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Abstract. We develop the homological algebra of coefficient systems on a

group, in particular from the point of view of calculating higher limits. We
show how various sequences of modules associated to a class of subgroups of

a given group can be analysed by methods from homological algebra. We are

particularly interested in when these sequences are exact, or if not, when their
homology is equal to the higher limits of the coefficient system.

1. Introduction

This paper is concerned with the homological algebra of coefficient systems on
a class of subgroups of a group G . It is partly structured around the investigation
of three sequences associated to some class X of subgroups of G, in particular their
cohomology.

The three sequences of particular interest are:

L(G)→
∏

σ∈ch0(X )/G

L(NG(σ))→
∏

σ∈ch1(X )/G

L(NG(σ))→ . . .

L(G)→
∏

σ∈ch0(X )/G

L(σb)NG(σ) →
∏

σ∈ch1(X )/G

L(σb)NG(σ) → . . .

L(G)→
∏

σ∈ch0(X )/G

L(CG(σt))NG(σ) →
∏

σ∈ch1(X )/G

L(CG(σt))NG(σ) → . . .

Here chn(X ) denotes the set of chains in X (without repetition) of length n + 1.
The smallest element of a chain σ is denoted σb and the largest by σt.

The first of these sequences was investigated by Webb [24], when L is a Mackey
functor, and is by now well known. The second sequence first appeared in work of
Bouc [5], again for Mackey functors. The preprint dates from 1991, but remained
unpublished until 1998. An infinite version of the third sequence is implied by
results of Jackowski and McClure [13]. Later Dwyer [10] had infinite versions of
the second and third sequences, which arose from topology, and he investigated
the properties of all three. Following him, we will sometimes refer to these as the
normaliser, subgroup and centraliser sequences. Finally the version of the third
sequence given above (and also the second) appeared in work of Grodal [12] and of
Villarroel-Flores and Webb [23].

The original interest was in conditions on L and X which forced these sequences
to be exact. But when they are not exact, it turns out that their cohomology can
often be described as the higher limits of L, and these are often of interest in their
own right.

Our aim is to present a unified treatment of all the results entirely within the
homological algebra of coefficient systems. The only geometric results used are
some standard ones about the fixed point sets of a group acting on some subgroup
complex, and then only for examples.

A non-geometric but more category-theoretic treatment of some of these results
by Jackowski and S lomińska has recently appeared [15].
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Our strategy is to show that each these sequences is representable as the complex
of homomorphisms from some complex of coefficient systems C̃• to L, in other words
that the sequence is of the form Hom(C̃•, L). It then turns out that C̃• is homotopy
equivalent to a projective resolution of the trivial coefficient system R̄. Thus the
cohomology of our sequence is Ext∗(R̄, L), which is the definition of the higher
limits of L.

When these sequences are not exact then their cohomology is usually equal to
the higher limits of L. This insight was developed by Grodal in [12], and the later
sections of the present paper were inspired by his work, being essentially an attempt
to formulate the geometric proofs given there in algebraic terms.

Many statements in group theory can be phrased succinctly in terms of higher
limits. For example Robinson’s reformulation of Alperin’s Weight Conjecture (§5)
and Quillen’s conjecture on the contractibility of subgroup complexes (§11).

We use a lot of basic results about coefficient systems, in particular we make
great use of the adjoint functors of several forgetful functors and their properties,
and these are collected together in §2.

2. Coefficient Systems

Here we collect together some constructions on coefficient systems and Mackey
functors and record their properties.

We will always work over a fixed unital ring R and refer to a fixed prime p.
We have been careful wherever possible to allow infinite groups in the basic

definitions, although this is not a direction that we pursue here, and it is abandoned
later, when we need a Sylow p-subgroup.

For a given group G, we will consider various classes of subgroups, assumed to
be closed under conjugation. For example S(G), the class of all subgroups; Sp(G),
the class of finite p-subgroups; or Ap(G), the class of finite elementary abelian p
subgroups. We will often omit G from the notation. The superscript 1 will be used
to denote the given class with the trivial subgroup removed.

Many of our results are phrased in terms of adjoint properties. Recall that if
A and B are two categories then two functors L : B → A and R : A → B are
adjoint if and only if there exist two natural transformations, the unit η : IB → RL
and the counit ε : LR → IA, such that the compositions (Rε)(ηR) : R → R and
(εL)(Lη) : L → L are both the identity. Our proofs will usually consist of giving
explicit formulas for η and ε and leaving to the reader the straightforward task of
checking these identities. We will also omit many sub- and superscripts where this
simplifies the formulas.

Note that these adjoint functors are known to exist for abstract reasons and can
be defined in much greater generality, but we want explicit formulas so that we can
investigate their properties.

When we refer to results or proofs in the literature the authors of these results
usually assume that W and any other class of groups are either S or Sp, but the
change to general W does not present any difficulties. They also tend to assume
that G is finite and here again the generalisation is straightforward in the cases
mentioned, except that we have to be careful to distinguish ⊕ and Π.

For a given class W of subgroups of a group G we construct two categories SW
and TW . They both have the elements of W as objects. The morphisms are given
as follows:

SW(H,K) = {bg,H,K |g ∈ G, Hg ≤ K},
TW(H,K) = H\SW(H,K).
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The composition law is bh,K,Lbg,H,K = bgh,H,L.
A weak coefficient system is an object of the category WCSW(G) of contravariant

functors from SW to R−Mod, and a coefficient system is an object of the category
CSW(G) of contravariant functors from TW to R − Mod. The morphisms are
the natural transformations of functors and are denoted by homCSW(G). This is
equivalent to defining CSW(G) to be the category of contravariant functors from
G-sets with stabilisers in W to R −Mod, by setting the value of C ∈ CSW(G) on
the G-set G/H to be C(H) and in general taking the value of C on an arbitrary
G-set to be the direct sum of its values on the orbits. (See [7], and also [25] for the
similar case of Mackey functors.)

We write cg,H,Hg , or just cg, for the map of R-modules C(Hg)→ C(H) induced
by bg,H,Hg , and call these the conjugations. Then cgch = cgh, and for any weak
coefficient system C, this makes C(H) into a left RNG(H)-module, and if C is a co-
efficient system then H acts trivially, so C(H) is naturally an RNG(H)/H-module.
We also write resK

H for the map induced by be,K,H , and call these restrictions. Since
bg,H,K = be,Hg,Kbg,H,Hg , we see that it is enough to check identities for conjugations
and restrictions only.

The forgetful functor from coefficient systems to weak coefficient systems has a
right adjoint given by taking invariants under H at each evaluation C(H), and a
left adjoint given by taking coinvariants.

A coefficient system C ∈ CSW(G) is called geometric if, for all H ∈ W, CG(H)
acts trivially on C(H). This occurs, for instance, if C is the restriction to G of
a global coefficient system or Mackey functor. The full subcategory of geometric
objects in CSW(G) will be denoted by GCSW(G). The inclusion I : GCSW(G) →
CSW(G) has both left and right adjoints, G0 and G0 respectively. They are formed
by taking the largest quotient (respectively largest sub coefficient system) that is
geometric. G0 has the explicit description (G0L)(P ) = H0(CG(P )/Z(P ), L(P )).

We will also occasionally mention primitive coefficients systems (PCS), which
have no conjugations at all, only restrictions.

For a finite group, each of these categories of coefficient systems is equivalent to
the category of modules for some finite rank R-algebra. In this way we can import
various results from the theory of representations of algebras: for example if R is a
complete local ring then we have the Krull-Schmidt property.

If H ≤ G there is a forgetful map ResG
H : CSW(G)→ CSW(H) (we should really

write CSW∩S(H)(H)).
There is an obvious concept of tensor product ⊗ : CSW(G) × CSW(G) →

CSW(G), defined groupwise by (M ⊗ N)(J) = M(J) ⊗ N(J) and the obvious
restriction and conjugation maps.

Given L,M ∈ CSW(G), an element of homCSW(G) can be considered as a col-
lection of maps of R-modules L(H)→M(H) for each H ∈ W that commute with
the restriction and conjugation maps. Notice that homCSW(G)(L, M) is naturally
an R-module.

We can extend homCSW(G) to a pairing HomCSW(G) : CSW(G) × CSW(G) →
CST (G) for any class T , given by HomCSW(G)(M,N)(J) = homCSW(J)(ResG

J M, ResG
J M).

The restrictions are just the forgetful maps, and the conjugations are the usual ones,
cg(f) = cgfc−1

g .
Thus Hom takes its values in coefficient systems. We will assume that T = W

unless otherwise indicated. Notice that if we take T = {G} then we recover hom.
We will often abbreviate HomCSW(G) to HomCSW .
There is the usual adjunction:

Lemma 2.1. For L,M,N ∈ CSW(G) we have
HomCSW (L⊗M,N) ∼= HomCSW (L, HomCSW (M,N)).
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Proof. The isomorphism Φ is given by ((ΦHf)J(l))I(m) = fI(resJ
I l ⊗m), for H ≥

J ≥ I, f ∈ HomCSW (L⊗M,N)(H), m ∈M(I). �

When X ⊆ W then there is the forgetful functor ResWX : CSW(G) → CSX (G).
There are functors lim←−

W
X and lim−→

W
X in the opposite direction. Now lim←−

W
X L is ob-

tained on H ∈ W by taking the inverse limit of L(I) for I ∈ X ∩ S(H): the limit
is over all inclusions and conjugations in H. We define lim−→

W
X L(H) to be the direct

limit of the L(J) for all J ∈ X , J ≥ H where the limit is taken over inclusions only.

Proposition 2.2. lim−→
W
X is the left adjoint and lim←−

W
X is the right adjoint of ResWX :

CSW(G)→ CSX (G).

Proof. For lim←−, we have ηM : M → lim←−Res M is the identity on subgroups in X ,
and this extends uniquely by the definition of lim←−. Then εN : Res lim←−N → N is the
identity.

For lim−→, we have ηM : M → Res lim−→M is the identity, and εN : lim−→Res → N
follows from the definition of lim−→. �

Clearly lim←− and lim−→ are transitive.
Notice that from the definition of hom we find that homCSW(G)(L,M) = (lim←−

S
W HomCSW(G)(L, M))(G),

where we regard HomCSW(G)(L,M)) ∈ CSW(G). This observation and the previous
proposition now yield:

Lemma 2.3. IfW ⊆ V and L,M ∈ CSW(G) then HomCSW (L,M) ∼= lim←−
V
W HomCSW (L,M)

in CSV(G) (but we regard HomCSW (L, M) ∈ CSW(G)) .
Also, for N ∈ CSV(G) we have HomCSV (N, lim←−

V
W M) ∼= HomCSW (ResVW N,M)

and HomCSV (lim−→
V
W M,N) ∼= HomCSW (M, ResVW N), both in CSS(G).

If we denote the constant coefficient system by R̄, then the following is a conse-
quence of the definition of lim←−.

Lemma 2.4. HomCSW (R̄, L) ∼= lim←−
S
W L in CSS(G).

Proof. HomCSW (R̄, L) ∼= HomCSS (R̄, lim←−
S
W L) ∼= lim←−

S
W L, by taking the image of

1 ∈ R̄(H), where H is the group that we are evaluating on. �

For convenience we denote lim←−
G

W L = (lim←−
S
W L)(G), i.e. the usual inverse limit

of L. By a component of W we mean an equivalence class under the equivalence
relation generated by inclusion.

Lemma 2.5. In CSW(G), R̄ is projective if and only if each component of W has
a unique maximal element M , say, and |NG(M) : M | is finite and invertible in R.

When the conditions of this lemma are satisfied we say that G is tight with
respect to W.

Proof. It follows from 2.4 that R̄ is projective if and only if the functor L 7→ lim←−
G

W L

is exact on CSW(G).
If the conditions involving M are satisfied then we claim that lim←−

G

W L is the sum
over the conjugacy classes of maximal elements M in W of L(M)NG(M)/M . From
this it will follow that lim←−

G

W is exact, since for any group A the functor X 7→ XA

is exact on RA-modules if and only if |A| is finite and invertible in R.
This claim is equivalent to the one that lim←−

G

W L ∼= (
∏

M L(M))G, where M

runs over all maximal elements of W. We will denote the right hand side by X
and indicate the components of x ∈ X by x = (xM ). There is a family of maps
φH : X → L(H) for H ∈ W defined by φH(x) = resM

H xM , where M is the unique
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maximal element of W containing H (the uniqueness is one of the conditions).
These maps are compatible with restriction and conjugation, and it is easy to see
that any other such compatible family of maps must factor through X, proving the
claim.

Conversely, if R̄ is projective then, by considering coefficient systems that are
non-zero only on a maximal element M and its conjugates, we see that taking fixed
points in R[NG(M)/M ]-modules must be exact, so the condition on the index must
hold. If the other condition is not met then it easy to see that we can find two
different maximal elements of W, M and N say, such that M ∩ N contains an
element U of W.

Let R̃ ∈ CSW(G) take the value R on the conjugacy classes of M and N (which
we denote by 〈M〉 and 〈N〉), and 0 elsewhere. There is a surjection lim−→

W
{〈M〉,〈N〉} R̄→

R̃. Now if we apply lim←−
G

W then, by the observation at the beginning of this proof,
we obtain another surjection lim←−

G

W lim−→
W
{〈M〉,〈N〉} R̄→ lim←−

G

W R̃.
The domain of this surjection is 0, because the images of the restrictions from

M and N to (lim−→
W
{〈M〉,〈N〉} R̄)(U) are linearly independent.

Now if M and N are not conjugate then lim←−
G

W R̃ ∼= R2. If M and N are conjugate
then lim←−

G

W R̃ ∼= R. In either case we have a contradiction. �

Next, if H ≤ G, consider the restriction functor ResG
H : CSW(G)→ CSW(H).

One functor in the other direction is IndG
H . This is defined on subgroups by

(IndG
H L)(J) =

⊕
g∈J (G/H)

L(Jg).

The restrictions are the obvious compositions of restriction in L and inclusion,
but the conjugation maps are less clear. For this purpose it is better to use a
representative-free description.

First set
L̂G,H(J) =

⊕
g∈G, Jg≤H

L(Jg).

This is a PCS on W. In fact it is a WCS as follows. Write (g, l)J for l ∈ L(Jg) ⊆
L̂G,H(J) and define resJ

K(g, l)J = (g, resJ
K l)K . In this way L̂G,H becomes a PCS.

Now define conjugation by f ∈ G by cf (g, l)Jf

= (fg, l)J . This makes L̂G,H in to
a WCS.

There is also an action of H on the right by (g, l)Jh = (gh, c−1
h l)J . These two

actions commute and we set

(IndG
H L)(J) = H0(H, L̂G,H(J)).

The conjugation and restriction maps are the induced ones, and it is routine to
check that if f ∈ J then cf acts trivially on the evaluation at J , so we have a
coefficient system.

In fact Ind is the left adjoint of Res. The unit and counit of the adjunction are:
ηM : M → Res Ind M is the inclusion of M(J) as M(Je), and
εN : Ind Res N → N is ⊕cg.

For the right adjoint we have coinduction, which, at least if StabW (G/H) ∈ W
for each W ∈ W, can be defined in terms of G-sets just as induction is for Mackey
functors, by (CoindG

H L)(G/J) = L(ResG
H(G/J)).

In explicit form, this is

(CoindG
H L)(J) =

∏
g∈J\G/H

L(H ∩ Jg).
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For a representative-free form, set

ĽG,H(J) =
∏
g∈G

L(H ∩ Jg).

Just as before, there is a left action of G and a right action of H. There are
restriction maps given for I ≤ J by specifying that resJ

I (g, l) = (g, resH∩gI
H∩gJ l). We

can now set (CoindG
H L)(J) = H0(J ×H, ĽG,H(J)) (where J acts on the left).

The adjunction is given as follows: ηM : M → Coind Res M is (res c−1
g ), and

εN : Res Coind N → N is projection on to N(H ∩ eJ) = N(J). The identities can
be checked just as in [21].

If W is not closed under intersections with H then it is not clear what to use
for L(H ∩ gJ) in the formulas above. In fact we fill in these gaps using lim←−, i.e. we
define CoindG

H,W L = ResVW CoindG
H,V lim←−

V
W L, for some V ⊇ W that is closed under

intersections with H, e.g. V = S.
The unit and counit extend in the obvious way, but in case this seems too much

like sleight of hand, and since the matter is important for this paper, we will give
a proof of the adjunction using only the properties of the functors already defined.

Working always within CS, we have:

homCSW(G)(L, CoindG
H M) = homCSW(G)(L, ResVW CoindG

H lim←−
V
W M)

∼= homCSV(G)(lim−→
V
W L, CoindG

H lim←−
V
W M)

∼= homCSV(H)(ResG
H lim−→

V
W L, lim←−

V
W M)

∼= homCSV(H)(lim−→
V
W ResG

H L, lim←−
V
W M)

∼= homCSW(H)(ResG
H L, ResVW lim←−

V
W M)

∼= homCSW(H)(ResG
H L,M)

Summing up we have shown:

Proposition 2.6. IndG
H is the left adjoint and CoindG

H is the right adjoint of ResG
H :

CSW(G)→ CSW(H).

If X is a left G-set we define R[X?] ∈ CSW(G) by letting its value on H ∈ W be
the free R-module on the points of X fixed under H, that is on HX. We will usually
denote this by R[XH ]. Writing ? and H on the right is confusing but traditional.

The restrictions are induced by the inclusions of subsets and conjugation cg is
induced by left multiplication by g.

Notice that it follows from the definitions that:

Lemma 2.7. R[G/H?] ∼= IndG
H R̄ in CSW(G) for any W.

Corollary 2.8. R[G/H?] is projective in CSW(G) if H ∈ W. The R[G/H?] for
H ∈ W satisfy homCSW(G)(R[G/H?], L) ∼= L(H) for L ∈ CSW(G) and they provide
enough projectives in CSW(G)

Proof. ([7]) R[G/H?] is projective by 2.5, 2.6 and the fact that left adjoints of exact
functors preserve projectives.

Now homCSW(G)(R[G/H?], L) ∼= homCSW(H)(R̄, L) ∼= L(H) for H ∈ W. It is
easy to see that this isomorphism is given by evaluating the homomorphism at
H ∈ H(G/H).

Finally we need to show that any L is the surjective image of a projective. But,
using the previous isomorphism, we can construct a map from a sum of copies of
R[G/H?] to L that is surjective on evaluation at H. Now we take the sum of these
over the H ∈ W. �



THE BREDON COHOMOLOGY OF SUBGROUP COMPLEXES 7

If W is a class of subgroups of G and H ≤ G we say that H is taut with respect
to W if, for each W ∈ W, H ∩W is tight with respect to W ∩ S(H ∩W ) in the
sense defined after 2.5.

Lemma 2.9. Working in CSW ,
(1) IndG

H is always exact and preserves projectives,
(2) CoindG

H always preserves injectives,
(3) ResG

H is always exact and preserves injectives.
(4) CoindG

H is exact and ResG
H preserves projectives if and only if H is taut

with respect to W (so in particular if H ∈ W).

Proof. ResG
H and IndG

H are exact by construction. Therefore the left adjoint of
ResG

H , which is IndG
H , preserves projectives; its right adjoint, which is CoindG

H , pre-
serves injectives and the right adjoint of IndG

H , which is ResG
H , preserves injectives.

Since the R[G/W ?] with W ∈ W provide enough projectives, ResG
H preserves pro-

jectives if and only if each ResG
H R[G/W ?] is projective. But this is R[(ResG

H G/W )?],
and by the double coset formula is a sum of pieces of the form R[H/(H ∩ gW )?],
which are all projective if and only if H is taut with respect to W, by 2.5. �

Lemma 2.10. If H ≤ G, L ∈ CSW(G), M ∈ CSW(H) then

IndG
H(L⊗ ResG

H M) ∼= (IndG
H L)⊗M,

in CSW(G).

Proof. For any K ∈ CSW(G),

homCSW(G)(IndG
H(L⊗ ResG

H M),K) ∼= homCSW(H)(L⊗ ResG
H M, ResG

H K)
∼= homCSW(H)(L, Hom(ResG

H M, ResG
H K))

∼= homCSW(G)(IndG
H L, Hom(M,K))

∼= homCSW(G)(IndG
H L⊗M,K).

This is natural in K and the result now follows formally. (hom(A,−) ∼= hom(B,−)⇒
A ∼= B.) �

The adjunction can be generalised:

Proposition 2.11. For H ≤ G, L ∈ CSW(G), M ∈ CSW(H) we have

HomCSW(G)(L, CoindG
H M) ∼= CoindG

H HomCSW(H)(ResG
H L,M),

HomCSW(G)(IndG
H M,L) ∼= CoindG

H HomCSW(H)(M, ResG
H L),

in CSW(G).

Proof. For any K ∈ CSW(G),

homCSW(G)(K, HomCSW(G)(L, CoindG
H M)) ∼= homCSW(G)(K ⊗ L, CoindG

H M)
∼= homCSW(H)(ResG

H K ⊗ ResG
H L,M)

∼= homCSW(H)(ResG
H K, HomCSW(H)(ResG

H L,M))
∼= homCSW(G)(K, CoindG

H HomCSW(H)(ResG
H L,M)).

Now the first formula follows formally as in 2.10. The proof of the second is similar,
but needs 2.10. �

Corollary 2.12. If L ∈ CSW(G) and H ≤ G, then IndG
H ResG

H L ∼= R[G/H?] ⊗ L

and CoindG
H ResG

H L ∼= HomCSW (R[G/H?], L) in CSW(G).
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Proof. There is a map Θ : IndG
H ResG

H L→ R[G/H?]⊗L given by Θ(g, l) = gH⊗cgl.
Its inverse is given by Φ(gH ⊗ l) = (g, c−1

g l).
For the second part note that both sides have the same left adjoint, by the first

part, 2.1 and 2.6. �

We will occasionally need to deal with quotient groups, so suppose that H C G
and let ρ : G→ G/H be the quotient map. Let W be a class of subgroups of G/H
and let V be a class of subgroups of G such that V ⊇ ρ−1(W) and ρ(V) ⊆ W.

Given L ∈ CSW(G) define QG
G/HL ∈ CSV(G/H) by QG

G/HL(W ) = L(ρ−1W ),
for W ∈ W.

In the other direction we have two functors, defined on M ∈ CSW(G/H) by:
(InfG

G/H M)(V ) = M(ρ(V )), for V ∈ V, and
(CoinfG

G/H M)(V ) is M(ρ(V )) if H ≤ V ∈ V and 0 otherwise.
The next result is left as an easy exercise for the reader.

Proposition 2.13. InfG
G/H is the left adjoint and CoinfG

G/H is the right adjoint of
QG

G/H : CSV(G)→ CSW(G/H).

Now we consider Mackey functors, so for simplicity assume that G is finite.
These have been described in many other places, e.g. [25]. The only difference in
our treatment is that we only evaluate the functor on a class W of subgroups of G
and we assume that this class is closed under intersections. We require the double
coset formula for resV

W trV
U whenever U, V,W ∈ W. Notice that its terms are all

defined because of the condition on intersections.
Let V and W be two classes of subgroups of G, such that V is closed under

intersections and W is closed under intersections with V (that is, if W ∈ W and
V ∈ V, then V ∩W ∈ W).

Given C ∈ CSW , define Ĉ ∈WCSV by:

Ĉ(J) =
⊕

I∈W, I≤J

C(I).

An element x of C(I) ⊆ Ĉ(J) will be denoted (I, x)J .
For g ∈ G define g(J, x)H = (gJ, cgx)

gH . The conjugation maps in C combine
to yield a map ĉg : Ĉ(H)→ Ĉ(gH), where ĉg(J, x)H = g(J, x)H .

Whenever K ≤ L ≤ G there are restriction morphisms between the values of Ĉ
given by rL

K(J, x)L = (J ∩ K, resJ
J∩K x)K . These make Ĉ into a weak coefficient

system. There are also inclusion morphisms given by iLK(J, x)K = (J, x)L, which
give Ĉ the dual structure i.e. make it into a covariant functor on the category of
conjugation and inclusion morphisms.

Define:
TC(H) = H0(H; Ĉ(H))

and
SC(H) = H0(H; Ĉ(H)).

We now define restriction and transfer maps, denoted by R and I, on these
groups. We denote the restriction and transfer in cohomology by res and tr.

On TC, RL
K = (rL

K)∗ resL
K and IL

K = trL
K(iLK)∗.

On SC,

RL
K(J, x)L = (rL

K)∗
∑

g∈K\L/J

g(J, x)L =
∑

g∈K\L/J

(gJ ∩K, res
gJ
gJ∩Kg cgx)K ,

and IL
K = resL

K(iLK)∗.
One can verify that SC and TC are Mackey functors on V. The case of S goes

back at least to [9] (see also [5]) and T appears in [20].
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There is a forgetful functor F : MFW(G) → CSW(G) and another functor G :
MFW(G)→ CSW(G) given by

GM(J) = M(J)/
∑
I�J

Im trJ
I ,

with the zero restriction maps.

Proposition 2.14. S is the left adjoint of F and T is the right adjoint of G.

Proof. For T , ηJ : M → TGM is
∏

resJ
I , and εJ : GTN → N is projection on to

L(J).
For S, ηJ : M → FSM takes m to (J,m)J , and εJ : SFN → N takes (I, n)J to

trJ
I n. �

Remark. Some authors use a slightly different definition of T . Instead of Ĉ, they
use a WCS Č, which differs from Ĉ only in that the restriction maps are given by

řL
K(J, x)L =

{
(J, x)K if J ≤ K,

0 otherwise.

However there is a map φ : Ĉ → Č given by

φL(J, x)L =
∑

I∈W, I≤J

(I, resJ
I x)L.

This φ is compatible with the maps r and ř, and also with the i and the cg. It is
an isomorphism because it is the identity on the factors if we filter according to the
order of the group.

Thus the two definitions are equivalent.

This offers a good way of constructing projective and injective coefficient systems
or Mackey functors. Note that if H is normal in G then CS{H}(G) is naturally
equivalent to the category of R(G/H)-modules. Since left adjoints of exact functors
preserve projectives and right adjoints of exact functors preserve injectives, we have:

Proposition 2.15. Suppose that H ∈ W, and H ≤ N ≤ NG(H), (and W is closed
under intersections when we refer to MFW(G)). Let P be a projective RN/H-
module, I an injective RN/H-module (both regarded as elements of CS{H}(N) as
above) and let 〈H〉 denote the set of conjugates of H in G. Then:

(1) lim−→
W
〈H〉 IndG

N P ∈ CSW(G) and S lim−→
W
〈H〉 IndG

N P ∈ MFW(G) are projective.

(2) lim←−
W
〈H〉 CoindG

N I ∈ CSW(G) is injective.

The following result is key to many applications, including obtaining a splitting
of Mackey functors in 5.3.

Proposition 2.16. If L ∈ CSW(G) and M,N ∈ MFW(G) then HomCSW (L,M)
and HomMFW (N,M) are naturally Mackey functors in MFW(G). These struc-
tures are consistent in the sense that they are compatible with the isomorphism
HomCSW (L,M) ∼= HomMFW (SL, M) given on each subgroup in W by 2.14.

Proof. HomMFW (N,M) is defined, at least as a coefficient system, in a similar way
to HomCSW (N,M).

The transfer on HomCSW (L, M) is defined as follows: If K ≤ H ≤ G and
f ∈ HomCSW(K)(L,M) then trH

K(f) is defined on J ≤ H, J ∈ W as∑
g∈J\H/K

(L(J) res→ L(J∩g K)
cg→ L(Jg∩K)

f→M(Jg∩K)
cg−1
→ M(J∩g K) tr→M(J)).

A similar definition works for HomMFW (N,M). For full details see [6]. �
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Proposition 2.17. Suppose that X ⊂ W, both closed under pairwise intersection,
and M ∈ MFX (G). Then lim←−

W
X M is naturally a Mackey functor. It is the right

adjoint of ResWX : MFW(G)→ MFX (G).

Proof. To determine trK
H we only need to specify resK

I trK
H x for each I ∈ X in a

consistent way. This can be done by setting

resK
I trK

H x =
∑

g∈I\K/H

trI
gH∩I cg resH

H∩Ig x.

�

Corollary 2.18. If M ∈ MFW(G) and M ∼= lim←−
W
X ResWX M as a coefficient system

then M ∼= lim←−
W
X ResWX M as a Mackey functor.

Proof. The formula used to define the transfer on lim←− is clearly necessary, so it must
agree with the transfers on L. �

In [21] there is constructed a functor IndG
H : MFS(H) → MFS(G), which is

both right and left adjoint to restriction. The same recipe will work if we replace
S by X , provided that X is closed under intersections with H, and, if we ignore
transfers then we see that it agrees with our construction of Coind for coefficient
systems. For this reason we prefer to denote it by Coind. If X is not closed under
intersections with H then we use lim←− as before. The following version of 2.12 is
straightforward to check.

Lemma 2.19. If M ∈ MFW(G) then CoindG
H ResG

H M ∼= HomCSW (R[G/H?],M)
in MFW(G).

There is an important property of the functor S above.

Lemma 2.20. SZ[G/H?] ∼= BG(?,H), where BG(?,H) is the functor induced
up to G from the Burnside ring Mackey functor BH on H. In fact BG(?,H) ∼=
HomΩR(G)(G/H,−) in the notation of [21].

Proof. Notice that S commutes with induction (in CS or MF, depending upon the
side) because their right adjoints commute. Also SZ[G/H?] ∼= S IndG

H Z̄. Now we
claim that SZ ∼= BG, which can be checked from the definitions. For the rest, see
[21]. �

3. Higher Limits

We work in the category CSW(G) of coefficient systems on a classW of a group G
over some fixed unital ring R. This is an abelian category with enough projectives
and injectives (a consequence of 2.15), so we can use homological algebra. We could
just consider the derived functors of hom, but instead we look at HomCSW(G),
considered as taking values in CST (G) for some class T . This class T should,
perhaps, be indicated in the notation but, instead, we will regard it as implicitly
understood or mention it in the text. We take the right derived functors as a functor
in the second variable, obtaining Ext∗CSW(G) ∈ CST (G). This can be confusing, but
at least some potential sources of confusion do not arise:

Lemma 3.1. (1) Ext∗CSW(G)(M,N)(J) does not depend on T , as long as J ∈
T .

(2) If J ≤ H ≤ G, M,N ∈ CSW(G) and J ∈ T then Ext∗CSW(G)(M,N)(J) ∼=
Ext∗CSW(H)(ResG

H M, ResG
H N)(J).
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Proof. Part (1) is clear from the definitions. Part (2) follows from the definition of
the right derived functors and the fact that ResG

H is exact and preserves injectives
(2.9). �

A problem that does arise is that Hom is not always right balanced in the sense
of, for example, [26] 2.2.7.

Lemma 3.2. If T is a class of subgroups of G that are taut (defined just before
2.9) with respect to W then HomCSW(G)(−,−) is right balanced as a functor taking
values in CSW(G).

The advantage of having a balanced functor is that its derived functors in the
first and in the second variable coincide.

Proof. We need to check that if the second variable N is injective then Hom(−, N)
is exact as a functor of the first variable. We can do this by evaluating on each
J ∈ T , so we are just looking at homCSW(J)(−, ResG

J N). But ResG
J N is also

injective, by 2.9.
We must also check that if the first variable M is projective then Hom(M,−)

is exact. The argument is dual to the previous one, except that for ResG
J M to be

projective we need J to be taut with respect to W. �

Remark. A possible choice for T that satisfies the conditions of 3.2 is {G}, and this
amounts to considering the derived functors of hom.

The higher limit coefficient systems are, by definition, the right derived functors
of lim←−

W
X : CSX (G)→ CSW(G) and we will write (lim←−

W
X )i for Ri lim←−

W
X

What are normally thought of as the higher limits of L ∈ CSX (G) are the R-
modules ((lim←−

S
X )iL)(G).

Strictly speaking, we only defined lim←−
T
W whenW ⊆ T , but the definition without

this restriction is clear. It comes to the same as ResST lim←−
S
W .

Lemma 3.3. For all n ≥ 0, Extn
CSW (R̄, L) ∼= (lim←−

S
W)nL in CSS(G).

Proof. The case n = 0 is just 2.4. Both sides are, by definition, the derived functors
in L of the n = 0 case. �

Remark. We can not calculate Extn
CSW (R̄, L) above by taking a projective resolu-

tion of R̄ unless we are able to invoke 3.2.

Notice that if W consists of just the trivial group 1, then an object of CS{1}(G)
is just an RG-module and the higher limits are just the usual cohomology groups.

We see that the higher inverse limits are natural and unavoidable objects to
consider. However if W is large enough they often vanish.

Lemma 3.4. Consider Ext∗CSW(G) to take values in CSS(G). For H ≤ G and
L ∈ CSW(H), M ∈ CSW(G), we have

Ext∗CSW(G)(IndG
H L,M) ∼= CoindG

H Ext∗CSW(H)(L, ResG
H M),

and if H is closed under intersections with W (or just H is taut with respect to W)
then

Ext∗CSW(G)(M, CoindG
H L) ∼= CoindG

H Ext∗CSW(H)(ResG
H M,L).

Proof. The zeroth terms are isomorphic by 2.11. We need to check that both sides
calculate the right derived functors in the second variable of this common functor.
Notice that the first and third occurrences of CoindG

H are applied to CSW(H), so
are exact by 2.9. The second occurrence is exact, by 2.9, because of the restrictions
imposed on the intersections.
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For the first formula, notice that an injective resolution of M in CSW(G) be-
comes an injective resolution of ResG

H M in CSW(G) on applying ResG
H since ResG

H

preserves injectives by 2.9 . For the second formula, notice that an injective reso-
lution of L in CSW(H) becomes an injective resolution of CoindG

H L after applying
CoindG

H since CoindG
H is exact and it preserves injectives by 2.9. �

We say that a coefficient system L is injective relative to a set of subgroups
X ⊆ S(G) if L is a direct summand of

∏
H∈X CoindG

H ResG
H L. This has many

equivalent formulations along the lines of Higman’s criterion (cf. [21], [1]). There
is also an analogous concept for Mackey functors (where it is customarily referred
to as projective relative to since the right and left adjoints of restriction are then
isomorphic).

Remark. Since the forgetful functor F from Mackey functors to coefficient systems
commutes with CoindG

H (their left adjoints commute), a Mackey functor that is
injective relative to X as a Mackey functor is also injective relative to X as a
coefficient system.

Proposition 3.5. For L ∈ CSW(G) and X ⊆ W with W closed under inter-
sections with X , if L is injective relative to X then lim←−

W
X ResWX L ∼= L and

(lim←−
W
X )n ResWX L = 0 for n > 0 in CSS(G).

Proof. It is enough to prove this for CoindG
H ResG

H L, H ∈ X . But
Extn

CSX (G)(R̄, CoindG
H ResG

H L) ∼= CoindG
H Extn

CSX (H)(R̄, ResG
H L) by 3.4.

But R̄ is projective in CSX (H) by 2.8, so the higher Ext vanish, and for n = 0
we have the result required. �

The following vanishing result is a version of one in [14].

Proposition 3.6. Let X be a class of p-subgroups of G which is closed under
intersections, and such that X contains a Sylow p-subgroup P , and assume that
all positive numbers of the form |G/P | − np, n ∈ N0 are invertible in R (e.g. R

is p-local). Let M be a Mackey functor on X . Then lim←−
S
X M is injective relative

to X in MFS(G). In particular M is injective relative to X in CSX (G), and so
(lim←−

S
X )nM = 0 for n ≥ 1 in CSS(G).

Proof. Notice that lim←−
S
X M is naturally a Mackey functor by 2.17.

The natural augmentation yields a map π : R[G/P ?] → R̄, which is onto in
CSX (G).

Now the functor S : CSX (G) → MFX (G) is right exact, since its construction
involves coinvariants, so Sπ : SR[G/P ?] → SR̄ is onto. We claim that Sπ splits.
To see this, use the second (Č) model for S. The splitting is induced by sending

(J, 1)H 7→ 1
|J(G/P )|

(J,
∑

g∈G/P, J≤gP

gP )H .

Note that, when J acts on G/P , the orbit of every non-fixed point has size divisible
by p, so the denominators are indeed invertible, by hypothesis.

Now lim←−
S
X M ∼= HomMFX (G)(SR̄,M) is a summand of HomMFX (G)(SR[G/P ?],M) ∼=

HomCSX (G)(R[G/P ?],M) ∼= CoindG
P ResG

P M by 2.19. �

Let MFS(G, 1) denote the full subcategory of Mackey functors which are projec-
tive relative to Sp (often denoted Mack(G, 1) by other authors). We can deduce a
result of Bouc [5].
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Proposition 3.7. If R is p-local then lim←−
S
Sp

and ResSSp
provide an equivalence of

categories between MFSp(G) and MFS(G, 1).

Proof. From 3.6 we see that lim←−
S
Sp

takes values in MFS(G, 1).

Clearly ResSSp
lim←−

S
Sp

= Id. As for lim←−
S
Sp

ResSSp
= Id, it is enough to check this

on a functor of the form CoindG
P ResG

P M for P ∈ Sp. But the left adjoint of
lim←−

S
Sp

ResSSp
CoindG

P ResG
P is IndG

P ResG
P lim−→

S
Sp

ResSSp
∼= IndG

P ResG
P , which in turn

has right adjoint CoindG
P ResG

P , so lim←−
S
Sp

ResSSp
CoindG

P ResG
P
∼= CoindG

P ResG
P as re-

quired. �

For any poset X we define X≥H = {K ∈ X |K ≥ H} and similarly X>H . Recall
that G0 is the left adjoint of the inclusion GCS→ CS

Lemma 3.8. If X ⊆ W and for each H ∈ W, the poset X≥H is connected, then
lim−→

W
X R̄ = R̄.
If for each H ∈ W, CG(H) acts transitively on the components of X≥H , then

G0 lim−→
W
X R̄ = R̄.

Proof. From the definition, (lim−→
W
X R̄)(H) is the free R-module on the components

of X≥H . �

Recall that we made the abbreviation lim←−
G

W L = (lim←−
S
W L)(G).

Proposition 3.9. If each X≥H ,H ∈ W is connected then lim←−
G

X ResWX ∼= lim←−
G

W on
CSW(G).

If CG(H) acts transitively on the components of each X≥H ,H ∈ W then lim←−
G

X ResWX ∼=
lim←−

G

W on GCSW(G).

Proof. For the first formula we need to show that homCSW(G)(R̄, L) ∼= homCSX (G)(R̄, ResWX L).
But homCSW(G)(lim−→

W
X R̄, L) ∼= homCSX (G)(R̄, ResWX L), by 2.2. Now use the previ-

ous lemma. The second formula is proved similarly. �

For any poset W we denote the geometric realisation by |W |. This is the sim-
plicial complex where the simplices correspong to chains in W

For any poset W we define the weakly essential elements to be

Wess0(W ) = {H ∈W | |W>H |is empty or has more than one component},
and also

Wess(W ) = {H ∈W ||W>H |is not contractible}.
Also, if W is a G-poset, we define the essential elements to be

Ess0(W ) = {H ∈W ||W>H |/CG(H)is empty or has more than one component}.
Notice that Ess0(W ) ⊆Wess0(W ) ⊆Wess(W ).

Remark. We allow maximal elements of W to be essential, in contrast to [20].

The next proposition will be very useful for changing classes of groups. It is
based on §6.6 of [1] vol. II, attributed to Bouc.

Proposition 3.10. Let W be a poset such that there is a bound on the length of
any chain in W , and let X be a subposet.

If X contains Wess W then the inclusions of the geometric realisations |WessW | ⊆
|X| ⊆ |W | are homotopy equivalences.

If X contains Wess0 W then the inclusions of the geometric realisations |Wess0W | ⊆
|X| ⊆ |W | induce a bijection on the connected components.
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Proof. The first part is due to Bouc [2, 3, 4], see also II.6.6.5 of [1]. The second part
is proved in the same way, replacing homotopy equivalence by induces a bijection on
the connected components. The same must be done for Quillen’s Lemma (II.6.6.2 in
[1]), either by considering only the E0,0-term of the spectral sequence in the proof,
or just by elementary means. �

Proposition 3.11. Suppose that there is a bound on the length of any chain in W.
If Wess0(W) ⊆ X ⊆ W then lim←−

G

X ResWX ∼= lim←−
G

W on CSW(G).
If, in addition, X is closed under supergroups in W then (lim←−

G

X )n ResWX ∼=
(lim←−

G

W)n.

Proof. By the 3.9 we need to show that X≥H is connected for each H ∈ W . But
Wess0(W≥H) ⊆ X≥H ⊆ W≥H , so we can apply 3.10.

For the higher limits the result will follow if we know that ResWX is exact (which it
clearly is) and it preserves projectives. The latter is equivalent to the right adjoint
lim←−

W
X being exact, which it clearly is under the condition on supergroups. �

The next result is an immediate consequence of Alperin’s Fusion Theorem, as
stated in, for example, [11], [20]. For the rest of this section we suppose that G is
finite.

Proposition 3.12. Suppose that W ⊆ Sp is closed under supergroups in Ess0(Sp),
and that Ess0(Sp) ∩W ⊆ X ⊆ W. Then lim←−

G

X ResWX ∼= lim←−
G

W on GCSW(G).
If, in addition, X is closed under supergroups in W then (lim←−

G

X )n ResWX ∼=
(lim←−

G

W)n.

Proof. Pick a Sylow p-subgroup P of G and use the method of stable elements to
realise lim←−

G

X L as the set of elements x ∈ L(P ) such that, whenever H ∈ W, H ≤ P ,
g ∈ G and gH ≤ P , then x satisfies resP

gH x = cg resP
H x.

The Fusion Theorem states that the group homomorphism cg : H → gH given
by conjugation by g is equal to the composition of a sequence of conjugations
cv : U → vU for v ∈ G, U, vU ≤ E ≤ P for some essential subgroup E ∈ Ess0(Sp)
such that v normalises E. Since U ∈ W and W is closed under supergroups in
Ess0(Sp) we see that E ∈ Ess0(W) and hence is in X .

But (resP
vU −cv resP

U )x = resE
vU (1 − cv) resP

E x. It follows that all the conditions
that we want to impose on x ∈ L(P ) are already imposed when we just consider
subgroups in X .

Note that the factorisation of cg given is only as a group homomorphism, so
ignores CG(H). This is why we need to work in GCS not CS.

The claim about the higher limits follows as in the previous proof. Note that
the right adjoint of ResWX in GCS is G0 lim←−

W
X I, so is still exact. �

Let Bp denote the class of subgroups P of Sp satisfying P = OpNG(P ), often
known as the radical subgroups, and let Cp denote the class of subgroups P in Sp

for which the centre of P is the Sylow p-subgroup of CG(P ), sometimes known as
the centric or self-centralising subgroups.

It is well known that Wess0(Sp) ⊆ Bp and Ess0(Sp) ⊆ Cp ∩ Bp (see [20]).
The next lemma is well known and easy to prove.

Lemma 3.13. If N C G and N is of order coprime to p then |S1
p(G/N)| ∼=

|S1
p(G)/N |.

Following Grodal [12], let Dp be the set of centric subgroups P of G for which
NG(P )/PCG(P ) has no non-trivial normal p-subgroup.

Lemma 3.14. Ess0(Sp) ⊆ Dp ⊆ Cp ∩ Bp.
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Proof. Dp ⊆ Cp by definition. If P ∈ Cp r Bp then there is a subgroup Q such
that P � Q C NG(P ) and Q � CG(P ). The image of Q in NG(P )/PCG(P ) is
non-trivial, so P 6∈ Dp.

Now if P is centric then |S1
p(G)>P |/CG(P ) ∼= |S1

p(NG(P )/P )|/(CG(P )/Z(P )) ∼=
|S1

p(NG(P )/PCG(P ))|, by the lemma above. So if P 6∈ Dp then these spaces are
contractible and P 6∈ Ess0(Sp). �

Corollary 3.15. L ∈ CSSp
(G) then lim←−

G

Bp
ResSp

Bp

∼= lim←−
G

Sp
on CSSp

(G).

lim←−
G

Dp
ResSp

Dp

∼= lim←−
G

Bp
ResSp

Bp

∼= lim←−
G

Sp
on GCSSp(G).

Remark. In section 9 we will see that if R is p-local then we can extend these results
to higher limits. In this form the first part of the corollary appears in [14] and the
second part is in [12].

4. Hyper Cohomology

Given a chain complex C• in CSW(G) which is bounded below, and L ∈ CSW(G)
we can consider the hyper-Ext groups Extn

CSW (C•, L). These are the hyper-derived
functors of HomCSW , which takes its values in CST (G) (where T is any class of
subgroups), so are themselves coefficient systems. This is not consistent with our
previous definition of Ext as the derived functor on the second variable, unless we
are in the circumstances of 3.2. But confusion will rarely arise, and when it does
we will write Ri Hom(A,−)(B), for example.

Lemma 4.1. Extn
CSW(G)(C•, L)(J) does not depend on T , provided J ∈ T .

Proof. When we apply HomCSW(G)(−, L) we do so groupwise. �

There are two spectral sequences (see e.g. [26] 5.7.9):

(1) IIEp,q
2 = Extp

CSW(G)(Hq(C•), L)⇒ Extn
CSW(G)(C•, L)

(2) IEp,q
2 = Hp(Extq

CSW(G)(C•, L))⇒ Extn
CSW(G)(C•, L)

We adopt the convention that when we apply plain Ext to a chain complex, we
apply it term by term to obtain another chain complex.

The following proposition is the basic result that we will use to obtain the se-
quences of the introduction and to identify their cohomology.

We say that a class of subgroups T is taut with respect to another class W if
each T ∈ T is taut with respect to W as defined after 2.8 .

Proposition 4.2. (1) If, in CSW(G),

Hn(C•) =

{
R̄ if n = 0,
0 otherwise,

then Extn
CSW(G)(C•, L) ∼= Extn

CSW(G)(R̄, L). If T is taut with respect to W
then this is also equal to (lim←−

T
W)nL.

(2) If K ≤ G and H∗ Extn
CSW(G)(C•, L)(K) = 0 for n ≥ 1 then

Extn
CSW(G)(C•, L)(K) ∼= Hn HomW(C•, L)(K)

.

Remark. We can always take T = {G} and then T is taut with respect to W. In
this way we can always obtain (lim←−

G

W)nL in part (1).
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Proof. For (1) we apply the IIE spectral sequence and see that it collapses. The sec-
ond part follows using 3.2 to see that Extn

CSW(G)(R̄, L) ∼= Rn HomCSW(G)(R̄,−)(L)
and then 3.3 to identify this with (lim←−

T
W)nL. �

Proposition 4.3. Let C• be a complex in CSW(G). Let X ⊆ W and suppose
that L ∈ CSW(G) is injective relative to X and also that for each H ∈ X we have
that ResG

H C• is split exact. Then HomCSW(G)(C•, L) is split exact. If L is also a
Mackey functor then this is split exact as a complex of Mackey functors.

Note that L being a Mackey functor entails W being closed under intersections.
Also L is only required to be relatively injective as a coefficient system.

Proof. When we restrict to H ∈ X, ResG
H C• becomes split exact. Thus HomCSW(H)(ResG

H C•, L)
is split exact. Now apply CoindG

H and use

CoindG
H HomCSW(H)(ResG

H −, L) ∼= HomCSW(G)(−, CoindG
H ResG

H L)

(by 2.11). We see that

HomCSW(G)(C•, CoindG
H ResG

H L)

is split exact. Thus our sequence is a summand of a product of split exact sequences,
so is itself split exact by [24].

The splitting as a Mackey functor comes from 2.16. �

5. Bredon Cohomology

If ∆ is a G-CW-complex on which G acts admissibly (i.e. the stabiliser of each
cell fixes it pointwise), let ∆n denote the G-set of n-cells. We can form a chain
complex of coefficient systems C•[∆?] in CSS(G) by setting

Cn[∆?] = R[∆?
n] ∼=

⊕
n-cells σup to G-conjugacy

R[G/ StabG σ?],

with the natural boundary morphisms, as described in [7].
More succinctly, we regard ∆ as a simplicial G-set (in the language of [26]) and

apply the functor G/H 7→ R[G/H?] to obtain a semi-simplicial coefficient system,
and then take C•[∆?] to be the associated chain complex of coefficient systems.

We often restrict this chain complex to some classW where it is better behaved.
We will also use the augmented complex, C̃•[∆?], where we add the term R̄ in

degree −1 and the map R[∆?
0]→ R̄ takes each 0-cell to 1.

The definition of the cohomology of ∆ with coefficients in a Mackey functor M in
[17] amounts to saying that it is the cohomology of the complex HomMFS(G)(SC•[∆?],M).
But this is isomorphic to HomCSS(G)(C•[∆?],M). For a slightly different approach,
see [22].

Notice that if H ∈ W then HomCSW(G)(R[G/H?], L) ∼= CoindG
H ResG

H L by 2.12,
and so if the stabiliser of every cell in ∆ is contained in W then HomW(C•[∆?], L)
takes the form described explicitly in [7] and [24], which we sometimes refer to as
L∆• .

If X is a class of subgroups of G then we can regard X as a G-poset and form
the geometric realisation |X |.

Lemma 5.1. If the normaliser of each chain in X is in W then

homCSW(G)(C̃•(|X |?), L)

is the normaliser sequence of the introduction, except that we have lim←−
G

W L in the
first place instead of L(G).
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We define the Bredon cohomology of ∆ with coefficients in L to be

H∗
CSW (∆, L) = Ext∗CSW (C•[∆?], L).

This is again an element of CST (G).

Remark. For Bredon in [7], W = S always, so C•[∆?] is a complex of projectives
and H∗

CSW
(∆, L) = H∗ HomCSW (C•[∆?], L), but this is not always true for general

W.

Remark. In view of 2.20 we can see that the definition of cohomology with coeffi-
cients in a Mackey functor M given in [17] is equivalent to H∗ HomMFS (SC•[∆?],M) ∼=
H∗ HomCSS (C•[∆?],M), so is just Bredon cohomology, with the transfer given as
in 2.16.

Example. If W = {1}, the trivial group, and T = {G} then H∗
CS{1}

(∆, L)(G) is
just the usual G-equivariant cohomology of ∆ as in [8], i.e. the cohomology of the
Borel construction.

Theorem 5.2. If L ∈ CSW(G) and H̃∗(∆H , R) = 0 (i.e. R-acyclic) for every
H ∈ W and (lim←−

S

W)nL = 0 for every n ≥ 1 and every S which is the stabiliser of a
cell in ∆ (e.g. S ∈ W), then

Hn(homCSW(G)(C•[∆?], L)) ∼= (lim←−
G

W)nL.

Proof. We take T = {G} and check that the conditions of 4.2 are satisfied (with
K = G). This is clear for the first part. For the second we calculate instead with
T = S, knowing that this will not matter by 4.1. Now Extn

CSW(G)(R[G/S?], L)(G) ∼=
CoindG

S Extn
CSW(S)(R̄, L)(G) ∼= Extn

CSW(S)(R̄, L)(S) by 3.4. Next we work in CSW(S)
with T = {S} (invoking 4.1 again). But now Hom is balanced so, by 3.3, we have
Extn

CSW(S)(R̄, L)(S) ∼= (lim←−
S

W)nL, which is 0 by hypothesis. �

Theorem 5.3. Let L ∈ CSW(G) and X ⊆ S. Suppose that L is injective relative
to X and that ∆K is R-acyclic for every K ∈ W, K ⊆ H ∈ X.

Suppose also that for each subgroup H ∈ X we know that H is taut with respect
to W and also for each cell σ of ∆, StabH(σ) is taut with respect to W.

Then the chain complex

HomCSW (C̃•[∆?], L)

is split exact in CSS(G). If L is a Mackey functor then the complex is split as a
complex of Mackey functors.

Proof. Let H ∈ X and consider ResG
H C̃[∆?]. It is exact, by the condition on the

∆K , and a complex of projectives, by the tautness conditions. The conditions of
4.3 are now satisfied and the result follows . �

Remark. (1) The statement for Mackey functors is similar to the main theorem
of Webb, [24]. He hasW = S\Y, and our X is his X \Y. Notice firstly that
relative injectivity is the same as relative projectivity for Mackey functors,
and secondly that if a coefficient system L is injective relative to X and L
vanishes on Y, then L is injective relative to X \ Y, at least if Y is closed
under subgroups in X .

(2) This proof of Webb’s theorem, shorn of the general notation, is in fact
very short. The relative injectivity condition allows us to reduce to the the
case of a group in X, and then the complex C̃•[∆?] is an exact complex of
projectives, so splits.
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(3) If R is p-local and ∆H is R-acyclic for every H ≤ G of order p, then ∆H is
R-acyclic for every non-trivial p-subgroup H by Smith theory, or by using
equivariant cohomology as in [8].

(4) Another proof of Webb’s Theorem has been given by Bouc [5].

Usually ∆ is taken to be the Quillen complex, i.e. |S1
p(G)|, or some variant.

Webb gives many examples of 5.3, but 5.2 is also useful. It can be used to give a
simpler proof of the main results in [19]: here is another application.

Example. Fix a prime p and let B denote the ring of Brauer characters, considered
as a coefficient system over C on some finite group G. Let Np be the class of
subgroups which contain a non-trivial normal p-subgroup, and let ∆ denote the
usual Brown complex.

Since each stabiliser of a cell in ∆ is in Np, 5.2 applies to B ∈ CSNp(G) on ∆
and also HomNp(C•, B) ∼= B∆• . But by Robinson’s reformulation of Alperin’s Con-
jecture [16],

∑
(−1)i dim B∆i

(G) should be equal to the number of non-projective
simple modules for G, denoted fo(G).

It follows that (the non-blockwise version of) Alperin’s weight conjecture is true
for all finite groups if and only if for all finite groups G

fo(G) =
∑

i

(−1)i dim(lim←−
i

Np
B)(G).

It is interesting to try and understand this by filtering B by functors which are
non-zero on only one conjugacy class and then calculating the higher limits of these
in the manner of [14]. The result is the original formulation of Alperin’s conjecture,
by essentially the same proof as in [16].

6. The structure of C•([∆?])

First we need some lemmas.

Lemma 6.1. For any H ≤ G and any classW of subgroups of G, let π0(|W∩S(H)|)
denote the H-set of components in W ∩ S(H). Then, as RG-modules,

ResW∪{1}
{1} lim−→

W∪{1}
W R[G/H !] ∼= R[G×H π0(|W ∩ S(H)|)].

Proof. Since lim−→ commutes with Ind (their right adjoints commute) and R[G/H !] ∼=
IndG

H R̄ it suffices to prove the case G = H, observing that both sides are induced
modules. But lim−→

W∪{1}
W R̄ is formed by taking one basis element for each element of

W ∩S(H) and then identifying two basis elements if there is an inclusion between
the corresponding subgroups. This yields R[π0(|W ∩ S(H)|)]. �

It will be convenient to define a coefficient system to be based at H ≤ G if it is
a summand of a sum of R[G/H?]s.

Corollary 6.2. Consider the canonical map

lim−→
W∪{1}
W R[G/H !]→ R[G/H !]

in CSW∪{1}(G).
It is onto if H contains some element of W and an isomorphism if W ∩ S(H)

is connected, in particular if H ∈ W.
If H does not contain any subgroup in W then the left hand side is 0 and the

right hand side is based at H.

Lemma 6.3. Let F ≤ G be of index invertible in R, and assume all complexes to
be bounded below. If D• is a complex of RG-modules, then ResG

F D• is homotopy
equivalent to a complex of projective RF -modules if and only if D• is homotopy
equivalent to a complex of projective RG-modules.
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Proof. If ResG
F D• ' P• then IndG

F ResG
F D• ' IndG

F P•, which is a complex of
projectives. But D• is a summand of IndG

F ResG
F D• by the maps

d 7→
∑

g∈G/F

g ⊗ g−1d, h⊗ d 7→ |G : F |−1hd, d ∈ D•, h ∈ G.

In order to simplify the notation we write D• ⊕X• ' Q•, where Q• is a complex
of projectives. Let PD

•
ρD→ D• and PX

•
ρX→ X• be projective resolutions. The

composition PD
• ⊕ PX

•
ρD⊕ρX−→ D• ⊕ X•

'→ Q• is a quasi-isomorphism of bounded
below complexes of projectives. Thus it is a homotopy equivalence and hence
ρD ⊕ ρX is also a homotopy equivalence. It follows that ρD must be a homotopy
equivalence. �

If G acts admissibly on a CW-complex ∆ we define StabG(∆) to be the set of
subgroups StabG(δ), where δ is a cell of ∆.

Theorem 6.4. Suppose that G acts admissibly on a CW-complex ∆. Suppose
also that there is a subgroup F ≤ G with |G : F | invertible in R such that ∆F is
R-acyclic and also for every K ∈ StabF (∆), K 6= 1, we have that ∆K is R-acyclic.

Then C̃•(∆) is homotopy equivalent as a complex in CS{1}(G) ∼= RG-Mod to a
bounded complex of projectives.

If W is a class of subgroups of G such that for each K ∈ W, K 6= 1 we have
that ∆K is R-acyclic, then C̃•(∆?) is equal in the derived category of CSW(G) to
a complex of projective coefficient systems which are projective relative to 1.

Proof. Let V = {StabF (∆) \ {1}} ∪ {F}, and work in CSV(F ). ResV ResG
F C̃•(∆?)

is an exact complex of projectives, by 2.8 and the definition of V, so must split.
Thus lim−→

V∪{1}
V ResV ResG

F C̃•(∆?) is also a split exact complex of projectives, since
lim−→ preserves projectives by 2.2 and the remark before 2.15.

Now, in CSV∪{1}(F ), the natural map

lim−→
V∪{1}
V ResV ResG

F C̃•(∆?)→ ResV∪{1} ResG
F C̃•(∆?)

is a sum of those in 6.2. Each stabiliser is either in V or is 1, so the map is injective
and the cokernel P• is a complex of projectives based at 1.

Now ResV∪{1} ResG
F C̃•(∆?)→ P• is a quasi-isomorphism of bounded below com-

plexes of projectives, so must be a homotopy equivalence. Restricting to the sub-
group 1 (so we are just dealing with RF -modules), we see that C̃•(∆) is homotopy
equivalent to P•(1), which is a complex of projective RF -modules.

Now apply 6.3 to obtain the first claim.
For the second claim, we work in CSW(G), and notice that C̃•(∆?) is equal in

the derived category to the complex obtained from it by changing the evaluations
to 0 on every subgroup not equal to 1. Now we use the first claim. �

Lemma 6.5. In any Abelian category, if there is a map of chain complexes f :
C• → P•, which is a quasi-isomorphism, and where P• and C• are bounded below
and P• is a complex of projectives, then

C• ⊕ S• ∼= P• ⊕ E•,

where S• is a split exact complex of projectives and E• is an exact complex. If f
is a homotopy equivalence, then E• is split exact. If C• and P• are bounded or of
finite type (when this makes sense) then so are S• and E•.

Proof. By adding a split exact complex of projectives bounded below to C•, we
can assume that f is an epimorphism. Let E• be the kernel, so E• is exact and
bounded below.
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Now, since P• is a complex of projectives, we can take a splitting in each degree,
and in this way identify C• with E•⊕P•, but with boundary map dE⊕P +φ, where
φ is a collection of maps φi : Pi → Ei−1. If we set φ′i = (−1)iφi then these combine
to give a chain map φ′ : P• → E• of degree −1. But φ′ must factor through a
projective resolution of E•, which must be split, so φ′ is nullhomotopic. Thus we
have maps θi : Pi → Ei such that φ′ = dEθ + θdP

Set θ′i = (−1)iθi. An isomorphism Θ : C• → E• ⊕ P• is now given by setting
Θ(e, p) = (e + θ′p, p), e ∈ E, p ∈ P .

If f was a homotopy equivalence then E• must be split. �

Corollary 6.6. In the circumstances of 6.4, set C̃•(∆) = Res{1} C̃•(∆!), and regard
it as a complex of RG-modules. Then

C̃•(∆)⊕ S• ∼= P• ⊕ E•,

as bounded complexes of RG-modules, where S• is a split exact complex of projec-
tives, P• is a complex of projectives and E• is a split exact complex.

Proof. Apply 6.5 to the first claim of 6.4. �

Finally, we obtain Webb’s original result.

Corollary 6.7. In the circumstances of 6.4, but with ∆ finite and R a complete
local ring, set C̃•(∆) = Res{1} C̃•(∆!), and regard it as a complex of RG-modules.
Then

C̃•(∆) ∼= P• ⊕ E•,

as complexes of RG-modules, where P• is a complex of projectives and E• is a split
exact complex.

Proof. The complexes in the isomorphism of 6.6 are of finite type so we can apply
the Krull-Schmidt Theorem to cancel S•. �

Example. The standard examples where the hypotheses of 6.4 are satisfied are when
R is p-local, F is the Sylow p-subgroup of a finite group G and either:

(i) ∆ is the geometric realisation of S1
p(G), or

(ii) P is a p-subgroup of some group E, G = NE(P )/P and ∆ is the geometric
realisation of Sp(E)>P .

In case (i) we call the homotopy class of complexes of projective modules ho-
motopy equivalent to C̃•(∆) the Steinberg complex of G, and denote it by St•(G).
Whenever we mention this complex it will be implicit that every prime dividing
|G|, except perhaps for p, is invertible in R. If p does not divide |G| then St•(G)
consists just of the trivial coefficient system R̄ in degree −1.

In both cases the stabiliser of any cell contains a non-trivial normal p-subgroup,
and conversely for any K ∈ (Np)>P , ∆K is R-acyclic.

In these circumstances we have a uniqueness result.

Proposition 6.8. Suppose that G acts admissibly on a CW-complex ∆ in such a
way that StabG(∆) ⊆ Np, and that X is a class of subgroups containing Np such
that, for each 1 6= K ∈ X , ∆K is R-acyclic. Then C̃•(∆!) ' C̃•(|S1

p(G)|!) in
CSX (G) and, in particular, C̃•(∆) ' St•(G) in RG-Mod.

Proof. Both C̃•(∆!) and C̃•(|S1
p |!) are projective resolutions of R̄ in CSX\{1}(G),

so are homotopy equivalent by maps which are the identity on R̄ and where the
homotopies take the value 0 on R̄.

We can now apply lim−→
X
X\{1} to recover C•(∆) and C•(|S1

p |), by 6.2. We also

obtain maps between them and the necessary homotopies, which we extend to R̄
by the identity and 0 respectively. �
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For example this shows that in case (ii) above the complex obtained is in fact
St•(G). Of course in this case the defining simplicial complexes are known to be
equivariantly homotopy equivalent anyway.

7. Properties of the Steinberg Complex

It is often convenient to consider St•(G) as a coefficient system in CSW(G)
by giving it the value 0 on all non-trivial subgroups. This is in fact formally
lim−→

W
1

St•(G), and is still a complex of projectives, based at 1. We will denote it by
St0•(G).

There is an alternative description St0•(G) ' C̃•(|S1
p |?) ⊗ R̄1, where R̄1 is the

coefficient system which takes the value R on 1 and 0 elsewhere.

Proposition 7.1. For any class of subgroups W of G containing 1 and any M ∈
CSW(G), the following are all homotopy equivalent as complexes in CSW(G):

(1) HomR?(St•(G),M(1)),
(2) HomW(St0•(G),M),
(3) HomR?(C̃•(|S1

p |),M(1)),
(4) HomW(C̃•(|S1

p |?),M(1)?),
(5) If W ⊆ Np, R HomW(C̃•(|S1

p |?),M). (Where R Hom is the complex used
to define Ext.)

Proof. Now (1) and (2) are homotopy equivalent because St0•(G) = lim−→
W
1

St•(G),
and lim−→ is the left adjoint of restriction. Also (1) and (3) are homotopy equivalent
by the first part of 6.4. But (3) and (4) are homotopic because M(1)? ∼= lim←−

W
1

M(1)
and lim←− is the right adjoint of restriction. Finally St0•(G) is a projective resolution
of C̃•(|S1

p |?) by the last part of 6.4, so (5) is homotopic to (2) by definition. �

Lemma 7.2. If H C G and p divides |H| then for any p-subgroup P of G:
(1) p divides |CG(P ) ∩H|,
(2) If σ is any chain of p-subgroups of G then p divides |NH(σ)|.

Proof. P permutes the Sylow p-subgroups of H by conjugation. The number of
these is coprime to p, so at least one of them is fixed: call it S.

Now P permutes the non-trivial elements of S. Again, the number of these is
coprime to p, so one is fixed, say s. Now s ∈ CG(P ) ∩H.

For (2), let P be the largest subgroup in the chain and apply (1). �

Now we can state a fundamental result from [14], (although our proof is based
on a preliminary version of [12]).

Theorem 7.3. Suppose that R is a p-local discrete valuation ring, and that M is
an RG-module such that either M is finitely generated or M is projective over R .
If the order of the kernel (i.e. the subgroup of elements of G which act trivially on
M) is divisible by p, then the complex of RG-modules homRG(St•(G),M) is split
exact.

Proof. First we assume that pM = 0.
Define ĥomRG to be homRG modulo the image of trG

1 : homR → homRG, (with
the usual transfer on Hom). Using the complex (3) of 7.1, each term is a sum of
pieces of the form homRG(R[G/S],M), where S is the stabiliser of a chain σ.

By 7.2 with H as the kernel of M , we see that S ∩H contains a non-trivial p-
subgroup Q, say, so Q is in both S and H. Under the isomorphism homRG(R[G/S],M) ∼=
homRS(R,M) the image of trG

1 on the left corresponds to the image of trS
1 on the

right. But trS
1 factors through trQ

1 , and this is multiplication by |Q|, which is
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equal to 0. Thus homRG(St•(G),M) = ĥomRG(St•(G),M); but ĥom vanishes on
projectives.

In general, since St•(G) is homotopy equivalent to a complex of projectives,
homRG(St•(G),M)/p ∼= homRG(St•,M/p), and M/p also satisfies the conditions
of the theorem, so is split by the proof above.

If M is finitely generated over R, then so is homRG(St•(G),M), and so split
modulo p implies split, (by an obvious generalisation of Nakayama’s Lemma).

If M is not finitely generated then it is a direct limit of finitely generated sub-
modules, and the homology of homRG(St•(G),−) commutes with direct limits, so
the latter is exact. It is also a complex of projective R-modules if M is, because
its terms are summands of sums of terms homRG(RG, M) ∼= M . Thus the complex
must split. �

We can generalise this slightly in a way that will be useful in section 9. Example
(ii) in §6 suggests that we consider the complex IndG

NG(P ) InfNG(P )
NG(P )/P St0•(NG(P )/P ).

Corollary 7.4. For simplicity we assume that P is a p-subgroup of G, that all
coefficient systems are over Sp and that R is p-local.

(1) IndG
NG(P ) InfNG(P )

NG(P )/P St0•(NG(P )/P ) is a complex of projectives, based at P .

(2) homCSSp (G)(IndG
NG(P ) InfNG(P )

NG(P )/P St0•(NG(P )/P ),M) ' 0 for any M ∈ CSSp
(G)

with M(P ) either finitely generated or projective over R and on which p di-
vides the order of the kernel of M(P ) as an NG(P )/P -module.

(3) G0 IndG
NG(P ) InfNG(P )

NG(P )/P St0•(NG(P )/P ) ' 0 if P is not in Dp(G). (Where
G0 is the left adjoint of the forgetful functor I : GCS→ CS.)

Proof. For (1), observe that the functors preserve projectives because their right
adjoints are exact.

For (2), the adjoint properties show that we are just calculating
homCSSp (NG(P )/P )(St0•(NG(P )/P ), QNG(P )

NG(P )/P ResG
NG(P ) M), and this is 0 by 7.3.

Now (3) is a formal consequence of (2) if P is not centric, since any geometric M
will have PCG(P ) in the kernel of M(P ), and p divides the order of PCG(P )/P ,
so p will divide the order of the kernel of M(P ) as an NG(P )/P -module. If P is
centric but not in Dp then P is not in Bp, by 3.14, so the complex is acyclic. �

The next result is a version of one in [12].

Theorem 7.5. If L ∈ GCSSp(G) then H∗
CSSp (G)(|Sp|, L)(G) ∼= H∗

CSSp (G)(|Cp|, L)(G),
(as R-modules).

Proof. We work in CSSp(G). Define S≥n
p to be the subclass of Sp of elements

of order greater than or equal to n. Then C•(|Sp|?) is filtered by the complexes
C•(|S≥n

p |?). Now the terms of the factor C•(|S≥n
p |?)/C•(|S≥n+1

p |?) correspond to
chains with bottom element of order n. There are no inclusions between such
chains with the same bottom element, so this factor splits as a direct sum of pieces
indexed by the conjugacy class of the bottom element P of the chain, and this piece
is induced from NG(P ).

C•(|S≥n
p |?)/C•(|S≥n+1

p |?) ∼=
⊕

P∈Sp/G, |P |=n

IndG
NG(P ) C̃•+1(|(Sp)>P |?)

∼=
⊕

P∈Sp/G, |P |=n

IndG
NG(P ) InfNG(P )

NG(P )/P C̃•+1(|(Sp)>P |?)

'
⊕

P∈Sp/G, |P |=n

IndG
NG(P ) InfNG(P )

NG(P )/P St0•+1(NG(P )/P ).
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The last equivalence is a consequence of the well-known fact that |(Sp(G))>P | is
equivariantly homotopy equivalent to |(Sp(NG(P )))>P |, (by the assignment Q ≥
NQ(P )), and the latter is clearly isomorphic to |S1

p(NG(P )/P )|.
If we apply G0 then the summands with P not centric will vanish by 7.4. Note

also that (Sp)>P = (Cp)>P if P is centric.
Since the last line of the formulas above is a complex of projectives, it follows

that the inclusion of Cp into Sp induces an isomorphism

Ext∗(C•(|(Cp)≥n|?)/C•(|(Cp)≥n+1|?), L) ∼= Ext∗(C•(|(Sp)≥n|?)/C•(|(Sp)≥n+1|?), L).

We can now show, induction on n, the long exact sequence for Ext and the five
lemma, that there is an isomorphism

Ext∗(C•(|Cp|?)/C•(|C≥n
p |?), L) ∼= Ext∗(C•(|Sp|?)/C•(|S≥n

p |?), L).

The case n = 0 is trivial and the case n large is the result claimed. �

8. The Subgroup Sequence

There are other ways of obtaining a chain complex in CSW(G) from a class X
of subgroups, which do not factor through the geometric realisation. Although the
examples that we will consider are simple and concrete it seems helpful to mention
the general context.

We consider the category ch(X ) of chains in X and inclusions. We need a con-
travariant functor F : ch(X )→ PCSW(G) together with a collection of conjugation
maps cg : F (σ)(H)→ F (gσ)(gH) for each g ∈ G, σ ∈ ch(X ),H ∈ W. These conju-
gation maps must satisfy the usual properties c1 = Id, cg1cg2 = cg1g2 and they must
commute with restriction in PCSW(G) and also with restriction in ch(X ) (induced
by inclusion). In addition we require that F (σ)(H) = 0 if H 6≤ NG(σ) and, for
h ∈ H ≤ NG(σ), we need ch = Id : F (σ)(H)→ F (σ)(H).

This naturally makes F (σ) into an element F̃ (σ) ∈ CSW(NG(σ)), extended to
H 6≤ NG(σ) by 0. These F̃ (σ) and the restriction maps F (σ) → F (τ) uniquely
determine the structure defined above.

For a G-subset X of ch(X ) we define F (X) = ⊕σ∈XF (σ). With the natural
action of G via the cg we have F (X) ∈ CSW(G). In particular, writing (σ) for the
orbit of σ, we have F ((σ)) ∼= IndG

NG(σ) F̃ (σ).
Up until now we have always used the functor FN , where F̃N (σ) = R̄ ∈

CSW(NG(σ)), so FN ((σ)) ∼= IndG
NG(σ) R̄ ∼= R[G/NG(σ)?].

Recall that for any chain σ in X we denote by σb the smallest element and by
σt the largest.

The functor which represents the subgroup sequence is FS , defined by

FS(σ)(P ) =

{
R if σb ≥ P ,

0 otherwise.

Thus FS((σ))(P ) is the free R-module on the chains τ in the orbit of σ with τb ≥ P .
The restrictions are the canonical inclusion maps.

For P ≤ G, define R̄P ∈ CSW(NG(P )) by R̄P = lim−→
W(NG(P ))

W(P )
R̄, so that for

H ∈ W, R̄P (H) is R if H ≤ P and 0 otherwise. (So, in fact, R̄P = InfNG(P )
NG(P )/P R̄1.)

Then we have FS((σ)) = IndG
NG(σ) ResNG(σb)

NG(σ) R̄σb
, which we will abbreviate to

IndG
NG(σ) R̄σb

.

Lemma 8.1. homCSW(G)(IndG
NG(σ) R̄σb

, L) ∼= ((lim←−W(σb)
L)(σb))NG(σ), and if σb ∈

W, then this is also isomorphic to L(σb)NG(σ).
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Proof.

homCSW(G)(IndG
NG(σ) R̄σb

, L) ∼= homCSW(NG(σ))(R̄σb
, L)

∼= homCSW(NG(σ))(lim−→
W(NG(σb))

W(σb)
R̄, L)

∼= homCSW(σb)(NG(σ))(R̄, L)

∼= (lim←−W(σb)
L)(σb)NG(σ)

�

Now CS
• (X ) is defined to be the complex in CSW(G) with terms FS(chn(X ))

and the usual boundary maps arising from the semisimplicial structure of ch(X ).
There is also an augmented version C̃S

• (X ).
The next two results follow directly from the definitions and 8.1 respectively.

Lemma 8.2. CS
• (X )(H) ∼= C•(|X≥H |).

Corollary 8.3. If L ∈ CSW(G) and X ⊆ W then homCSW(G)(C̃S
• (X ), L) is the

second sequence of the introduction, the subgroup sequence, except that L(G) is
replaced by lim←−

G

W L.

Lemma 8.4. If every X≥H , H ∈ W, is R-acyclic (e.g. W ⊆ X ) then Extn
CSW(G)(C

S
• (X ), L) ∼=

Rn HomCSW(G)(−, L)(R̄) in CSW(G). If T is taut with respect to W then this is
also equal to (lim←−

T
W)nL.

Proof. This is a consequence of 4.2, in view of 8.2. �

Lemma 8.5. In any Abelian category, let C• be a chain complex and suppose
that it has a finite filtration such that each of the factors is homotopy equivalent
to a complex of projectives P i

• and such that in each degree the filtration splits to
give a direct sum decomposition. Then C• is homotopy equivalent to a complex of
projectives: ignoring the boundary maps, this complex can be taken to be ⊕iP

i
•.

Proof. By induction, we may reduce to the case where there are only two compo-
sition factors, so we have a short exact sequence X1

•
a→ C• → X2

• , which is split in
each degree and where Xi

• ' P i
•, i = 1, 2. Since a is split in each degree we know

that X2
• ' cone(a), so X1

•
a→ C• → X2

• extends to a triangle in the homotopy
category.

Thus we have a triangle P 2
•+1

b→ P 1
• → C• → P 2

• , so C• ' cone(b), which is a
complex of projectives. �

We say that a coefficient system is based at X if it is a summand of a sum of
terms of the form R[G/X?] with X ∈ X .

Proposition 8.6. Suppose that every prime dividing |G| except perhaps p is in-
vertible in R, that X ⊆ Sp(G) and that X contains the Sylow p-subgroups of G.

If for every H ∈ X that is not a Sylow p-subgroup of G and every p-subgroup K
with H < K ≤ NG(H) we have (X>H)K is R-acyclic, then CS

• (X ) is, as a complex
in CSSp

(G), homotopy equivalent to a complex of projectives, based at X .
If we ignore the boundary maps, then this complex can be taken to be⊕

P∈X/G

IndG
NG(P ) InfNG(P )

NG(P )/P St0•−1(NG(P )/P ).

Proof. Define X≥n to be the subclass of X of elements of order greater than or equal
to n. Then CS

• (X ) is filtered by the complexes CS
• (X≥n). Now the terms of the

factor CS
• (X≥n)/CS

• (X≥n+1) correspond to chains with bottom element of order n.
There are no inclusions between such chains with the same bottom element, so this
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factor splits as a direct sum of pieces indexed by the conjugacy class of the bottom
element P of the chain, and this piece is induced from NG(P ).

CS
• (X≥n)/CS

• (X≥n+1) ∼=
⊕

P∈X/G, |P |=n

IndG
NG(P ) C̃•−1(|X>P |?)⊗ R̄P

∼=
⊕

P∈X/G, |P |=n

IndG
NG(P ) InfNG(P )

NG(P )/P C̃•−1(|X>P |?)⊗ R̄1

'
⊕

P∈X/G, |P |=n

IndG
NG(P ) InfNG(P )

NG(P )/P St0•−1(NG(P )/P ),

by 6.8. These terms are projective, based at X , if P is not maximal in X . If
P is Sylow then we just have IndG

NG(P ) R̄P in degree 0. But this is projective in
CSW(NG(P )) by 2.5.

Now we can apply 8.5. �

Corollary 8.7. ([12]) Suppose that every prime dividing |G| except perhaps p is
invertible in R, that X ⊆ W ⊆ Sp(G) and that X contains the Sylow p-subgroups
of G. Suppose also that, for every H ∈ W, X≥H is R-acyclic and that for every
non-Sylow H ∈ X and K ∈ Sp with H C K we have that (X>H)K is R-acyclic.

Then CS
• (X ) is homotopy equivalent to a projective resolution of R̄ in CSW(G)

by projectives based at X .
So, for L ∈ CSW(G), we have Hn HomCSW(G)(CS

• (X ), L) ∼= Rn HomCSW(G)(−, L)(R̄)
in CST (G).

In particular, the homology of the subgroup sequence of the introduction (after
removing the first term) is (lim←−

G

W)nL.

Proof. By 8.6 we see that CS
• (X ) is homotopy equivalent to a complex of projectives

in CSSp
(G) based at X . This remains projective on restriction to W by 2.8. Its

cohomology is R̄, by 8.2. This proves the claim about the projective resolution; for
the rest use 8.3. �

For the rest of this section we continue to suppose that every prime dividing |G|
except perhaps p is invertible in R.

Corollary 8.8. Suppose that W ⊆ Sp is non-empty and closed under supergroups
in Wess(Sp) and that Wess(Sp) ∩ W ⊆ X ⊆ W. Then the hypotheses of 8.7 are
satisfied.

Note that we could replace Wess(Sp) by Bp to obtain a simpler statement. (That
the two are the same is a conjecture of Quillen.) We could also use a weaker
definition of Wess, in terms of R-acyclicity instead of contractibility.

Proof. We need to check the conditions of 8.7.
Since W is closed under supergroups in Wess(Sp), it contains the Sylow p-

subgroups of G. Thus these are in Wess(Sp) ∩ W and so in X . So the Sylow
p-subgroups are the only maximal elements of X and certainly remain maximal in
W.

Notice that, for any class of subgroups V and any H,K ∈ Sp, we have that
Wess(VK

>H) = Wess(VK) ∩ V>H .
Also, if K normalises J , then (SK

p )>J contracts to JK unless K ≤ J . It follows
that Wess(SK

p ) = Wess(Sp) ∩ (Sp)≥K .
Now, if H,K ∈ Sp and H C K, H 6= K then Wess((SK

p )>H) = Wess(Sp) ∩
(Sp)≥K . If also H ∈ W then, since W is closed under supergroups in Wess(Sp), we
have Wess((SK

p )>H) ⊆ WK
>H . But the left hand side is clearly in Wess(Sp)∩W, so

by hypothesis is in X , and thus Wess((SK
p )>H) ⊆ XK

>H .
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Thus we can apply 3.10 to the inclusion XK
>H ⊆ (SK

p )>H to see that we have
a homotopy equivalence on the geometric realisations. But we have just seen that
the right hand side is contractible, so XK

>H is contractible.
A similar proof shows that X≥H is contractible. �

Corollary 8.9. If W is closed under intersections, M ∈ MFW(G) is injective
relative toW and also the hypotheses of 8.7 are satisfied, then the subgroup sequence
is split as a complex of Mackey functors.

Proof. Just as in the proof of 4.3, the condition of relative injectivity allows us to
reduce to the case of a group H ∈ W. But R̄ is projective in CSW(G), so C̃S

• (X )
splits. �

9. Change of Class of Groups

The results are based on those in [12].
As before, we continue to suppose that every prime dividing the order of |G|,

except perhaps p, is invertible in R.

Corollary 9.1. In the circumstances of 8.8, (lim←−
G

W)n ∼= (lim←−
G

Bp∩W
)n ResWBp∩W on

CSW(G).

Proof. Use 8.7 and 8.8 with X = Bp∩W and notice that the terms of the subgroup
sequence only evaluate L on groups in X . �

Corollary 9.2. (lim←−
G

Sp
)n ∼= (lim←−

G

Bp
)n ResSp

Bp
on CSSp

(G).

We extract for future use the main feature of the proof of 8.6.

Corollary 9.3. Suppose that W ⊆ Sp is closed under supergroups in Bp. Then
CS
• (W) and CS

• (Bp ∩W) are both homotopy equivalent to a projective resolution of
R̄ in which all the terms are based at Bp ∩W.

Proof. Both complexes have cohomology R̄ in degree 0 and 0 elsewhere, by 8.2.
They are homotopy equivalent to a complex of projectives, by 8.6, and this also
shows that CS

• (Bp ∩W) is homotopy equivalent to a complex of projectives based
at Bp ∩W. �

Proposition 9.4. Suppose that Dp ∩W ⊆ X ⊆ W and that X ,W ⊆ Sp are closed
under supergroups in Bp. Then G0C

S
• (X ) ' G0C

S
• (W): on restriction to Cp ∩W

these are homotopy equivalent to a projective resolution of R̄ in CSCp∩W(G) in
which all the terms are summands of sums of terms of the form G0R[G/H?], for
H ∈ Dp ∩W.

Proof. Consider the inclusion map i : G0C
S
• (X )→ G0C

S
• (W). We claim that both

sides are filtered by complexes which are homotopy equivalent to sums of complexes
of the form G0 IndG

NG(P ) InfNG(P )
NG(P )/P St0•−1(NG(P )/P ), where P appears (once for

its conjugacy class) if and only if it is in X (respectively W). This is true before
applying G0 from the proof of 8.6 and 8.8, and remains true afterwards by 8.5
since all the complexes in the filtration are homotopy equivalent to complexes of
projectives in CSW(G).

Now if P ∈ X then the P terms are the same in both CS
• (X ) and CS

• (W). If
P 6∈ X then P 6∈ Dp ∩W, so the P terms in CS

• (X ) are 0 and those in CS
• (W)are

homotopy equivalent to 0 by 7.4. It follows that i is a homotopy equivalence.
Notice that G0 and ResWCp∩W commute. Also ResWCp∩W is clearly exact and

G0 : CSCp∩W(G) → GCSCp∩W(G) is exact because it has the explicit descrip-
tion (G0L)(P ) = H0(CG(P )/Z(P ), L(P )) on P ∈ Cp, and CG(P )/Z(P ) has order
coprime to p.
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Finally, ResWW G0C
S
• (W) ∼= G0 ResWCp∩W CS

• (Bp ∩ W) has homology just R̄ in
degree 0, by 9.3 and the exactness property mentioned above. Also the previous part
of the proof shows that CS

• (W) is homotopy equivalent to a complex of projectives
of the form claimed, and these remain projective on restriction. �

Recall that I denotes the inclusion functor GCS→ CS.

Corollary 9.5. In the circumstances of 9.4, for any L ∈ GCSW(G) we have that
Hn HomCSW(G)(CS

• (X ), IL) ∼= Rn HomCSW(G)(−, IL)(R̄).
In particular, the homology of the subgroup sequence of the introduction (after

removing the first term) is (lim←−
G

W)nIL.

Proof. We know that Hn HomCSW(G)(CS
• (W), IL) ∼= Rn HomCSW(G)(−, IL)(R̄)

from 8.6. Now HomCSW(G)(CS
• (W ), IL) ∼= HomGCSW(G)(G0C

S
• (W ), L) ∼= HomGCSW(G)(G0C

S
• (X), L) ∼=

HomCSW(G)(CS
• (X), IL) by 9.4. �

Corollary 9.6. In the circumstances of 9.4, (lim←−
G

W)nI ∼= (lim←−
G

Cp∩W
)n ResWCp∩W I ∼=

(lim←−
G

Dp∩W
)n ResWDp∩W I on GCSW(G).

Proof. By 9.5 and 8.1 we see that (lim←−
G

W)nL ∼= homCSW(G)(CS
• (W), L) ∼= homCSX (G)(CS

• (W), L) ∼=
(lim←−

G

X )nL. �

Corollary 9.7. (lim←−
G

Sp
)nI ∼= (lim←−

G

Cp
)n ResSp

Cp
I ∼= (lim←−

G

Dp
)n ResSp

Dp
I on GCSSp(G).

Finally, we relate higher limits in CS and in GCS in certain circumstances.

Lemma 9.8. Suppose that X ⊆ Cp and M,N ∈ GCSX (G). Then Rn homGCSX (G)(−,M) ∼=
Rn(homCSX (G)(−, IM)) ◦ I on GCSX (G).

Proof. Because homGCSW(G)(−,M) ∼= homCSW(G)(−, IM)◦I we can deduce Rn homGCSW(G)(−,M) ∼=
Rn homCSW(G)(−, IM)◦I provided that I is exact (which it clearly is) and preserves
injectives.

But the right adjoint of I is G0, which is exact on CSX (G) (see proof of 9.4), so
I does preserve injectives.

Now observe that hom is balanced. �

Corollary 9.9. Suppose that every prime dividing |G| except perhaps for p is in-
vertible and that W is closed under supergroups in Bp. Then (lim←−

G

W)n ∼= (lim←−
G

W)nI

on GCSCp
(G) (where the first higher limit is in GCSW(G) and the second is in

CSW(G)).

Proof. Using 2.3 and 9.6 and the fact that homGCS(M,N) ∼= homCS(IM, IN) for
M,N ∈ GCS, we find that, for N ∈ GCSW(G), homGCSW(G)(−, N) ∼= lim←−

G

W HomCSW(G)(−, N) ∼=
lim←−

G

Cp∩W
HomGCSCp∩W(G)(ResWCp∩W −, ResWCp∩W N) ∼= homGCSCp∩W(G)(ResWCp∩W −, ResWCp∩W N) ∼=

homGCSCp∩W(G)(−, ResWCp∩W N) ◦ ResWCp∩W on GCSW(G).
But ResWCp∩W is exact and preserves projectives in GCS, just as in the proof of

3.12. From this we obtain that Rn homGCSW(G)(−, N) ∼= Rn(homGCSCp∩W(G)(−, ResWCp∩W N))◦
ResWCp∩W on GCSW(G).

Similarly, since HomCS(M, IN) is naturally in GCS for M ∈ CS, N ∈ GCS, we
obtain that Rn homCSW(G)(−, IN) ∼= Rn(homCSCp∩W(G)(−, ResWCp∩W IN))◦I ResWCp∩W
on CSW(G).

Now Rn homGCSCp∩W(G)(−, ResWCp∩W N) ∼= Rn(homCSCp∩W(G)(−, ResWCp∩W IN))◦
I on GCSCp∩W(G), by 9.8. We deduce that Rn homGCSW(G)(−, N) ∼= Rn homCSW(G)(−, IN)
on GCSW(G). �
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Remark. In general the higher limits in CS and GCS are not the same. For example
if W consists only of the trivial group then the higher limits in CS{1}(G) are the
cohomology groups H∗(G,−), whilst the higher limits in GCS{1}(G) vanish.

10. The Centraliser Sequence

The construction is analogous to that of the subgroup sequence and we will be
brief.

We use the functor FC defined on a chain σ by

FC(σ)(P ) =

{
R if CG(σt) ≥ P ,

0 otherwise.

this implies that FC((σ))(P ) is the free R-module on the chains τ in the orbit of σ

with CG(τt) ≥ P or, equivalently, FC((σ)) ∼= IndG
NG(σ) R̄CG(σt).

Lemma 10.1. homCSW(G)(IndG
NG(σ) R̄CG(σt), L) ∼= ((lim←−W(CG(σt))

L)(CG(σt)))NG(σ),

and if CG(σt) ∈ W, then this is also isomorphic to L(CG(σt))NG(σ).

Let CC
• (X ) be the complex of coefficient systems obtained from the class of

subgroups X using FC , and C̃C
• (X ) the augmented version.

Corollary 10.2. If L ∈ CSW(G) and for each X ∈ X we have CG(X) ∈ W,
then L(G) → homCSW(G)(CC

• (X ), L) is the third sequence of the introduction, the
centraliser sequence.

Lemma 10.3. If every X (CG(H)), H ∈ W, is R-acyclic (e.g. X = A1
p or S1

p

and for any H ∈ W, Zp(H) 6= 1) then H∗(CC
• (X )) ∼= R̄ and Extn

W(CC
• (X ), L) ∼=

(lim←−
W
X )nL in CSW(G).

Proof. This is a consequence of 4.2, since CC
• (X )(H) ∼= C•(|X (CG(H))|). �

Proposition 10.4. If A1
p ⊆ X ⊆ Sp and W contains the centraliser of every

element of X then CC
• (X ) is homotopy equivalent to a projective resolution of R̄ in

CSW(G).

Proof. The complex has the correct homology, by 10.3.

CC
• (X≤n)/CC

• (X≤n−1) ∼=
⊕

P∈X/G,|P |=n

IndG
NG(P ) C̃•(|X<P |)⊗ R̄CG(P )

∼=
⊕

P∈X/G,|P |=n

InfNG(P )
NG(P )/CG(P ) C̃•+1(|X<P |)0.

So we just have to show that C̃•+1(|X<P |)0 is homotopy equivalent to a complex
of projectives, or equivalently that C̃•(|X<P |) is homotopy equivalent to a complex
of projective NG(P )/CG(P )-modules.

If P is trivial or cyclic of order p then everything is projective, since NG(P )/CG(P )
is trivial.

For the other cases we check the conditions of 6.4.
If P is elementary abelian of rank greater than 1, then, for any p-subgroup H of

NG(P )/CG(P ), let E ≤ P be the subgroup of elements centralised by H. Let F be
a subgroup of P of index p, containing E and normalised by H. Now if X ∈ X<P

is normalised by H then X ∩ F 6= 1: this is seen by considering the codimensions
of vector spaces over Fp if the rank of X is at least 2, and if X has rank 1 then it
must be in E. We see that |X<P |H contracts to F by X → X ∩ F → F .

Otherwise, for any p-subgroup H of NG(P )/CG(P ), let 1 6= E ≤ Φ(P )∩Zp(P ) be
centralised by H. Then we see that |X<P |H contracts to E by X → X.E → E. �
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Corollary 10.5. ([12]) Suppose that A1
p ⊆ X = S1

p and that X is closed under
products with elementary abelian groups (i.e. if X ∈ X and Y < G, Y = X × E,
E ∈ Ap, then Y ∈ X ). Suppose also that W contains the centraliser of every
element of X and also that for any H ∈ W, Zp(H) 6= 1. Then the homology of the
centraliser sequence of the introduction (after removing the first term) is (lim←−

G

W)nL.

11. Projective Resolutions and the Steinberg Complex

Notice that 8.6 describes a projective resolution of R̄ in CSSp(G) in terms of
Steinberg complexes. In particular R̄ has finite projective dimension, originally a
result of Bouc [5], (it also appears without proof in [14]).

Conversely we can calculate Steinberg complexes from a projective resolution
L• → R̄ by

St•(NG(P )/P ) ' (lim−→P<Q≤NG(P )
ResG

NG(P ) L)(P ).

For each complex in the homotopy class of St•(G) consider the highest degree
in which the complex is non-zero, and define σ(G) to be the minimum of these.

If R is p-complete then we have the Krull-Schmidt property, so there is actually
a smallest representative of St•(G).

Similarly, define ρ(G) to be the shortest possible length of a projective resolution
of R̄ in CSSp(G).

So ρ(G) = maxP∈Sp
σ(NG(P )/P ) + 1 = maxP∈Bp

σ(NG(P )/P ) + 1.
Also σ(G) ≤ p-rank(G)− 1
and σ(G) ≤maximum length of a chain in Bp(G)− 1.
Thus ρ(G) ≤ maxP∈Bp(G) p-rank(NG(P ))
and ρ(G) ≤maximum length of a chain in Bp(G).
In fact the Steinberg complex also controls the difference between higher limits

over Sp and S1
p .

To see this, for any RG-module V let V1 ∈ CSSp
(G) denote the coefficient system

which takes the value V on 1 and 0 elsewhere.

Proposition 11.1. Assume that R is a field k, of characteristic p. For a fixed
group G, the following are equivalent:

(1) (lim←−
G

Sp
)iV1 = 0, for all i ≥ 0 and all kG-modules V ;

(2) (lim←−
G

Sp
)i(kG)1 = 0, for all i ≥ 0;

(3) St•(G) ' 0;
(4) The canonical map yields (lim←−

G

Sp
)i ∼= (lim←−

G

S1
p

)i ResSp

S1
p
, for all i ≥ 0, on

CSSp
(G);

(5) lim←−
G

S1
p

(kG)? ∼= k and (lim←−
G

S1
p

)i(kG)? = 0 for i ≥ 1.

Proof. It is clear that (1)⇒ (2).
Now homCSSp (G)(−, V1) vanishes on any projective based at a non-trivial p-

subgroup, by 2.8. Thus 8.6 shows that if P• → R̄ is a projective resolution then
homCSSp (G)(P•, V1) is homotopy equivalent to homCSSp (G)(St0•+1(G), V1), which, in
turn, is isomorphic to HomkG(St•+1(G), V ). So (lim←−

G

Sp
)iV1 is equal to the cohomol-

ogy of HomkG(St•+1(G), V ).
Clearly now (3)⇒ (1). Also HomkG(St•+1(G), kG) will detect any non-exactness

in St•(G), so (2)⇒ (3).
For any L ∈ CSSp(G), let L1 denote the cokernel of the inclusion L(1)1 → L.

We claim that (lim←−
G

Sp
)iL1 ∼= (lim←−

G

S1
p

)i ResSp

S1
p
L. This is because L1 ∼= lim←−

Sp

S1
p

ResSp

S1
p
L.
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But lim←− preserves injectives (because its left adjoint is exact) and is itself exact, so

Exti
CSSp (G)(R̄, L1) ∼= Exti

CSSp (G)(R̄, lim←−
Sp

S1
p

ResSp

S1
p
L) ∼= Exti

CSS1
p
(G)(R̄, ResSp

S1
p
L).

The long exact Ext sequence for L(1)1 → L → L1 now shows that (1) ⇔ (4).
Similarly (2)⇔ (5), because kG? is injective on Sp so the higher limits vanish. �

Remark. Quillen conjectured that |S1
p(G)| is contractible if and only if G contains

a non-trivial normal p-subgroup [18]. In fact, according to [12], no counterexample
seems to be known if the contractibility condition is replaced by Fp-acyclicity.

Notice that Fp-acyclicity is equivalent to condition (3) of 11.1, so we see that the
(stronger) conjecture is equivalent to the statement:
G contains a non-trivial normal p-subgroup if and only if the conditions of 11.1 are
satisfied.
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