THE BREDON COHOMOLOGY OF SUBGROUP COMPLEXES

PETER SYMONDS

ABSTRACT. We develop the homological algebra of coefficient systems on a
group, in particular from the point of view of calculating higher limits. We
show how various sequences of modules associated to a class of subgroups of
a given group can be analysed by methods from homological algebra. We are
particularly interested in when these sequences are exact, or if not, when their
homology is equal to the higher limits of the coefficient system.

1. INTRODUCTION

This paper is concerned with the homological algebra of coefficient systems on
a class of subgroups of a group G . It is partly structured around the investigation
of three sequences associated to some class X of subgroups of GG, in particular their
cohomology.

The three sequences of particular interest are:

e - JI tNel)— J[ L0Na(o)— ...

o€chg(X)/G oech1(X)/G

L(G) — H L(op)Ne(@) - H L(op)Ne(@) — .
oecho(X)/G oech(X)/G

L@ = [l LCale)™ @ = []  LCalo))™ — ...
o€cho(X)/G o€chy(X)/G

Here ch,,(X) denotes the set of chains in X' (without repetition) of length n + 1.
The smallest element of a chain ¢ is denoted o and the largest by o;.

The first of these sequences was investigated by Webb [24], when L is a Mackey
functor, and is by now well known. The second sequence first appeared in work of
Bouc [5], again for Mackey functors. The preprint dates from 1991, but remained
unpublished until 1998. An infinite version of the third sequence is implied by
results of Jackowski and McClure [13]. Later Dwyer [10] had infinite versions of
the second and third sequences, which arose from topology, and he investigated
the properties of all three. Following him, we will sometimes refer to these as the
normaliser, subgroup and centraliser sequences. Finally the version of the third
sequence given above (and also the second) appeared in work of Grodal [12] and of
Villarroel-Flores and Webb [23].

The original interest was in conditions on L and X which forced these sequences
to be exact. But when they are not exact, it turns out that their cohomology can
often be described as the higher limits of L, and these are often of interest in their
own right.

Our aim is to present a unified treatment of all the results entirely within the
homological algebra of coefficient systems. The only geometric results used are
some standard ones about the fixed point sets of a group acting on some subgroup
complex, and then only for examples.

A non-geometric but more category-theoretic treatment of some of these results
by Jackowski and Stominiska has recently appeared [15].
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Our strategy is to show that each these sequences is representable as the complex
of homomorphisms from some complex of coefficient systems C, to L, in other words
that the sequence is of the form Hom(é’., L). Tt then turns out that C. is homotopy
equivalent to a projective resolution of the trivial coefficient system R. Thus the
cohomology of our sequence is Ext*(R, L), which is the definition of the higher
limits of L.

When these sequences are not exact then their cohomology is usually equal to
the higher limits of L. This insight was developed by Grodal in [12], and the later
sections of the present paper were inspired by his work, being essentially an attempt
to formulate the geometric proofs given there in algebraic terms.

Many statements in group theory can be phrased succinctly in terms of higher
limits. For example Robinson’s reformulation of Alperin’s Weight Conjecture (§5)
and Quillen’s conjecture on the contractibility of subgroup complexes (§11).

We use a lot of basic results about coefficient systems, in particular we make
great use of the adjoint functors of several forgetful functors and their properties,
and these are collected together in §2.

2. COEFFICIENT SYSTEMS

Here we collect together some constructions on coefficient systems and Mackey
functors and record their properties.

We will always work over a fixed unital ring R and refer to a fixed prime p.

We have been careful wherever possible to allow infinite groups in the basic
definitions, although this is not a direction that we pursue here, and it is abandoned
later, when we need a Sylow p-subgroup.

For a given group G, we will consider various classes of subgroups, assumed to
be closed under conjugation. For example S(G), the class of all subgroups; S,(G),
the class of finite p-subgroups; or A,(G), the class of finite elementary abelian p
subgroups. We will often omit GG from the notation. The superscript 1 will be used
to denote the given class with the trivial subgroup removed.

Many of our results are phrased in terms of adjoint properties. Recall that if
A and B are two categories then two functors L : B — A and R : A — B are
adjoint if and only if there exist two natural transformations, the unit  : Iz — RL
and the counit € : LR — 14, such that the compositions (Re)(nR) : R — R and
(eL)(Lm) : L — L are both the identity. Our proofs will usually consist of giving
explicit formulas for n and e and leaving to the reader the straightforward task of
checking these identities. We will also omit many sub- and superscripts where this
simplifies the formulas.

Note that these adjoint functors are known to exist for abstract reasons and can
be defined in much greater generality, but we want explicit formulas so that we can
investigate their properties.

When we refer to results or proofs in the literature the authors of these results
usually assume that )V and any other class of groups are either S or S, but the
change to general W does not present any difficulties. They also tend to assume
that G is finite and here again the generalisation is straightforward in the cases
mentioned, except that we have to be careful to distinguish @ and II.

For a given class W of subgroups of a group G we construct two categories Syy
and Tyy. They both have the elements of W as objects. The morphisms are given
as follows:

Sw(H,K) = {bg7H,K|g S G,Hg < K},
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The composition law is by g, 1.0g, 17,5 = bgh,m,L-

A weak coefficient system is an object of the category WCSyy,(G) of contravariant
functors from Syy to R —Mod, and a coeflicient system is an object of the category
CSw(G) of contravariant functors from Ty, to R — Mod. The morphisms are
the natural transformations of functors and are denoted by homcg,, (). This is
equivalent to defining CSyy,(G) to be the category of contravariant functors from
G-sets with stabilisers in W to R — Mod, by setting the value of C' € CSyy(G) on
the G-set G/H to be C(H) and in general taking the value of C' on an arbitrary
G-set to be the direct sum of its values on the orbits. (See [7], and also [25] for the
similar case of Mackey functors.)

We write ¢y g1, m9, OF just cg, for the map of R-modules C(HY) — C(H) induced
by by m,Hs, and call these the conjugations. Then cycn, = cg4p, and for any weak
coefficient system C, this makes C'(H) into a left RNg(H )-module, and if C'is a co-
efficient system then H acts trivially, so C(H) is naturally an RNg(H)/H-module.
We also write res¥ for the map induced by be, i, 1, and call these restrictions. Since
by, i,k = be,H9 Kby 1 Ho, We see that it is enough to check identities for conjugations
and restrictions only.

The forgetful functor from coefficient systems to weak coefficient systems has a
right adjoint given by taking invariants under H at each evaluation C'(H), and a
left adjoint given by taking coinvariants.

A coefficient system C' € CSy(G) is called geometric if, for all H € W, Cq(H)
acts trivially on C(H). This occurs, for instance, if C' is the restriction to G of
a global coefficient system or Mackey functor. The full subcategory of geometric
objects in CSy(G) will be denoted by GCSyy(G). The inclusion I : GCSy,(G) —
CSw(G) has both left and right adjoints, Go and G° respectively. They are formed
by taking the largest quotient (respectively largest sub coefficient system) that is
geometric. Gy has the explicit description (GoL)(P) = Ho(Cq(P)/Z(P), L(P)).

We will also occasionally mention primitive coefficients systems (PCS), which
have no conjugations at all, only restrictions.

For a finite group, each of these categories of coefficient systems is equivalent to
the category of modules for some finite rank R-algebra. In this way we can import
various results from the theory of representations of algebras: for example if R is a
complete local ring then we have the Krull-Schmidt property.

If H < G there is a forgetful map Res$ : CSyy(G) — CSyw(H) (we should really
write CSWQS(H) (H))

There is an obvious concept of tensor product ® : CSw(G) x CSW(G) —
CSw(G), defined groupwise by (M ® N)(J) = M(J) ® N(J) and the obvious
restriction and conjugation maps.

Given L, M € CSy(G), an element of homcg,, () can be considered as a col-
lection of maps of R-modules L(H) — M(H) for each H € W that commute with
the restriction and conjugation maps. Notice that homcg,, (@) (L, M) is naturally
an R-module.

We can extend homgg,, () to a pairing Homcg,, (@) : CSW(G) x CSW(G) —
CS7(G) for any class 7', given by Homcg,,, () (M, N)(J) = homcsg,, (.1 (Res§ M, ResG M).
The restrictions are just the forgetful maps, and the conjugations are the usual ones,
cg(f) = cgfegt.

Thus Hom takes its values in coefficient systems. We will assume that 7 = W
unless otherwise indicated. Notice that if we take 7 = {G} then we recover hom.

We will often abbreviate Homcg,,, (@) to Homcs,, -

There is the usual adjunction:

Lemma 2.1. For L, M, N € CS),(G) we have
HOIHCSW (L QX M, N) = HOmCSW (L, HomCSW (]\47 N))
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Proof. The isomorphism @ is given by ((®5f)s(1))1(m) = fr(ves? l @ m), for H >
J > 1, f € Homes,, (L ® M, N)(H), m € M(I). O

When X C W then there is the forgetful functor Res¥ : CSy(G) — CSx(G).

There are functors lim”” and lim"” in the opposite direction. Now lim”Y L is ob-
—X —X «—X

tained on H € W by taking the inverse limit of L(I) for I € X N S(H): the limit

is over all inclusions and conjugations in H. We define hi)nl/(v L(H) to be the direct

limit of the L(J) for all J € X, J > H where the limit is taken over inclusions only.

Proposition 2.2. hi)n;( is the left adjoint and linx is the right adjoint of Resy :
CSw(G) — CSx(G).

Proof. For lim, we have ny : M — limRes M is the identity on subgroups in &,
and this extends uniquely by the definition of lim. Then ey : Reslim N — N is the
identity.
For lim, we have ny; : M — Reslim M is the identity, and ey : limRes — N
— — —
follows from the definition of h_n)l O

Clearly lim and lim are transitive.
Notice that from the definition of hom we find that homcsg,, () (L, M) = (1&1‘5\) Homgg,, (o) (L, M))(G),

where we regard Homgg,, ¢y (L, M)) € CSyy(G). This observation and the previous
proposition now yield:

Lemma 2.3. [fW CV and L, M € CSy(G) then Homgs,,, (L, M) = lim) Homgs,,, (L, M)
in CSy(G) (but we regard Homcs,,, (L, M) € CSw(G)) .

Also, for N € CSy(G) we have Homcs,, (N, &ng\; M) = Homcs,, (Res), N, M)
and Homcsg,, (hi>n5v M, N) = Homgs,, (M, Res}, N), both in CSs(G).

If we denote the constant coefficient system by R, then the following is a conse-
quence of the definition of 1&11

Lemma 2.4. Homcs,, (R, L) & @15\) L in CSs(G).

Proof. Homgs,, (R, L) = Homcs, (R, liniv L) = liniv L, by taking the image of
1 € R(H), where H is the group that we are evaluating on. O

For convenience we denote lim& L = (lim® L)(G), i.e. the usual inverse limit
—wW LAY .
of L. By a component of VW we mean an equivalence class under the equivalence
relation generated by inclusion.

Lemma 2.5. In CS\(G), R is projective if and only if each component of W has
a unique mazimal element M, say, and |[Ng(M) : M| is finite and invertible in R.

When the conditions of this lemma are satisfied we say that G is tight with
respect to W.

Proof. Tt follows from 2.4 that R is projective if and only if the functor L @15\/ L
is exact on CSyy(G).

If the conditions involving M are satisfied then we claim that @5\} L is the sum
over the conjugacy classes of maximal elements M in W of L(M )NG(M /M From
this it will follow that linfv is exact, since for any group A the functor X — X4
is exact on RA-modules if and only if |A| is finite and invertible in R.

This claim is equivalent to the one that }in)cij >~ ([1y L(M))E, where M
runs over all maximal elements of WW. We will denote the right hand side by X

and indicate the components of © € X by « = (zps). There is a family of maps
¢ X — L(H) for H € W defined by ¢p(x) = resM x5, where M is the unique
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maximal element of W containing H (the uniqueness is one of the conditions).
These maps are compatible with restriction and conjugation, and it is easy to see
that any other such compatible family of maps must factor through X, proving the
claim.

Conversely, if R is projective then, by considering coefficient systems that are
non-zero only on a maximal element M and its conjugates, we see that taking fixed
points in R[Ng(M)/M]-modules must be exact, so the condition on the index must
hold. If the other condition is not met then it easy to see that we can find two
different maximal elements of W, M and N say, such that M N N contains an
element U of W.

Let R € CSyy(G) take the value R on the conjugacy classes of M and N (which

. .. W =
we denote by (M) and (N)), and 0 elsewhere. There is a surjection hi>n{<M>’<N>} R—

R. Now if we apply limG then, by the observation at the beginning of this proof,

G w G P
we obtain another Surjectlon th hm{< MYV} R — @W R.

The domain of this surjection is 0, because the images of the restrictions from
M and N to (hm{<M) (N} R)(U) are linearly independent.

Now if M and N are not conjugate then lingv R = R2. If M and N are conjugate
then @15‘} R = R. In either case we have a contradiction. O

Next, if H < G, consider the restriction functor Res$ : CSyy(G) — CSyw(H).
One functor in the other direction is Indg. This is defined on subgroups by

(nd§ L)(J)= € L.

g€’ (G/H)

The restrictions are the obvious compositions of restriction in L and inclusion,
but the conjugation maps are less clear. For this purpose it is better to use a
representative-free description.
First set
Lou(l)= € L9
g€G, JI<H

This is a PCS on W. In fact it is a WCS as follows. Write ( )7 for 1 € L(J9) C
Lg g (J) and define resi (g,1)7 = (g, resy. l)K In this way L g becomes a PCS.

Now define conjugation by f € G by c¢s(g,! ) = (fg,1)’. This makes LG,H in to
a WCS.

There is also an action of H on the right by (g,1)’h = (gh, cgll)‘]. These two
actions commute and we set

(Ind§ L)(J) = Ho(H, Le, 1 (J)).

The conjugation and restriction maps are the induced ones, and it is routine to
check that if f € J then c; acts trivially on the evaluation at J, so we have a
coefficient system.

In fact Ind is the left adjoint of Res. The unit and counit of the adjunction are:
N M — ResInd M is the inclusion of M (J) as M(J¢), and
en : IndRes N — N is ®cy.

For the right adjoint we have coinduction, which, at least if Stabw (G/H) € W
for each W € W, can be defined in terms of G-sets just as induction is for Mackey
functors, by (Coind$ L)(G/J) = L(Res%(G/J)).

In explicit form, this is

(Coindf; L)(J) = [[ L(HNJ9).
geJ\G/H
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For a representative-free form, set

Lou(J) =[] L(HNJ).
geG
Just as before, there is a left action of G and a right action of H. There are
restriction maps given for I < J by specifying that res? (g,1) = (g,resggig ). We
can now set (Coind% L)(J) = H°(J x H, Lg.i(J)) (where .J acts on the left).

The adjunction is given as follows: ny; : M — CoindRes M is (res c;l), and
en : ResCoind N — N is projection on to N(H N¢J) = N(J). The identities can
be checked just as in [21].

If W is not closed under intersections with H then it is not clear what to use
for L(HN9J) in the formulas above. In fact we fill in these gaps using lim, i.e. we
define Coindg)w L = Res}, Coind%v &nvw L, for some V D W that is closed under
intersections with H, e.g. V =8.

The unit and counit extend in the obvious way, but in case this seems too much
like sleight of hand, and since the matter is important for this paper, we will give
a proof of the adjunction using only the properties of the functors already defined.

Working always within CS, we have:

homcs,, (@) (L, Coind$ M) = homgg,, (@) (L, Resy,, Coind% l&nvw M)
= homcs,, () (11_1][)1‘;v L, Coind$ lim) M)
= homgsg,, (m) (Resg ll_r)nl‘jv L, @5\; M)
= homcsv(H)(h_n;VW Res% L, lln:jv M)
= homgg,, (#) (Res$ L, Res}fv linvw M)
= homCSW(H)(Resg L, M)
Summing up we have shown:

Proposition 2.6. Indg is the left adjoint and Coindg is the right adjoint of Resg :
CSw(G) — CSw(H).

If X is a left G-set we define R[X "] € CSyy(G) by letting its value on H € W be
the free R-module on the points of X fixed under H, that is on 7 X. We will usually
denote this by R[XH]. Writing ? and H on the right is confusing but traditional.

The restrictions are induced by the inclusions of subsets and conjugation ¢, is
induced by left multiplication by g.

Notice that it follows from the definitions that:

Lemma 2.7. R[G/H’] = nd$ R in CSy(G) for any W.

Corollary 2.8. R[G/H'] is projective in CSw(G) if H € W. The R[G/H"] for
H € W satisfy homgs,, (c)(R[G/H"],L) = L(H) for L € CSy/(G) and they provide
enough projectives in CSyy(G)

Proof. ([7]) R[G/H"] is projective by 2.5, 2.6 and the fact that left adjoints of exact
functors preserve projectives.

Now homgs,, () (R[G/H"], L) = homgs,, ) (R, L) = L(H) for H € W. It is
easy to see that this isomorphism is given by evaluating the homomorphism at
H e 1(G/H).

Finally we need to show that any L is the surjective image of a projective. But,
using the previous isomorphism, we can construct a map from a sum of copies of
R[G/H"] to L that is surjective on evaluation at H. Now we take the sum of these
over the H € W. O
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If W is a class of subgroups of G and H < G we say that H is taut with respect
to W if, for each W € W, HNW is tight with respect to WNS(H NW) in the
sense defined after 2.5.

Lemma 2.9. Working in CSyy,

(1) IndH is always exact and preserves projectives,
(2) Comd always preserves injectives,

(3) Res% o is always exact and preserves injectives.
(4)

4

Code is exact and ReSH preserves projectives if and only if H is taut
with respect to W (so in particular if H € W).

Proof. Resg and Indg are exact by construction. Therefore the left adjoint of
Resfl7 which is Indfl, preserves projectives; its right adjoint, which is Coindf{7 pre-
serves injectives and the right adjoint of Indg7 which is Resg, preserves injectives.

Since the R[G/W"] with W € W provide enough projectives, Res& preserves pro-
jectives if and only if each Res$ R[G/W '] is projective. But this is R[(Res$ G/W)’],
and by the double coset formula is a sum of pieces of the form R[H/(H N9IW)7],
which are all projective if and only if H is taut with respect to W, by 2.5. (]

Lemma 2.10. If H <G, L e CSw(G), M e CSw(H) then
Ind$ (L ® Res$ M) = (Ind$ L) @ M,
in CSyw(G).
Proof. For any K € CS),(G),
homgs,, ) (Ind (L @ Res$; M), K) = homgs,, (i) (L © Res§; M, Res§; K)

= homcs,,, () (L, Hom(Res$; M, Res§; K))
= homgs,, (@) (Ind$ L, Hom(M, K))
= homgs,y (¢ (Ind L ® M, K).

This is natural in K and the result now follows formally. (hom(A, —) & hom(B, —) =
A=B) O

The adjunction can be generalised:
Proposition 2.11. For H < G, L € CSy(G), M € CSyw(H) we have
Homgs,, (6 (L, Coind§ M) = Coind§} Homes,, (zr) (Res§; L, M),
Homgs,, () (Ind$; M, L) = Coind§ Homes,, () (M, Res§ L),

in CSw(Q).

Proof. For any K € CSy(G),

homgs,, (@) (K, Homgs,, (@) (L, Coind§; M)) = homgs,, ) (K ® L, Coind§ M)
= homcg,, () (Res$ K ® Res$ L, M)
= homcs,, () (Res$ K, Homcs,, (#) (Res$; L, M))
= homcs,, (@) (K, Coind% Homgg,, (a1 (Res$; L, M)).

Now the first formula follows formally as in 2.10. The proof of the second is similar,
but needs 2.10. O

Corollary 2.12. If L € CSw(G) and H < G, then Ind§ Res% L ~ R[G/H'| ® L
and Coind$ Res$, L = Homgs,, (R[G/H'], L) in CSy(G).
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Proof. There is amap © : Ind$; Res% L — R[G/H’|®L given by ©(g,1) = gH ®c,l.
Its inverse is given by ®(gH ®1) = (g,¢, ).

For the second part note that both sides have the same left adjoint, by the first
part, 2.1 and 2.6. (]

We will occasionally need to deal with quotient groups, so suppose that H < G
and let p: G — G/H be the quotient map. Let W be a class of subgroups of G/H
and let V be a class of subgroups of G such that V 2 p=}(W) and p(V) C W.

Given L € CSy(G) define Qg ;L € CSy(G/H) by Qg L(W) = L(p~'W),
for W e W.

In the other direction we have two functors, defined on M € CSy,(G/H) by:

(Infg/H M)(V) = M(p(V)), for V €V, and

(Coinfg/H M)(V)is M(p(V)) if H<V €V and 0 otherwise.

The next result is left as an easy exercise for the reader.

Proposition 2.13. Infg/H is the left adjoint and Coinfg/H is the right adjoint of
Qg/H : CSy(G) — CSW(G/H).

Now we consider Mackey functors, so for simplicity assume that G is finite.
These have been described in many other places, e.g. [25]. The only difference in
our treatment is that we only evaluate the functor on a class W of subgroups of G
and we assume that this class is closed under intersections. We require the double
coset formula for resj, tr}; whenever U, V,W € W. Notice that its terms are all
defined because of the condition on intersections.

Let ¥V and W be two classes of subgroups of G, such that V is closed under
intersections and W is closed under intersections with V (that is, if W € W and
VeV, then VNWeW).

Given C € CSyy, define C' € WCSy, by:

cn= P cw.
TeW, I1<J
An element z of C(I) € C(J) will be denoted (I,z)”.

For g € G define 9(J,2)" = (9J,c,2)’". The conjugation maps in C' combine
to yield a map ¢&, : C(H) — C(9H), where é,(J,z)" = 9(J,x)".

Whenever K < L < (G there are restriction morphisms between the values of C
given by 7k (J,2)F = (J N K, res)x ). These make C into a weak coefficient
system. There are also inclusion morphisms given by i% (J, 2)% = (J,x)L, which
give C the dual structure i.e. make it into a covariant functor on the category of
conjugation and inclusion morphisms.

Define:

TC(H) = H°(H;C(H))
and
SC(H) = Hy(H; C(H)).

We now define restriction and transfer maps, denoted by R and I, on these
groups. We denote the restriction and transfer in cohomology by res and tr.

On TC, RE: = (rk).resk and It = tri (ik)..

On SC,

RE(J,x)t = (rk), Z 9(J,x)k = Z (9T N K, resyd s cqr)
gEK\L/J gEK\L/J

and TE = resk (il)..
One can verify that SC' and T'C are Mackey functors on V. The case of S goes
back at least to [9] (see also [5]) and T appears in [20].
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There is a forgetful functor F : MF(G) — CSy(G) and another functor G :
MFw (G) — CSw(G) given by

GM(J)=M(J)/ > Imtry,
IsJ
with the zero restriction maps.

Proposition 2.14. S is the left adjoint of F' and T is the right adjoint of G.

Proof. ¥For T, ny: M — TGM is Hresf, and €5 : GT'N — N is projection on to
L(J).

For S, ny: M — FSM takes m to (J,m)”, and e; : SFN — N takes (I,n)” to
tr{ n. g

Remark. Some authors use a slightly different definition of 7. Instead of C, they
use a WCS C, which differs from C' only in that the restriction maps are given by

Jx)K if J<K
Fes gyt = VAT TS 8
0 otherwise.

However there is a map ¢ : oo given by

or(J,x)t = Z (I,resy z)".
IeW,I<J
This ¢ is compatible with the maps r and 7, and also with the i and the c,4. It is
an isomorphism because it is the identity on the factors if we filter according to the
order of the group.
Thus the two definitions are equivalent.

This offers a good way of constructing projective and injective coefficient systems
or Mackey functors. Note that if H is normal in G then CSyz)(G) is naturally
equivalent to the category of R(G/H)-modules. Since left adjoints of exact functors
preserve projectives and right adjoints of exact functors preserve injectives, we have:

Proposition 2.15. Suppose that H € W, and H < N < Ng(H), (and W is closed
under intersections when we refer to MFw,(G)). Let P be a projective RN/H -
module, I an injective RN/H-module (both regarded as elements of CSyyy(N) as
above) and let (H) denote the set of conjugates of H in G. Then:

(1) h_rr)lz/};> md§ P € CS(G) and SHL)HE}I) d§ P € MFy(G) are projective.

(2) @Ej{) Coind$ I € CSw(G) is injective.

The following result is key to many applications, including obtaining a splitting
of Mackey functors in 5.3.

Proposition 2.16. If L € CSy(G) and M,N € MF(G) then Homcs,, (L, M)
and Homyp,, (N, M) are naturally Mackey functors in MFw(G). These struc-
tures are consistent in the sense that they are compatible with the isomorphism
Homcs,, (L, M) =2 Hommpy,, (SL, M) given on each subgroup in W by 2.14.
Proof. Homr,, (N, M) is defined, at least as a coefficient system, in a similar way
to HomCSW (]\/v7 M)

The transfer on Homcs,, (L, M) is defined as follows: If K < H < G and
J € Homcg,, (k) (L, M) then tril(f) is defined on J < H, J € W as

> (L) B LI K) 2 LJNK) L MIINEK) S MUY K) S M()).
geJ\H/K
A similar definition works for Homwmp,,, (N, M). For full details see [6]. O
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Proposition 2.17. Suppose that X C W, both closed under pairwise intersection,
and M € MFx(G). Then @L\}M is naturally a Mackey functor. It is the right

adjoint of Res¥ : MFW(G) — MFx(G).

Proof. To determine trX we only need to specify res¥ tr& x for each I € X in a
consistent way. This can be done by setting

resf trg T = E trgHm Cq resgmg z.
gE\K/H
|

Corollary 2.18. If M € MF\(G) and M = @ng Res¥ M as a coefficient system
then M = 1&1;\) Res%v M as a Mackey functor.

Proof. The formula used to define the transfer on lim is clearly necessary, so it must
agree with the transfers on L. O

In [21] there is constructed a functor Ind$ : MFg(H) — MFg(G), which is
both right and left adjoint to restriction. The same recipe will work if we replace
S by X, provided that X is closed under intersections with H, and, if we ignore
transfers then we see that it agrees with our construction of Coind for coefficient
systems. For this reason we prefer to denote it by Coind. If X" is not closed under
intersections with H then we use @ as before. The following version of 2.12 is
straightforward to check.

Lemma 2.19. If M € MFy(G) then Coind$ Res§ M = Homcs,, (R[G/H’], M)
in MFw(G).

There is an important property of the functor S above.

Lemma 2.20. SZ[G/H'] = BY(?,H), where BE(?,H) is the functor induced
up to G from the Burnside ring Mackey functor BH on H. In fact B¢ (?, H) =
Homg,,(e)(G/H,—) in the notation of [21].

Proof. Notice that S commutes with induction (in CS or MF, depending upon the
side) because their right adjoints commute. Also SZ[G/H’] = SInd$ Z. Now we
claim that SZ = B®, which can be checked from the definitions. For the rest, see
[21]. O

3. HIGHER LiMITS

We work in the category CSy (G) of coefficient systems on a class W of a group G
over some fixed unital ring R. This is an abelian category with enough projectives
and injectives (a consequence of 2.15), so we can use homological algebra. We could
just consider the derived functors of hom, but instead we look at Homcg,, (q),
considered as taking values in CSz(G) for some class 7. This class 7 should,
perhaps, be indicated in the notation but, instead, we will regard it as implicitly
understood or mention it in the text. We take the right derived functors as a functor
in the second variable, obtaining Extcg,, () € CS7(G). This can be confusing, but
at least some potential sources of confusion do not arise:

Lemma 3.1. (1) Extcs,, ) (M, N)(J) does not depend on T, as long as J €
7.
(2) If J < H <G, M,N € CSw(G) and J € T then Extcg,, (q) (M, N)(J) =
Extgg,, ) (Res M, Resg N)(J).
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Proof. Part (1) is clear from the definitions. Part (2) follows from the definition of

the right derived functors and the fact that Resg is exact and preserves injectives
(2.9). (]

A problem that does arise is that Hom is not always right balanced in the sense
of, for example, [26] 2.2.7.

Lemma 3.2. If T is a class of subgroups of G that are taut (defined just before
2.9) with respect to W then Homcs,, () (—, —) is right balanced as a functor taking
values in CSy(G).

The advantage of having a balanced functor is that its derived functors in the
first and in the second variable coincide.

Proof. We need to check that if the second variable N is injective then Hom(—, N)
is exact as a functor of the first variable. We can do this by evaluating on each
J € T, so we are just looking at homCSW(J)(—,Res§ N). But Resf,;N is also
injective, by 2.9.

We must also check that if the first variable M is projective then Hom(M, —)
is exact. The argument is dual to the previous one, except that for Res? M to be
projective we need J to be taut with respect to W. O

Remark. A possible choice for 7 that satisfies the conditions of 3.2 is {G}, and this
amounts to considering the derived functors of hom.

The higher limit coeflicient systems are, by definition, the right derived functors
of llnly : CSx(G) — CSw(G) and we will write (m\;\/)z for R lin;\}

What are normally thought of as the higher limits of L € CSx(G) are the R-
modules ((}inf()’L)(G)

Strictly speaking, we only defined lingv when W C 7, but the definition without

this restriction is clear. Tt comes to the same as Res3 lim? .
—w

Lemma 3.3. For alln >0, Extgg, (R, L) = aniv)nl’ in CSs(Q).

Proof. The case n = 0 is just 2.4. Both sides are, by definition, the derived functors
in L of the n = 0 case. (]

Remark. We can not calculate Extgg (R, L) above by taking a projective resolu-
tion of R unless we are able to invoke 3.2.

Notice that if W consists of just the trivial group 1, then an object of CS;3(G)
is just an RG-module and the higher limits are just the usual cohomology groups.

We see that the higher inverse limits are natural and unavoidable objects to
consider. However if W is large enough they often vanish.

Lemma 3.4. Consider Extcg (o) to take values in CSs(G). For H < G and
L e CSw(H), M e CSw(G), we have

Extgg,, (@) (Indf L, M) = Coind§ Extg, i) (L, Resf; M),

and if H is closed under intersections with W (or just H is taut with respect to VW)
then
Exts,, (@) (M, Coindfj L) 2 Coindf Extfyg, sy (Resf M, L).

Proof. The zeroth terms are isomorphic by 2.11. We need to check that both sides
calculate the right derived functors in the second variable of this common functor.
Notice that the first and third occurrences of Coind% are applied to CSy (H), so
are exact by 2.9. The second occurrence is exact, by 2.9, because of the restrictions
imposed on the intersections.
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For the first formula, notice that an injective resolution of M in CSyy(G) be-
comes an injective resolution of Resg M in CSyy(G) on applying Resfl since Resfl
preserves injectives by 2.9 . For the second formula, notice that an injective reso-
lution of L in CSyy(H) becomes an injective resolution of Coindfl L after applying
Coind% since Coind% is exact and it preserves injectives by 2.9. O

We say that a coeflicient system L is injective relative to a set of subgroups
X C S(G) if L is a direct summand of [y Coind% Res% L. This has many
equivalent formulations along the lines of Higman’s criterion (cf. [21], [1]). There
is also an analogous concept for Mackey functors (where it is customarily referred
to as projective relative to since the right and left adjoints of restriction are then
isomorphic).

Remark. Since the forgetful functor F' from Mackey functors to coefficient systems
commutes with Coind$ (their left adjoints commute), a Mackey functor that is
injective relative to X as a Mackey functor is also injective relative to X as a
coefficient system.

Proposition 3.5. For L € CSy(G) and X C W with W closed under inter-
sections with X | if L is injective relative to X then lln;/(v Res}/(VL = L and

(}lnl/(v)” Res¥ L =0 forn >0 in CSs(G).

Proof. Tt is enough to prove this for Coindg Resg L, HeX. But
Extgsx(g)(é, Coind% Res$ L) = Coind$ EthSX(H)(R, Res% L) by 3.4.

But R is projective in CSy(H) by 2.8, so the higher Ext vanish, and for n = 0
we have the result required. O

The following vanishing result is a version of one in [14].

Proposition 3.6. Let X be a class of p-subgroups of G which is closed under
intersections, and such that X contains a Sylow p-subgroup P, and assume that
all positive numbers of the form |G/P| — np, n € Ny are invertible in R (e.g. R
is p-local). Let M be a Mackey functor on X. Then lﬂli M s injective relative
to X in MFs(G). In particular M is injective relative to X in CSx(G), and so
(}ln‘;)"M =0 forn>1 in CSs(G).

Proof. Notice that @1‘; M is naturally a Mackey functor by 2.17.
The natural augmentation yields a map 7 : R[G/P’] — R, which is onto in

CSx(G).
Now the functor S : CSx(G) — MF x(G) is right exact, since its construction
involves coinvariants, so Sm : SR[G/P’] — SR is onto. We claim that S7 splits.

To see this, use the second (C') model for S. The splitting is induced by sending

(J,1)HHmU, S gt

gEG/P, J<9P

Note that, when J acts on G/ P, the orbit of every non-fixed point has size divisible
by p, so the denominators are indeed invertible, by hypothesis.
Now m‘j{ M = Homyr, () (SR, M) is a summand of Homyr , () (SR[G/P’], M) =

Homcg,, (@) (R[G/P’], M) = Coind§ Res@ M by 2.19. 0
Let MFs(G, 1) denote the full subcategory of Mackey functors which are projec-

tive relative to S, (often denoted Mack(G, 1) by other authors). We can deduce a
result of Bouc [5].
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Proposition 3.7. If R is p-local then @g and Res‘gp provide an equivalence of
categories between MFs (G) and MFs(G,1).

Proof. From 3.6 we see that lgng takes values in MF (G, 1).

P

Clearly Resgp llngp = Id. As for llngp Resgp = Id, it is enough to check this
on a functor of the form Coind% ResG M for P € S,. But the left adjoint of
@; Resg Coindf Res@ is Ind Resf h_ngp Res§ = Ind% Res? , which in turn
has right adjoint Coindg Res$, so @g Resgp Coindg Res$ = Coindg Res$ as re-
quired. ' O

For any poset X we define X>y = {K € X|K > H} and similarly X 5. Recall
that Gy is the left adjoint of the inclusion GCS — CS

Lemma 3.8. If X C W and for each H € W, the poset X>p is connected, then
lim"Y R = R.
—X

If for each H € W, Cq(H) acts transitively on the components of X>p, then
Golim?' R = R.
Proof. From the definition, (hi>n‘;(v R)(H) is the free R-module on the components
of XZH' O

Recall that we made the abbreviation llnfv L= aniv L)(G).

Proposition 3.9. If each X>p,H € W is connected then lﬂlg Res?} = l&ngv on
CSw(G).

If Cq(H) acts transitively on the components of each X>g, H € W then @g Resy =
el
lim)} on GCSw(G).

Proof. For the first formula we need to show that homcs,, () (R, L) = homgg, (@) (R,Resy L).
But homgg,, (@) (h_l’I)l;v R, L) = homcs, (¢ (R, Resy L), by 2.2. Now use the previ-
ous lemma. The second formula is proved similarly. O

For any poset W we denote the geometric realisation by |WW|. This is the sim-

plicial complex where the simplices correspong to chains in W
For any poset W we define the weakly essential elements to be

Wessg(W) = {H € W | |Ws glis empty or has more than one component},

and also
Wess(W) = {H € W||Wsg|is not contractible}.

Also, if W is a G-poset, we define the essential elements to be
Esso(W) = {H € W||Wspg|/Cq(H)is empty or has more than one component}.
Notice that Esso(W) C Wesso(W) C Wess(W).

Remark. We allow maximal elements of W to be essential, in contrast to [20].

The next proposition will be very useful for changing classes of groups. It is
based on §6.6 of [1] vol. II, attributed to Bouc.

Proposition 3.10. Let W be a poset such that there is a bound on the length of
any chain in W, and let X be a subposet.

If X contains Wess W then the inclusions of the geometric realisations |WessW | C
| X| C |W] are homotopy equivalences.

If X contains Wessg W then the inclusions of the geometric realisations |[WessoW| C
| X| C |W] induce a bijection on the connected components.
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Proof. The first part is due to Bouc [2, 3, 4], see also I1.6.6.5 of [1]. The second part
is proved in the same way, replacing homotopy equivalence by induces a bijection on
the connected components. The same must be done for Quillen’s Lemma (I1.6.6.2 in
[1]), either by considering only the Ej o-term of the spectral sequence in the proof,
or just by elementary means. O

Proposition 3.11. Suppose that there is a bound on the length of any chain in W.
If Wesso(W) € X CW then lim§ Resy’ 2 lim$; on CSyw(G).

If, in addition, X is closed under supergroups in W then (ling)" Res}({v =

.G

Proof. By the 3.9 we need to show that Ay is connected for each H € W. But
WessoW>m) € X¥>g € Wsp, so we can apply 3.10.

For the higher limits the result will follow if we know that Res’ is exact (which it
clearly is) and it preserves projectives. The latter is equivalent to the right adjoint
linl/(v being exact, which it clearly is under the condition on supergroups. O

The next result is an immediate consequence of Alperin’s Fusion Theorem, as
stated in, for example, [11], [20]. For the rest of this section we suppose that G is
finite.

Proposition 3.12. Suppose that W C S, is closed under supergroups in Esso(Sp),
and that Esso(S,) N W C X CW. Then lim€ Res¥ = 1im% on GCSyy(G).
—X —W

If, in addition, X is closed under supergroups in W then (linf()” Resl/(v =
e

Proof. Pick a Sylow p-subgroup P of G and use the method of stable elements to

realise mi L as the set of elements x € L(P) such that, whenever H € W, H < P,

g € G and YH < P, then x satisfies resly x = Cq rest z.

The Fusion Theorem states that the group homomorphism ¢, : H — 9H given
by conjugation by ¢ is equal to the composition of a sequence of conjugations
¢, : U — U forve G, U U < E < P for some essential subgroup E € Essy(S,)
such that v normalises E. Since U € W and W is closed under supergroups in
Esso(Sp) we see that E € Essg(W) and hence is in X.

But (resl;; —c, rest))z = resf; (1 — ¢,) resh . Tt follows that all the conditions
that we want to impose on z € L(P) are already imposed when we just consider
subgroups in X.

Note that the factorisation of ¢, given is only as a group homomorphism, so
ignores C(H). This is why we need to work in GCS not CS.

The claim about the higher limits follows as in the previous proof. Note that
the right adjoint of Resl/(v in GCS is G° lﬂl‘;(v I, so is still exact. O

Let B, denote the class of subgroups P of S, satistying P = O,Ng(P), often
known as the radical subgroups, and let C, denote the class of subgroups P in S,
for which the centre of P is the Sylow p-subgroup of C¢(P), sometimes known as
the centric or self-centralising subgroups.

It is well known that Wessy(S,) C B, and Essy(S,) C C, N B, (see [20]).

The next lemma is well known and easy to prove.

Lemma 3.13. If N 9 G and N is of order coprime to p then |S;(G/N)| =
S, (G)/NI.

Following Grodal [12], let D, be the set of centric subgroups P of G for which
Ng(P)/PCgq(P) has no non-trivial normal p-subgroup.

Lemma 3.14. Esso(S,) € D, CC, N B,.
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Proof. D, C Cp, by definition. If P € C, \ B, then there is a subgroup @) such
that P S @ < Ng(P) and Q ¢ Cg(P). The image of Q in Ng(P)/PCq(P) is
non-trivial, so P ¢ D,,.

Now if P is centric then |S}(G)>F|/Cq(P) = |S}(Na(P)/P)|/(Ca(P)/Z(P)) =
ISy (Na(P)/PCa(P))|, by the lemma above. So if P ¢ D, then these spaces are
contractible and P ¢ Essy(S,). O

. Sp ~u s
Corollary 3.15. L € CSs, (G) then lingp Resy’ = @gp on CSs, (G).
. Sp ru s Sp o~ 1
l@g,, Resyy & @gp Resy! = glngp on GCSs, (G).
Remark. In section 9 we will see that if R is p-local then we can extend these results

to higher limits. In this form the first part of the corollary appears in [14] and the
second part is in [12].

4. HyPpER COHOMOLOGY

Given a chain complex C, in CSyy,(G) which is bounded below, and L € CSy(G)
we can consider the hyper-Ext groups Ext¢g, (Ce, L). These are the hyper-derived
functors of Homgg,,, which takes its values in CS7(G) (where 7 is any class of
subgroups), so are themselves coefficient systems. This is not consistent with our
previous definition of Ext as the derived functor on the second variable, unless we
are in the circumstances of 3.2. But confusion will rarely arise, and when it does
we will write R Hom(A, —)(B), for example.

Lemma 4.1. Extég  ()(Ce, L)(J) does not depend on T, provided J € T.
Proof. When we apply Homcs,, ()(—, L) we do so groupwise. O

There are two spectral sequences (see e.g. [26] 5.7.9):

(1) "EYT = Extg () (Hq(Co), L) = Extgs,, () (Ce, L)

(2) Tppa = HP(BExtlg ) (Ce, L)) = Extig,, ) (Ce, L)

We adopt the convention that when we apply plain Ext to a chain complex, we
apply it term by term to obtain another chain complex.

The following proposition is the basic result that we will use to obtain the se-
quences of the introduction and to identify their cohomology.

We say that a class of subgroups 7 is taut with respect to another class W if
each T € 7 is taut with respect to WV as defined after 2.8 .

Proposition 4.2. (1) If, in CSW(Q),
{R ifn=0,

0 otherwise,

Hn(CO) =

then Extds,,, ) (Ce, L) = Extgsw(g)(]?, L). If T is taut with respect to W
then this is also equal to (&ng\})”L
(2) If K <G and H* Extéyg,, ()(Ce, L)(K) = 0 for n > 1 then

EthSW(G) (Co, L)(K) = H" Homyy(Cs, L)(K)

Remark. We can always take 7 = {G} and then 7T is taut with respect to W. In
this way we can always obtain (lﬂlfv)”L in part (1).
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Proof. For (1) we apply the T B spectral sequence and see that it collapses. The sec-
ond part follows using 3.2 to see that Extég,, (o) (8, L) = R" Homcs,, (¢) (R, —)(L)
and then 3.3 to identify this with (lim )"L. 0

Proposition 4.3. Let C, be a complex in CSy(G). Let X C W and suppose
that L € CSw(G) is injective relative to X and also that for each H € X we have
that Resg C, is split exact. Then Homgsg,, () (Ce, L) is split exact. If L is also a
Mackey functor then this is split exact as a complex of Mackey functors.

Note that L being a Mackey functor entails W being closed under intersections.
Also L is only required to be relatively injective as a coefficient system.

Proof. When we restrict to H € X, Res$ C becomes split exact. Thus Homgsg,, (#) (Res$, C,, L)
is split exact. Now apply Coindg and use

Coind( HOmcsW(H)(Resg —, L) = Homgs,, ) (— Coind$ Res% L)
(by 2.11). We see that
Homcs,, (@) (Ce, Coind% Res$ L)

is split exact. Thus our sequence is a summand of a product of split exact sequences,
so is itself split exact by [24].
The splitting as a Mackey functor comes from 2.16. O

5. BREDON COHOMOLOGY

If A is a G-CW-complex on which G acts admissibly (i.e. the stabiliser of each
cell fixes it pointwise), let A, denote the G-set of n-cells. We can form a chain
complex of coefficient systems Co[A’] in CSs(G) by setting

Cn[A"] = R|AY) = &P R[G/ Stabg o7,

n-cells cup to G-conjugacy
with the natural boundary morphisms, as described in [7].

More succinctly, we regard A as a simplicial G-set (in the language of [26]) and
apply the functor G/H +— R[G/H"] to obtain a semi-simplicial coefficient system,
and then take Co[A’] to be the associated chain complex of coefficient systems.

We often restrict this chain complex to some class YW where it is better behaved.

We will also use the augmented complex, C, [A”], where we add the term R in
degree —1 and the map R[Aj] — R takes each 0-cell to 1.

The definition of the cohomology of A with coefficients in a Mackey functor M in
[17] amounts to saying that it is the cohomology of the complex Homyir s(c) (SCe[AT], M).
But this is isomorphic to Homcg () (Ce [A”], M). For a slightly different approach,
see [22].

Notice that if H € W then Homcs,,, (o) (R[G/H"], L) = Coind$ Res$ L by 2.12,
and so if the stabiliser of every cell in A is contained in W then Homy (Ce[A”], L)
takes the form described explicitly in [7] and [24], which we sometimes refer to as
La,.

If X is a class of subgroups of G then we can regard X as a G-poset and form
the geometric realisation |X|.

Lemma 5.1. If the normaliser of each chain in X is in W then
homcsw(g) (é.(|X|7), L)

is the normaliser sequence of the introduction, except that we have m% L in the
first place instead of L(G).
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We define the Bredon cohomology of A with coefficients in L to be
Heg, (A L) = Extég, (Co[A"], L).
This is again an element of CS7(G).

Remark. For Bredon in [7], W = S always, so C,[A’] is a complex of projectives
and Hgg (A, L) = H* Homcs,, (Co[A"], L), but this is not always true for general
W.

Remark. In view of 2.20 we can see that the definition of cohomology with coeffi-
cients in a Mackey functor M given in [17] is equivalent to H* Homyrs (SCe[A’], M)
H* Homcgs (Co[A”], M), so is just Bredon cohomology, with the transfer given as
in 2.16.

Ezample. If W = {1}, the trivial group, and 7 = {G} then Hés{l}(A,L)(G) is
just the usual G-equivariant cohomology of A as in [8], i.e. the cohomology of the
Borel construction.

Theorem 5.2. If L € CSy(G) and H. (A" ,R) = 0 (i.e. R-acyclic) for every
H e W and Q&n]s/v)"L =0 for everyn > 1 and every S which is the stabiliser of a
cell in A (e.g. S € W), then

Hn(homcsw(g)(C- [A?]a L)) = (lﬂlg\;)nl’

Proof. We take T = {G} and check that the conditions of 4.2 are satisfied (with
K = @G). This is clear for the first part. For the second we calculate instead with
T = §, knowing that this will not matter by 4.1. Now Extég,, () (R[G/S"], L)(G) =
Coind§ Extiyg, (s)(R, L)(G) 2 Exts, (s (R, L)(S) by 3.4. Next we work in CSyy(S5)
with 7 = {S} (invoking 4.1 again). But now Hom is balanced so, by 3.3, we have
Extis,,, (s) (R, L)(S) = (lim3 )" L, which is 0 by hypothesis. O

Theorem 5.3. Let L € CSy(G) and X C S. Suppose that L is injective relative
to X and that A is R-acyclic for every K € W, K C H € X.

Suppose also that for each subgroup H € X we know that H is taut with respect
to W and also for each cell o of A, Staby (o) is taut with respect to W.

Then the chain complex

Homcsw (é. [A?], L)

is split exact in CSs(@). If L is a Mackey functor then the complex is split as a
complex of Mackey functors.

Proof. Let H € X and consider Resg C [A”]. Tt is exact, by the condition on the
AKX and a complex of projectives, by the tautness conditions. The conditions of
4.3 are now satisfied and the result follows . O

Remark. (1) The statement for Mackey functors is similar to the main theorem
of Webb, [24]. He has W = S\ Y, and our X is his X'\ Y. Notice firstly that
relative injectivity is the same as relative projectivity for Mackey functors,
and secondly that if a coefficient system L is injective relative to X and L
vanishes on ), then L is injective relative to X' \ Y, at least if ) is closed
under subgroups in X.

(2) This proof of Webb’s theorem, shorn of the general notation, is in fact
very short. The relative injectivity condition allows us to reduce to the the
case of a group in X, and then the complex C, [A”] is an exact complex of
projectives, so splits.

1%
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(3) If R is p-local and A¥ is R-acyclic for every H < G of order p, then A is
R-acyclic for every non-trivial p-subgroup H by Smith theory, or by using
equivariant cohomology as in [8].

(4) Another proof of Webb’s Theorem has been given by Bouc [5].

Usually A is taken to be the Quillen complex, i.e. |S)(G)|, or some variant.
Webb gives many examples of 5.3, but 5.2 is also useful. It can be used to give a
simpler proof of the main results in [19]: here is another application.

Ezxample. Fix a prime p and let B denote the ring of Brauer characters, considered
as a coefficient system over C on some finite group G. Let N, be the class of
subgroups which contain a non-trivial normal p-subgroup, and let A denote the
usual Brown complex.

Since each stabiliser of a cell in A is in N, 5.2 applies to B € CSy;,(G) on A
and also Homy, (Ce, B) = Ba,. But by Robinson’s reformulation of Alperin’s Con-
jecture [16], Y°(—1)*dim Ba,(G) should be equal to the number of non-projective
simple modules for G, denoted f,(G).

It follows that (the non-blockwise version of) Alperin’s weight conjecture is true
for all finite groups if and only if for all finite groups G

fo(@) = Z(—w dim(lim) - B)(G).
It is interesting to try and understand this by filtering B by functors which are
non-zero on only one conjugacy class and then calculating the higher limits of these
in the manner of [14]. The result is the original formulation of Alperin’s conjecture,
by essentially the same proof as in [16].

6. THE STRUCTURE OF C,([AY])

First we need some lemmas.

Lemma 6.1. For any H < G and any class W of subgroups of G, let mo(|WNS(H)|)
denote the H-set of components in WNS(H). Then, as RG-modules,

Res}{/\f;){l} lii)nxu{l} R[G/H' = R[G x g m(]WNS(H)|).

Proof. Since lim commutes with Ind (their right adjoints commute) and R[G/H N
Indg R it suffices to prove the case G = H, observing that both sides are induced
modules. But lii)nxu{l} R is formed by taking one basis element for each element of

W NS(H) and then identifying two basis elements if there is an inclusion between
the corresponding subgroups. This yields R[mo(|W N S(H)|)]. O

It will be convenient to define a coefficient system to be based at H < G if it is
a summand of a sum of R[G/H"]s.

Corollary 6.2. Consider the canonical map
lim YY1 RIG/H') — R[G/H']

m CSWU{l}(G).

It is onto if H contains some element of W and an isomorphism if WNS(H)
is connected, in particular if H € W.

If H does not contain any subgroup in W then the left hand side is 0 and the
right hand side is based at H.

Lemma 6.3. Let ' < G be of index invertible in R, and assume all complezxes to
be bounded below. If Do is a compler of RG-modules, then Resg D, is homotopy
equivalent to a complex of projective RF-modules if and only if De is homotopy
equivalent to a complex of projective RG-modules.
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Proof. 1f Resg Do, ~ P, then Indg Resg Dy ~ Indg P,, which is a complex of
projectives. But D, is a summand of Ind% Res% D, by the maps

d > g®g'd, h®dw—|G:F|"'hd, deDsheG.
geG/F

In order to simplify the notation we write Dy & Xo =~ QQo, Where Qo is a complex
of projectives. Let PP ?Z Do and pPX 2X X, be projective resolutions. The

composition PP @ PX ekl Do ® Xo = Q, is a quasi-isomorphism of bounded
below complexes of projectives. Thus it is a homotopy equivalence and hence
pp @ px is also a homotopy equivalence. It follows that pp must be a homotopy

equivalence. O

If G acts admissibly on a CW-complex A we define Stabg(A) to be the set of
subgroups Stabg(§), where § is a cell of A.

Theorem 6.4. Suppose that G acts admissibly on a CW-complex A. Suppose
also that there is a subgroup F < G with |G : F| invertible in R such that AT is
R-acyclic and also for every K € Stabp(A), K # 1, we have that AKX is R-acyclic.

Then Co(A) is homotopy equivalent as a complex in CS{13(G) = RG-Mod to a
bounded complex of projectives.

If W is a class of subgroups of G such that for each K € W, K # 1 we have
that AX is R-acyclic, then C, (A”) is equal in the derived category of CSy(G) to
a complex of projective coefficient systems which are projective relative to 1.

Proof. Let V = {Stabp(A)\ {1}} U {F}, and work in CSy(F). Resy Res% C,(A?)
is an exact complex of projectives, by 2.8 and the definition of V, so must split.
Thus li_r)n“ju{l} Resy Resg C'.(A?) is also a split exact complex of projectives, since
lii)n preserves projectives by 2.2 and the remark before 2.15.

Now, in CSyy(1}(#), the natural map

h_r}nzu{l} Resy Res% Co (A7) — Resyuqy Res& Cy (A7)

is a sum of those in 6.2. Each stabiliser is either in V or is 1, so the map is injective
and the cokernel P, is a complex of projectives based at 1.

Now Resyyug1y Resg C. (A?) — P, is a quasi-isomorphism of bounded below com-
plexes of projectives, so must be a homotopy equivalence. Restricting to the sub-
group 1 (so we are just dealing with RF-modules), we see that Cy(A) is homotopy
equivalent to P, (1), which is a complex of projective RF-modules.

Now apply 6.3 to obtain the first claim.

For the second claim, we work in CSyy(G), and notice that Cy(A?) is equal in
the derived category to the complex obtained from it by changing the evaluations
to 0 on every subgroup not equal to 1. Now we use the first claim. O

Lemma 6.5. In any Abelian category, if there is a map of chain complexes f :
Ce — P,, which is a quasi-isomorphism, and where Py and Cy are bounded below
and P, is a complex of projectives, then

Coe®Se 2P, D E,,

where Se is a split exact complex of projectives and Eq is an exact complex. If f
is a homotopy equivalence, then Eq is split exact. If Cy and P, are bounded or of
finite type (when this makes sense) then so are S and E,.

Proof. By adding a split exact complex of projectives bounded below to C,, we
can assume that f is an epimorphism. Let E, be the kernel, so E, is exact and
bounded below.
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Now, since P, is a complex of projectives, we can take a splitting in each degree,
and in this way identify Co with E, & P,, but with boundary map dggp + ¢, where
¢ is a collection of maps ¢; : P; — E;_1. If we set ¢} = (—1)%¢; then these combine
to give a chain map ¢’ : P, — E, of degree —1. But ¢’ must factor through a
projective resolution of F,, which must be split, so ¢’ is nullhomotopic. Thus we
have maps 60; : P, — E; such that ¢/ = dg + 0dp

Set 0! = (—1)%¢;. An isomorphism O : Cy — FE, @ P, is now given by setting
O(e,p) =(e+0p,p), e€ E,peP.

If f was a homotopy equivalence then E, must be split. O

Corollary 6.6. In the circumstances of 6.4, set C’.(A) = Res(y Co(A), and regard
it as a complex of RG-modules. Then

Co(A) @ Se = P, @ E,,
as bounded complexes of RG-modules, where S is a split exact complex of projec-
tives, Py is a complex of projectives and E, is a split exact complex.

Proof. Apply 6.5 to the first claim of 6.4. O
Finally, we obtain Webb’s original result.

Corollary 6.7. In the circumstances of 6.4, but with A finite and R a complete
local ring, set Co(A) = Res{) Co(AY), and regard it as a complex of RG-modules.
Then

Ce(A) = P, @ E,,
as complexes of RG-modules, where P, is a complex of projectives and E,q is a split
exact complex.

Proof. The complexes in the isomorphism of 6.6 are of finite type so we can apply
the Krull-Schmidt Theorem to cancel S,. O

Ezample. The standard examples where the hypotheses of 6.4 are satisfied are when
R is p-local, F' is the Sylow p-subgroup of a finite group G and either:

(i) A is the geometric realisation of S}(G), or

(ii) P is a p-subgroup of some group E, G = Ng(P)/P and A is the geometric
realisation of S,(E)sp.

In case (i) we call the homotopy class of complexes of projective modules ho-
motopy equivalent to Cy(A) the Steinberg complex of G, and denote it by Ste(G).
Whenever we mention this complex it will be implicit that every prime dividing
|G|, except perhaps for p, is invertible in R. If p does not divide |G| then Ste(G)
consists just of the trivial coefficient system R in degree —1.

In both cases the stabiliser of any cell contains a non-trivial normal p-subgroup,
and conversely for any K € (N,)sp, AK is R-acyclic.

In these circumstances we have a uniqueness result.

Proposition 6.8. Suppose that G acts admissibly on a CW-complex A in such a
way that Stabg(A) C N, and that X is a class of subgroups containing N, such
that, for each 1 # K € X, AX is R-acyclic. Then Cy(A') ~ CN'.(|S;(G)|!) in
CSx(G) and, in particular, Co(A) ~ Sto(G) in RG-Mod.

Proof. Both Cy(A') and C’.(|S;|!) are projective resolutions of R in CSqx\(13(G),
so are homotopy equivalent by maps which are the identity on R and where the
homotopies take the value 0 on R.

We can now apply h_r)nﬁ\{l} to recover Co(A) and C,(|S}]), by 6.2. We also

obtain maps between them and the necessary homotopies, which we extend to R
by the identity and 0 respectively. (I
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For example this shows that in case (ii) above the complex obtained is in fact
Ste(G). Of course in this case the defining simplicial complexes are known to be
equivariantly homotopy equivalent anyway.

7. PROPERTIES OF THE STEINBERG COMPLEX

It is often convenient to consider Ste(G) as a coefficient system in CSy(G)
by giving it the value 0 on all non-trivial subgroups. This is in fact formally
hi)nrv Ste(G), and is still a complex of projectives, based at 1. We will denote it by
St2(@).

There is an alternative description StJ(G) =~ C~’.(|S;|?) ® Ry, where R; is the
coefficient system which takes the value R on 1 and 0 elsewhere.

Proposition 7.1. For any class of subgroups W of G containing 1 and any M €
CSw(G), the following are all homotopy equivalent as complexes in CSyy(G):
1) Hompg?(Ste(G), M(1)),
) Homyw(St0(G), M),

) Homp:(Ce(|S,), M(1)),
4) HOIHV\;(C.(LS; ‘?)? M(1>7)7

) If W C N, RHomW(C'.(|S;\?),M), (Where RHom is the complex used
to define Ext.)

Proof. Now (1) and (2) are homotopy equivalent because St2(G) = h_n)l‘l/v Ste(G),
and lim is the left adjoint of restriction. Also (1) and (3) are homotopy equivalent
by the first part of 6.4. But (3) and (4) are homotopic because M (1)” = ml/v M(1)
and 1£n is the right adjoint of restriction. Finally St(.)(G) is a projective resolution
of CN'.(|S;|?) by the last part of 6.4, so (5) is homotopic to (2) by definition. O

Lemma 7.2. If H < G and p divides |H| then for any p-subgroup P of G:
(1) p divides |Cq(P) N H|,
(2) If o is any chain of p-subgroups of G then p divides |Ng(o)].

Proof. P permutes the Sylow p-subgroups of H by conjugation. The number of
these is coprime to p, so at least one of them is fixed: call it S.

Now P permutes the non-trivial elements of S. Again, the number of these is
coprime to p, so one is fixed, say s. Now s € Cq(P) N H.

For (2), let P be the largest subgroup in the chain and apply (1). O

Now we can state a fundamental result from [14], (although our proof is based
on a preliminary version of [12]).

Theorem 7.3. Suppose that R is a p-local discrete valuation ring, and that M is
an RG-module such that either M is finitely generated or M is projective over R .
If the order of the kernel (i.e. the subgroup of elements of G which act trivially on
M) is divisible by p, then the complex of RG-modules hompga(Ste(G), M) is split
exact.

Proof. First we assume that pM = 0.

Define @RG to be homprg modulo the image of trlG : hompg — hompgg, (with
the usual transfer on Hom). Using the complex (3) of 7.1, each term is a sum of
pieces of the form hompg(R[G/S], M), where S is the stabiliser of a chain o.

By 7.2 with H as the kernel of M, we see that S N H contains a non-trivial p-
subgroup @, say, so @ is in both .S and H. Under the isomorphism hom g (R[G/S], M) =
hompgg (R, M) the image of tr{’ on the left corresponds to the image of tr{ on the
right. But trf factors through tr?, and this is multiplication by |Q|, which is
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equal to 0. Thus hompg(Ste(G), M) = }&Rg(St.(G),M); but hom vanishes on
projectives.

In general, since Ste(G) is homotopy equivalent to a complex of projectives,
hompg(Ste(G), M)/p = hompa(Ste, M/p), and M /p also satisfies the conditions
of the theorem, so is split by the proof above.

If M is finitely generated over R, then so is hompg(Ste(G), M), and so split
modulo p implies split, (by an obvious generalisation of Nakayama’s Lemma).

If M is not finitely generated then it is a direct limit of finitely generated sub-
modules, and the homology of hompg(Ste(G), —) commutes with direct limits, so
the latter is exact. It is also a complex of projective R-modules if M is, because
its terms are summands of sums of terms homprg(RG, M) =2 M. Thus the complex
must split. O

We can generalise this slightly in a way that will be useful in section 9. Example

(ii) in §6 suggests that we consider the complex IndNG(p) IanG(g/P St2(Ng(P)/P).

Corollary 7.4. For simplicity we assume that P is a p-subgroup of G, that all
coefficient systems are over S, and that R is p-local.

(1) Ind]C\;,G(P) Infxggg)/lj StY(Ng(P)/P) is a complex of projectives, based at P.

Na(P)
(2) homesg, () (IndS, p) V() p Sta (NG (P)/P), M) ~ 0 for any M € CSs, (G)
with M (P) either finitely generated or projective over R and on which p di-
vides the order of the kernel of M (P) as an Ng(P)/P-module.

(3) GoIndS,(p) InfNE(R) 1 St (NG(P)/P) =~ 0 if P is not in Dy(G). (Where

Gy is the left adjoint of the forgetful functor I : GCS — CS.)

Proof. For (1), observe that the functors preserve projectives because their right
adjoints are exact.

For (2), the adjoint properties show that we are just calculating
Na (P L
hOIHCSSp(NG(p)/p)(St(.)(Ng(P)/P), QNgEP)/P ResNG(P) M), and this is 0 by 7.3.
Now (3) is a formal consequence of (2) if P is not centric, since any geometric M
will have PCq(P) in the kernel of M(P), and p divides the order of PCq(P)/P,
so p will divide the order of the kernel of M(P) as an Ng(P)/P-module. If P is

centric but not in D, then P is not in B, by 3.14, so the complex is acyclic. (|
The next result is a version of one in [12].

Theorem 7.5. If L € GCSs, (G) then Heg () (ISp], L)(G) = Heg G)(|C l, L)(G),
(as R-modules).

Proof. We work in CSs,(G). Define SPZ" to be the subclass of S, of elements
of order greater than or equal to n. Then C,(|S,|") is filtered by the complexes
C.(|SPZ”|?). Now the terms of the factor C.(|SPZ"|?)/C.(|S§”+1|?) correspond to
chains with bottom element of order n. There are no inclusions between such
chains with the same bottom element, so this factor splits as a direct sum of pieces
indexed by the conjugacy class of the bottom element P of the chain, and this piece
is induced from Ng(P).

Co(ISF™1)/CallSF ™)

1

P md%, p) Cos1(1(Sp)>pl)
PES, /G, |P|=n

Ng(P ~
@ IndgG(P) IanggP;/P Co+1(|(5p)>P|?)
PeS, /G, |Pl=n

Ng(P)
PeS&, /G, |Pl=n

1%

1R
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The last equivalence is a consequence of the well-known fact that |(S,(G))sp| is
equivariantly homotopy equivalent to |(S,(Ng(P)))sp|, (by the assignment @ >
Nq(P)), and the latter is clearly isomorphic to |S}(Ng(P)/P)|.

If we apply G then the summands with P not centric will vanish by 7.4. Note
also that (Sp)sp = (Cp)>p if P is centric.

Since the last line of the formulas above is a complex of projectives, it follows
that the inclusion of C, into S, induces an isomorphism

Ext* (Ca(|(Cp)="17)/Call(Cp) =" 1), L) = Ext™ (Ca((Sp)="[")/Cal|(Sp) "), L)

We can now show, induction on n, the long exact sequence for Ext and the five
lemma, that there is an isomorphism

Ext*(Ca(ICpl")/CaIC5"]7), L) = Ext™(Co(IS") /Ca (IS5 [), L)

The case n = 0 is trivial and the case n large is the result claimed. O

8. THE SUBGROUP SEQUENCE

There are other ways of obtaining a chain complex in CSy(G) from a class X
of subgroups, which do not factor through the geometric realisation. Although the
examples that we will consider are simple and concrete it seems helpful to mention
the general context.

We consider the category ch(X) of chains in X and inclusions. We need a con-
travariant functor F' : ch(X') — PCSy(G) together with a collection of conjugation
maps ¢q : F(o)(H) — F(90)(9H) for each g € G,0 € ch(X), H € W. These conju-
gation maps must satisfy the usual properties ¢; = Id, ¢4, ¢4, = ¢y, 4, and they must
commute with restriction in PCSy,(G) and also with restriction in ch(X") (induced
by inclusion). In addition we require that F(o)(H) = 0 if H £ Ng(o) and, for
h e H < Ng(o), we need ¢, =1d : F(o)(H) — F(o)(H).

This naturally makes F(c) into an element F(c) € CSy(Ng(o)), extended to
H £ Ng(o) by 0. These F(o) and the restriction maps F(o) — F(7) uniquely
determine the structure defined above.

For a G-subset X of ch(X) we define F(X) = @oexF(0). With the natural
action of G via the ¢, we have F(X) € CSyy(G). In particular, writing (o) for the
orbit of o, we have F((0)) & Indﬁc(g) F(o).

Up until now we have always used the functor FV, where FN(o) = R €
CSw(N(0)), so FN((0)) 2 Ind§, () B = R[G/Na(a)'].

Recall that for any chain o in X we denote by o} the smallest element and by
o, the largest.

The functor which represents the subgroup sequence is F*, defined by

F(o)(P) = {R .
0 otherwise.
Thus F°((0))(P) is the free R-module on the chains 7 in the orbit of o with 7, > P.
The restrictions are the canonical inclusion maps.
For P < G, define Rp € CSyy(Ng(P)) by Rp = @%Eﬁ)@(m) R, so that for

H e W, Rp(H) is R if H < P and 0 otherwise. (So, in fact, Rp = Infxgg%ﬂj R;.)

Then we have F¥((0)) = Ind%c(o) Resxggg’)’) R,,, which we will abbreviate to
o _
IndNG(U) Ro-b.

Lemma 8.1. homCSW(G) (Ind%c;(o) RO’b? L) = (Qiﬂlw(gb) L)(Ub))NG(U)7 and Zf op €
Ng(o)

W, then this is also isomorphic to L(oy)



THE BREDON COHOMOLOGY OF SUBGROUP COMPLEXES 24

Proof.
homes,, () (A5, (o) Roy» L) = homes,, (v (o) (Rey » L)

~ . W(Ng(o D
= hOmCSW(NG(O_))(h_H}WgUbG)( b)) R’ L)

= homCSWWw (Ng (o)) (R, L)
>~ (lim L)(op)Ne @)

%W(Ub)

O

Now CF(X) is defined to be the complex in CSyy(G) with terms F¥(ch,, (X))
and the usual boundary maps arising from the semisimplicial structure of ch(X).
There is also an augmented version C(X).

The next two results follow directly from the definitions and 8.1 respectively.

Lemma 8.2. CJ(X)(H) = Co(|X>H]).

Corollary 8.3. If L € CSy(G) and X C W then homcsw(g)(éf(X),L) is the
second sequence of the introduction, the subgroup sequence, except that L(G) is
replaced by l&nf\} L.

Lemma 8.4. If every X>p, H € W, is R-acyclic (e.g. W C X ) then Extgsw(c)(c;g()(), L)
R™Homgs,, ()(—, L)(R) in CSW(G). If T is taut with respect to W then this is
also equal to (lin;)"ll

Proof. This is a consequence of 4.2, in view of 8.2. (]

Lemma 8.5. In any Abelian category, let Cy be a chain complexr and suppose
that it has a finite filtration such that each of the factors is homotopy equivalent
to a complex of projectives P! and such that in each degree the filtration splits to

gwe a direct sum decomposition. Then Cq is homotopy equivalent to a complex of
projectives: ignoring the boundary maps, this complex can be taken to be ®;P;.

Proof. By induction, we may reduce to the case where there are only two compo-
sition factors, so we have a short exact sequence X! % Cy — X2, which is split in
each degree and where X! ~ P! i = 1,2. Since a is split in each degree we know
that X2 ~ cone(a), so X! % C, — X2 extends to a triangle in the homotopy
category.

Thus we have a triangle P2, 2, Pl — Cy — P2 so C, =~ cone(b), which is a
complex of projectives. ]

We say that a coefficient system is based at X if it is a summand of a sum of
terms of the form R[G/X"] with X € X.

Proposition 8.6. Suppose that every prime dividing |G| except perhaps p is in-
vertible in R, that X C Sp(G) and that X contains the Sylow p-subgroups of G.

If for every H € X that is not a Sylow p-subgroup of G and every p-subgroup K
with H < K < Ng(H) we have (Xsg)X is R-acyclic, then CJ (X) is, as a complex
in CSs, (G), homotopy equivalent to a complex of projectives, based at X

If we ignore the boundary maps, then this complex can be taken to be

Ng(P
B mdf,p) fyEL) p Sta_ (Na(P)/P).
Pex/G

Proof. Define X=" to be the subclass of X of elements of order greater than or equal
to n. Then CJ(X) is filtered by the complexes C5(X2"). Now the terms of the
factor C2 (X2")/C2 (X2 1) correspond to chains with bottom element of order n.
There are no inclusions between such chains with the same bottom element, so this
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factor splits as a direct sum of pieces indexed by the conjugacy class of the bottom
element P of the chain, and this piece is induced from Ng(P).
clxzm/cixzrth 2 @ df,p Cor(|Xsp|’) @ Rp
PcX /G, |P|l=n
G Ng(P ~ ? D
B WS, Wiy p Cor((Xap|)) @ By
PEX /G, |P|=n

Ng(P
B mdf, ) iy, Sta (Na(P)/P),
PcX /G, |P|l=n

1%

1

by 6.8. These terms are projective, based at &, if P is not maximal in X. If
P is Sylow then we just have IndgG(P) Rp in degree 0. But this is projective in
CSw(N¢g(P)) by 2.5.

Now we can apply 8.5. (]

Corollary 8.7. ([12]) Suppose that every prime dividing |G| except perhaps p is
invertible in R, that X C W C S,(G) and that X contains the Sylow p-subgroups
of G. Suppose also that, for every H € W, X>p is R-acyclic and that for every
non-Sylow H € X and K € S, with H <A K we have that (X~pg)® is R-acyclic.

Then C2(X) is homotopy equivalent to a projective resolution of R in CSy(Q)
by projectives based at X .

So, for L € CSw(G), we have H" Homcs,,, () (C3 (X), L) = R" Homgs,, () (—, L)(R)
in CS7(Q).

In particular, the homology of the subgroup sequence of the introduction (after
removing the first term) is (@%)"L

Proof. By 8.6 we see that CY (X) is homotopy equivalent to a complex of projectives
in CSs,(G) based at X. This remains projective on restriction to W by 2.8. Its
cohomology is R, by 8.2. This proves the claim about the projective resolution; for
the rest use 8.3. (]

For the rest of this section we continue to suppose that every prime dividing |G|
except perhaps p is invertible in R.

Corollary 8.8. Suppose that W C S, is non-empty and closed under supergroups
in Wess(Sp) and that Wess(Sp) N W C X C W. Then the hypotheses of 8.7 are
satisfied.

Note that we could replace Wess(S,) by B, to obtain a simpler statement. (That
the two are the same is a conjecture of Quillen.) We could also use a weaker
definition of Wess, in terms of R-acyclicity instead of contractibility.

Proof. We need to check the conditions of 8.7.

Since W is closed under supergroups in Wess(S,), it contains the Sylow p-
subgroups of G. Thus these are in Wess(S,) N W and so in X. So the Sylow
p-subgroups are the only maximal elements of X and certainly remain maximal in
W.

Notice that, for any class of subgroups V and any H,K € &,, we have that
Wess(VE,) = Wess(VE) N Vs gy

Also, if K normalises J, then (Slf( )ss contracts to JK unless K < J. It follows
that Wess(SK) = Wess(S,) N (Sp)> k-

Now, it HLK € S, and H < K, H # K then Wess((SZf()>H) = Wess(S,) N
(Sp)>k- If also H € W then, since W is closed under supergroups in Wess(S,), we
have Wess((SX)s ) C WX, But the left hand side is clearly in Wess(S,) N W, so

P
by hypothesis is in X, and thus Wess((Sf)>H) - XfH.
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Thus we can apply 3.10 to the inclusion XfH C (Sf)>H to see that we have
a homotopy equivalence on the geometric realisations. But we have just seen that
the right hand side is contractible, so X%, is contractible.

A similar proof shows that >y is contractible. O

Corollary 8.9. If W is closed under intersections, M € MFW(G) is injective
relative to W and also the hypotheses of 8.7 are satisfied, then the subgroup sequence
is split as a complex of Mackey functors.

Proof. Just as in the proof of 4.3, the condition of relative injectivity allows us to
reduce to the case of a group H € W. But R is projective in CSy(G), so C5(X)
splits. O

9. CHANGE OF CLASS OF GROUPS

The results are based on those in [12].
As before, we continue to suppose that every prime dividing the order of |G|,
except perhaps p, is invertible in R.
G\n ~ (1;
=

Corollary 9.1. In the circumstances of 8.8, (mw

TS (G).

Proof. Use 8.7 and 8.8 with X = B, N W and notice that the terms of the subgroup
sequence only evaluate L on groups in X. O

n w
) ReSBan on

Corollary 9.2. angp) = (@gp) Resy” on CSs, (G).
We extract for future use the main feature of the proof of 8.6.

Corollary 9.3. Suppose that W C S, is closed under supergroups in B,. Then
Qf(W) and Cy (B, NW) are both homotopy equivalent to a projective resolution of
R in which all the terms are based at B, N W.

Proof. Both complexes have cohomology R in degree 0 and 0 elsewhere, by 8.2.
They are homotopy equivalent to a complex of projectives, by 8.6, and this also
shows that C? (B, N W) is homotopy equivalent to a complex of projectives based
at B, N W. O

Proposition 9.4. Suppose that D,NW C X CW and that X, W C S, are closed
under supergroups in By,. Then GoCy(X) ~ GoCF(W): on restriction to C, N W
these are homotopy equivalent to a projective resolution of R in CSc,nw(G) in

which all the terms are summands of sums of terms of the form GoR[G/H?], for
HeD,nW.

Proof. Consider the inclusion map i : GoC3 (X) — GoC5(W). We claim that both
sides are filtered by complexes which are homotopy equivalent to sums of complexes
of the form Gg IndJC\;,G(P) Inf%gg%/lg StY_,(Ng(P)/P), where P appears (once for
its conjugacy class) if and only if it is in X’ (respectively W). This is true before
applying G from the proof of 8.6 and 8.8, and remains true afterwards by 8.5
since all the complexes in the filtration are homotopy equivalent to complexes of
projectives in CSyy(G).

Now if P € X then the P terms are the same in both CJ(X) and CJ(W). If
P ¢ X then P ¢ D, N W, so the P terms in C(X) are 0 and those in CF (W )are
homotopy equivalent to 0 by 7.4. It follows that ¢ is a homotopy equivalence.

Notice that Gy and Resg\; Ay commute. Also Res)c/\;mw is clearly exact and
Go : CSc,nw(G) — GCS¢,nw(G) is exact because it has the explicit descrip-
tion (GoL)(P) = Ho(Cg(P)/Z(P),L(P)) on P € C,, and Cg(P)/Z(P) has order
coprime to p.
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Finally, Res)y GoCS(W) = Gy Res}f\:mw C3(B, N W) has homology just R in
degree 0, by 9.3 and the exactness property mentioned above. Also the previous part
of the proof shows that C (W) is homotopy equivalent to a complex of projectives
of the form claimed, and these remain projective on restriction. O

Recall that I denotes the inclusion functor GCS — CS.

Corollary 9.5. In the circumstances of 9.4, for any L € GCSw (G) we have that
H™ HomCSW(G) (C‘.S(X), IL) =~ R" HomCSW(G)(_7 [L)(R)

In particular, the homology of the subgroup sequence of the introduction (after
removing the first term) is (@%)"IL

Proof. We know that H"Homgs,, ) (CS(W),IL) = R"Homcs,,()(—,IL)(R)
from 8.6. Now HomCSW(G)(C’.S(W), IL) = HOIHGCSW(G)(Goc;S(W), L) = HOHIGCSW(G)(G()C.S(X), L) =

Homgs,,, (@) (CJ (X), IL) by 9.4. >
.  G\ny ~ (1:0.G W ~
Corollary 9.6. In the circumstances of 9.4, (@W) = (@me)” Res¢, qyy I =
(lmi )" Resp oy I on GCSyy(G).
Proof. By 9.5 and 8.1 we see that (Hm{})" L & homes,, ) (C5(OW), L) & homes, (@) (CE (W), L) =
(Lim%)" L. ¢
—x

3 n ~ 3 n S ~ 3 n S
Corollary 9.7. (lim§ "I = (@fjp) Resg? [ = (@gp) Resyy I on GCSs, (G).

P

Finally, we relate higher limits in CS and in GCS in certain circumstances.

Lemma 9.8. Suppose that X C C, and M, N € GCSx(G). Then R™ homgcs, (q)(—, M) =
R™(homcg, () (=, IM)) o I on GCSx(G).

o~

Proof. Because homgcs,, (@) (—, M) = homcs,, (a)(—, IM)ol we can deduce R"™ homgcs,, (a)(—, M)
R"homgg,, (@) (—, IM)ol provided that I is exact (which it clearly is) and preserves
injectives.
But the right adjoint of I is G, which is exact on CSx(G) (see proof of 9.4), so
I does preserve injectives.
Now observe that hom is balanced. U

Corollary 9.9. Suppose that every prime dividing |G| except perhaps for p is in-
vertible and that W is closed under supergroups in B,. Then (}Lnfv)” = an)(/;v)nl

on GCS¢, (G) (where the first higher limit is in GCSy(G) and the second is in
CSw (@)

Proof. Using 2.3 and 9.6 and the fact that homgcs(M, N) = homcg(IM, IN) for
M, N € GCS, we find that, for N € GCSyy(G), homgcs,, (g)(—, N) = h;nSv Homgs,, (@) (—, N) =

e w w ~ w w
llncpmw Homgcscpnw(g)(Rescme —, Res¢’ N) homgcscpmw(g)(RestW —, Res¢ N)

IR

homgcscpmw(g) (—, Res)é:mw N)o Resg\;mw on GCSyw (G).
But Resg\;mw is exact and preserves projectives in GCS, just as in the proof of
3.12. From this we obtain that R" homgcs,, (¢)(—, N) = R”(homgcscww(@) (-, Reslc/\;mw N))o
Rest” yy on GCSy(G).
Similarly, since Homcg (M, IN) is naturally in GCS for M € CS, N € GCS, we
obtain that R" homgs,,, (¢)(—, IN) = R"(homcs, () (— Resgzmw IN))ol Resg\:mw
on CSy,(G).
Now R™homgcse, qw(G) (—, Resg:mw N) = R”(homcscpmw(g) (—, Resgzmw IN))o
Ion GCS¢,rw(G), by 9.8. We deduce that R"™ homgcs,, (g)(—, N) = R™ homcsg,, ) (—, IN)
on GCSy (G). O



THE BREDON COHOMOLOGY OF SUBGROUP COMPLEXES 28

Remark. In general the higher limits in CS and GCS are not the same. For example
if W consists only of the trivial group then the higher limits in CS;13(G) are the
cohomology groups H*(G, —), whilst the higher limits in GCSy3(G) vanish,

10. THE CENTRALISER SEQUENCE

The construction is analogous to that of the subgroup sequence and we will be
brief.
We use the functor F¢ defined on a chain o by

pe(oypy— | i Calon) 2 P,
o =
0 otherwise.

this implies that F'“((c))(P) is the free R-module on the chains 7 in the orbit of o
with Cg (1) > P or, equivalently, F¢((0)) = Ind%c(ﬁ) Reg(o))-

G D ~ : o
Lemma 10.1. homcs,,(c)(IndN, ) Rog (o, L) = ((m, o L)(Ca(o))Ne(),
and if Ca(oy) € W, then this is also isomorphic to L(Cg(ay))Ne(@),

Let CY(X) be the complex of coefficient systems obtained from the class of
subgroups X using F¢, and C¢(X) the augmented version.

Corollary 10.2. If L € CSw(G) and for each X € X we have Cg(X) € W,
then L(G) — homcsw(g)(C,C(X),L) is the third sequence of the introduction, the
centraliser sequence.

Lemma 10.3. If every X(Cg(H)), H € W, is R-acyclic (e.g. X = A} or S,
and for any H € W, Z,(H) # 1) then H*(CS (X)) =2 R and Ext},(CS(X), L) =
(Lm )" L in CSw(Q).

Proof. This is a consequence of 4.2, since CS (X)(H) = Co(|X(Cq(H)))|). O

Proposition 10.4. If .Azl) C X C S, and W contains the centraliser of every
element of X then CS (X) is homotopy equivalent to a projective resolution of R in

CSw(G).
Proof. The complex has the correct homology, by 10.3.

C.C(XS")/C.C(XS”_I) o @ IndgG(P) C'.(|X<p|)®Rcc(p)
PeX/G,|P|=n

~ Na(P) A 0
= D WiEE) e ConlXer))
PeX/G,|P|=n

So we just have to show that C~’.+1(|X< p|)? is homotopy equivalent to a complex
of projectives, or equivalently that Cy(]X~p|) is homotopy equivalent to a complex
of projective Ng(P)/Cq(P)-modules.

If P is trivial or cyclic of order p then everything is projective, since Ng(P)/Cq(P)
is trivial.

For the other cases we check the conditions of 6.4.

If P is elementary abelian of rank greater than 1, then, for any p-subgroup H of
Ng(P)/Cq(P), let E < P be the subgroup of elements centralised by H. Let F be
a subgroup of P of index p, containing £ and normalised by H. Now if X € X_p
is normalised by H then X N F # 1: this is seen by considering the codimensions
of vector spaces over I, if the rank of X is at least 2, and if X has rank 1 then it
must be in E. We see that |X-p|¥ contracts to F by X — X NF — F.

Otherwise, for any p-subgroup H of Ng(P)/Cq(P),let 1 # E < ®(P)NZ,(P) be
centralised by H. Then we see that | X p| contracts to E by X — X.F — E. O
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Corollary 10.5. ([12]) Suppose that A, C X = S, and that X is closed under
products with elementary abelian groups (i.e. if X € X andY < G, Y =X x E,
E € A,, then Y € X). Suppose also that W contains the centraliser of every
element of X and also that for any H € W, Z,(H) # 1. Then the homology of the
centraliser sequence of the introduction (after removing the first term) is (hm L.

11. PROJECTIVE RESOLUTIONS AND THE STEINBERG COMPLEX

Notice that 8.6 describes a projective resolution of R in CSg, (G) in terms of
Steinberg complexes. In particular R has finite projective dimension, originally a
result of Bouc [5], (it also appears without proof in [14]).

Conversely we can calculate Steinberg complexes from a projective resolution
L, — R by

For each complex in the homotopy class of St.(G) consider the highest degree
in which the complex is non-zero, and define o(G) to be the minimum of these.

If R is p-complete then we have the Krull-Schmidt property, so there is actually
a smallest representative of Ste(G).

Similarly, define p(G) to be the shortest possible length of a projective resolution
of Rin CSs, (G).

So p(G) = maxpes, 0(Ng(P)/P) +1 = maxpep, 0(Na(P)/P) + 1

Also 0(G) < p-rank(G) — 1

and 0(G) <maximum length of a chain in B,(G) — 1.

Thus p(G) < maxpep, (@) p-rank(Ng(P))

and p(G) <maximum length of a chain in B,(G).

In fact the Steinberg complex also controls the difference between higher limits
over S, and S).

To see this, for any RG-module V' let V1 € CS;s,(G) denote the coefficient system
which takes the value V on 1 and 0 elsewhere.

Proposition 11.1. Assume that R is a field k, of characteristic p. For a fixed
group G, the following are equivalent:

(1) (hm ) 'Vi =0, for all i > 0 and all kG-modules V;

(2) (hm ) ‘(kG)1 =0, for all i > 0;

(3) Sta(C) = 0; | |

(4) The canonical map yields (llng ) = (@gl)’Resgﬁ’, for all i > 0, on
CSs, (G);

(5) hm (kG)? =k and (hm ) '(kG)" =0 fori>1.

Proof. It is clear that (1) = (2).
Now homcssp(g)(—,vl) vanishes on any projective based at a non-trivial p-

subgroup, by 2.8. Thus 8.6 shows that if P, — R is a projective resolution then
homcssp(g)(P., V1) is homotopy equivalent to homcsg () (StgH(G) V1), which, in
turn, is isomorphic to Homg; (Ste+1(G), V). So (hm ) 'V is equal to the cohomol-
ogy of Homyg (Ste+1(G), V).

Clearly now (3) = (1). Also Homyg(Ste+1(G), kG) will detect any non-exactness
in Ste(G), so (2) = (3).

For any L € CSg (G), let L* denote the cokernel of the inclusion L(1); — L.
We claim that (hm ) A= (lun ) Ressp L. This is because L! = hm 9 Res o L
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But lim preserves injectives (because its left adjoint is exact) and is itself exact, so
i 5 ~ i 51 S S ~ ; 5 S
EXteSSP (@) (R’ Ll) = EXt,LCSSP (G) (R, h&lsg RQSSE ) = EXtESS}) (@) (R, Ressg L)

The long exact Ext sequence for L(1); — L — L' now shows that (1) < (4).
Similarly (2) < (5), because kG” is injective on S, so the higher limits vanish. O

Remark. Quillen conjectured that |S}(G)] is contractible if and only if G contains

a non-trivial normal p-subgroup [18]. In fact, according to [12], no counterexample

seems to be known if the contractibility condition is replaced by [Fj-acyclicity.
Notice that F,-acyclicity is equivalent to condition (3) of 11.1, so we see that the

(stronger) conjecture is equivalent to the statement:

G contains a non-trivial normal p-subgroup if and only if the conditions of 11.1 are

satisfied.
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