen and Kemper’s bound is roughly of order (qn−1)n
22n−2

.
The bound in Theorem 17.4 can be improved if we know that P is contained in some

UI .
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18. Index of Notation

Symbol Definition Symbol Definition Symbol Definition
k §4 p, q §4 S §4
Un §4 I, J,K 4.1 UI 4.2
J<i 4.3 θ 4.4,12.1 di 4.5
µ 5.1 P (I) 5.2 ψ 5.3
λ 5.4 SJ(I) 5.5 IE,E 5.5
bJi 5.15 degI 5.19 f(l) 5.23
T (I) 6.1 dI , d

~a
I 7.1 H(~a, k[dI ]), H(~a) 7.4

LM 7.6 soc 7.9 supp 7.12
PS 8.1 γ 8.4 κ 8.5

G(I, J) 9.2 Tr 9.3, 12.4 ν 9.6

di, ei, fi, gi, hi 11.1 A(xi, xj) 11.2 J̃ 12.16
G(I, J)l 13.1 wl,i, wl,X 13.4 Rl(~a) 13.10
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Lecture Notes in Math. 641 1-111, Springer, Berlin 1977.

[2] Alperin, J. and Kovacs, L.G., Periodicity of Weyl modules for SL(2, q), Jour. Algebra 74 (1982),
pp. 52–54.

[3] Bleher, F.M. and Chinberg, T., Galois structure of homogeneous coordinate rings, preprint.
[4] Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language. Compu-

tational algebra and number theory (London, 1993). J. Symbolic Comput. 24 (1997), pp. 235–265.
[5] Bryant, R.M., Symmetric powers of representations of finite groups, Jour. Algebra 154 (1993),

pp. 416–436.
[6] Campbell, H. E. A. and Hughes, I. P., The ring of upper triangular invariants as a module over the

Dickson invariants, Math. Ann. 306 (1996), pp. 429–443.
[7] Derksen, H. and Kemper, G., Computational Invariant Theory, Encyclopaedia of Mathematical

Sciences 130, Springer-Verlag, Berlin, Heidelberg, New York 2002.
[8] Doty, S.R., The submodule structure of certain Weyl modules for groups of type An, Jour. Algebra

95 (1985), pp. 373–383.
[9] Hermann, G., Die Frage der endlich vielen Schritte in der Theorie der Polynomideale Math. Ann.,

95 (1926), pp. 736-788.
[10] Howe, R., Asymptotics of dimensions of invariants for finite groups, Jour. Algebra 122 (1989),

pp. 374–379.
[11] Karagueuzian, D. B. and Symonds, P. The module structure of a group action on a polynomial ring.

J. Algebra 218 (1999), pp. 672–692.
[12] Karagueuzian, D. B. and Symonds, P., The module structure of a group action on a polynomial ring:

examples, generalizations, and applications Centre de Recherches Mathématiques Proceedings and
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