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Abstract. We construct a well-behaved stable category of modules for a large class of infinite
groups. We then consider its Picard group, which is the group of invertible (or endotrivial)
modules. We show how this group can be calculated when the group acts on a tree with finite
stabilisers.

1. Introduction

In the modular representation theory of finite groups, the stable module category is of funda-
mental importance. It is normally constructed by quotienting out all the morphisms that factor
through a projective module, but it can also be characterised as the largest quotient category
on which the syzygy operator is well defined and invertible. It is a triangulated category when
the distinguished triangles are taken to be all the triangles that are isomorphic to the image of
a short exact sequence of modules.

In the case of infinite groups we will construct a stable category that has these properties, at
least for a fairly large class of groups that we call the groups of type Φk (see [35]). This class
includes all groups of finite virtual cohomological dimension over k and all groups that admit
a finite dimensional classifying space for proper actions, EG, see Corollary 2.6. However, just
quotienting out the projectives is usually not sufficient. We also describe various other possible
constructions of this category and show that they all give equivalent results.

Our methods are similar to those of Ikenaga [25], even though he does not mention a stable
category and is instead interested in generalising the Tate-Farrell cohomology theory to a larger
class of groups than those of finite virtual cohomological dimension. Benson [5] has also described
a stable category for infinite groups in the same spirit as ours, but he places restrictions on the
modules rather than on the groups. The work of Cornick, Kropholler and coauthors is closely
related too, but it is more homological in flavour; see [15] for a recent account and more details
of the history of the subject.

This stable category has a well-behaved tensor product over the ground ring k, so is a tensor
triangulated category in the language of Balmer. One important invariant of such a category is
its Picard group. In this case the elements are the stable isomorphism classes of kG-modules M
for which there exists a module N such that M ⊗k N is in the stable class of the trivial module
k. These form a group under tensor product, which we denote by Tk(G). For finite groups this
is known as the group of endotrivial modules and has been extensively studied by many authors
(see [36] for an excellent survey). Such modules have been classified for p-groups in characteristic
p and also for many families of general finite groups [10, 11, 12, 14].

We develop the basic theory of these modules in the infinite case and provide some tools for
calculating the Picard group Tk(G). In particular, we have a formula whenever G acts on a tree
with finite stabilisers.
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One original justification for studying these modules in the finite case, given by Dade when
he introduced them [18], was that they form a class of modules that is “small enough to be
classified and large enough to be useful”. We illustrate how this remains true in the infinite case
at the end of the paper, by calculating some examples.

Some notes for a summer school course based on this material will appear in [34].

2. Groups of Type Φk

In this paper, k will always be a commutative noetherian ring of finite global dimension; the
fundamental case is when k is a field of positive characteristic. All modules will be k-modules;
sometimes a fixed k will be understood and we will omit it from the notation. We will consider
groups G, usually infinite, and the category of all kG-modules Mod(kG).

Recall that the projective dimension of a kG-module, projdimkGM , is the shortest possible
length of a projective resolution of M (∞ if there is no resolution of finite length). The global
dimension of k, gldim k, is the supremum of the projective dimensions of all k-modules.

Definition 2.1. A group G is of type Φk if it has the property that a kG-module is of finite
projective dimension if and only if its restriction to any finite subgroup is of finite projective
dimension.

Definition 2.2. The finitistic dimension of kG is

findim kG = sup{projdimkGM |projdimkGM <∞}.

Lemma 2.3. If the group G is finite and the kG-module M has finite projective dimension then
projdimkGM ≤ gldim k.

Proof. Let d = gldim k and consider the dth syzygy ΩdM of M . This is projective over k, so its
projective resolution is split over k. The modules in the resolution are summands of modules
induced from the trivial subgroup and induction is equivalent to coinduction for finite groups,
so these modules are injective relative to the trivial subgroup. The projective resolution can be
taken to be of finite length so, by relative injectivity, it can be split starting from the left, thus
ΩdM must be projective. �

Lemma 2.4. If G is of type Φk then findim kG is finite.

Proof. If findim kG is not finite, then for each positive integer i we can find a kG-module Mi

such that i ≤ projdimkGMi < ∞. Over any finite subgroup F we have projdimkF Mi < ∞, so
by Lemma 2.3 we obtain projdimkF Mi ≤ gldim k. Let M = ⊕iMi; then for any finite subgroup
F we have projdimkF M ≤ gldim k, yet projdimkGM =∞, so G cannot be of type Φk. �

The class of groups of type ΦZ was introduced by Talelli [35]. The class of groups of type Φk

is closed under subgroups and contains many naturally occurring groups; in particular, we have
the following result.

Proposition 2.5. Suppose that there exists a number m and an exact complex of kG-modules

0→ Cn → · · · → C0 → k → 0,

such that each Ci a summand of a sum of modules of the form k ↑GH with H of type Φk and
findim kH ≤ m. Then G is of type Φk and findim kG ≤ n+m.

Proof. Let M be a kG-module that is of finite projective dimension on restriction to any finite
subgroup of G. The exact complex in the statement of the proposition is split over k, so it
remains exact on tensoring with M .

Each Ci ⊗k M is a summand of a sum of terms of the form (k ↑GH) ⊗k M ∼= M ↓H↑G. By the
hypotheses on H, we know that M ↓H is of finite projective dimension and projdimkHM ≤ m,
hence projdimkGM ↓H↑G≤ m.
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Setting Di = Ci ⊗kM we obtain modules Di with projdimkGDi ≤ m and an exact complex

0→ Dn → · · · → D0 →M → 0.

An easy induction on n now shows that projdimkGM ≤ n+m. �

Recall that a group G is of finite cohomological dimension over k (finite cdk) if projdimkG k <
∞ and is of finite virtual cohomological dimension over k (finite vcdk) if it has a subgroup of
finite index that is of finite cohomological dimension over k (see [8, VII.11]).

Corollary 2.6. A group G is of type Φk if either of the following conditions hold:

(1) there is a finite dimensional contractible G-CW-complex with finite stabilisers, or
(2) G is of finite vcdk.

Proof. In case (1) we just use the associated G-CW-chain complex in Proposition 2.5. In case
(2) the complex is constructed by the method of Swan, following Serre [30, 9.2]. �

Note that a group G that admits a finite dimensional classifying space for proper actions,
EG, satisfies condition (1) above. It has been conjectured by Talelli that G having a finite
dimensional EG is actually equivalent to G being of type ΦZ [35, Conj. A].

Example 2.7. A free abelian group of infinite rank is not of type Φk for any k, so neither is
any group that contains it.

3. The Stable Category

Write Mod(kG) for the category of all kG-modules, possibly infinitely generated, and Mod(kG)
the quotient category with the same objects but morphisms

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) is the submodule of kG-homomorphisms M → N which factor through
a projective module.

The next observation is well known; for a proof see e.g. [24, §2].

Lemma 3.1. Suppose M ∼= N in Mod(kG). Then there exist projective kG-modules P,Q such
that M ⊕ P ∼= N ⊕Q in Mod(kG).

If M is finitely generated then Q can be taken to be finitely generated and if N is finitely
generated then P can also be taken to be finitely generated.

When G is finite and k is a field then Mod(kG) is taken to be the stable category, but this
does not work well in the infinite case, because Ω might not be invertible. We shall introduce
various possible definitions of a stable category for infinite groups and show that they all agree
for groups of type Φk.

Recall that there is a natural map Ω : HomkG(M,N)→ HomkG(ΩM,ΩN).

Definition 3.2 ([6]). Let Stab(kG) be the category with all kG-modules as objects and mor-
phisms given by HomStab(kG)(M,N) = limn→∞HomMod(kG)(Ω

nM,ΩnN).

Note that a kG-module has image 0 in Stab(kG) if and only if it is of finite projective dimen-
sion.

This definition can be difficult to work with. In particular, a map in HomStab(kG)(M,N)
might not correspond to any map in HomMod(kG)(M,N). However, Stab(kG) is clearly the
largest quotient of Mod(kG) on which Ω is well defined and invertible. It is quite possible that
Stab(kG) = 0, for example if G has finite cdk.
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Definition 3.3. An acyclic complex of projectives is an unbounded chain complex of projective
modules P∗ that is exact everywhere. It is totally acyclic if, in addition, HomkG(P∗, Q) is acyclic
for any projective module Q. The category of totally acyclic complexes of projective kG-modules
and chain maps up to homotopy will be denoted by Ktac(kG).

The category Ktac(kG) is naturally triangulated in the usual way for categories based on chain
complexes. The triangle shift is given by [−1], where [n] denotes degree shift by n.

Definition 3.4. A Gorenstein projective module is a module that is isomorphic to a kernel in
a totally acyclic complex of projectives. The full subcategory of Mod(kG) on the Gorenstein
projective modules will be denoted by GP(kG) and the full subcategory in Mod(kG) by GP(kG).

In some cases Gorenstein projective modules are easy to recognise.

Lemma 3.5. Suppose that G is of finite vcdk. The following conditions on a kG-module M are
equivalent.

(1) M is Gorenstein projective,
(2) the restriction of M to some subgroup of finite index that is of finite cdk is projective,
(3) the restriction of M to any subgroup that is of finite cdk is projective.

Proof. Suppose that (1) holds and that H is a subgroup of finite cdk. Let n = cdk(H) and
d = gldim k; there is a kG-module N such that M ∼= Ωn+dN ∼= (Ωnk) ⊗k (ΩdN) modulo
projectives. Now ΩdN is projective over k and, on restriction to H, Ωnk is projective, thus M
is projective over kH and (3) holds. Trivially, (3) implies (2). If (2) holds then the construction
in [8, X.2.1] produces a complete resolution with M as a kernel, so (1) holds. �

In particular, if G is finite then a module is Gorenstein projective if and only if it is projective
over k. If k is also a field then all kG-modules are Gorenstein projective.

Remark 3.6. The Gorenstein projective modules correspond to the modules called cofibrant in
Benson’s treatment [5], at least for groups of type Φk (see [2, 35]).

The category GP(kG) is a Frobenius category, hence GP(kG) is naturally triangulated [19,
2.2]. The shift is Ω−1, which is obtained by taking the kernel in degree one less in the totally
acyclic complex used to show that the module is Gorenstein projective.

Definition 3.7. There is a functor Ω0 : Ktac(kG)→ GP(kG) obtained by taking the kernel of the
boundary map in degree 0. There is also a natural inclusion functor Inc : GP(kG)→ Mod(kG).

Definition 3.8. A complete resolution of a kG-module M consists of a totally acyclic chain
complex F∗ of projective kG-modules and a projective resolution P∗ of M , together with a map
F∗ → P∗ and an integer n such that the map is an isomorphism in all degrees n and above.

. . . // Fn+1
// Fn // Fn−1

//

��

. . . // F0
//

��

F−1
// . . .

. . . // Pn+1
// Pn // Pn−1

// . . . // P0
ε // M // 0

The index n is called the coincidence index.

In the literature this is sometimes called a complete resolution in the strong sense, because
of the word totally. We will often abuse the terminology by referring to just F∗ as the complete
resolution.

It is known that two complete resolutions of the same module must be chain homotopy equiv-
alent (i.e. the F∗ are chain homotopy equivalent). A map between two P∗ induces a map of the
corresponding F∗, unique up to homotopy (cf. [25, Lemma 3, Proposition 13]).
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In the same way, we can define a complete resolution of any chain complex M∗ with only
finitely many non-zero homology groups: we just take P∗ to be a projective resolution of M∗,
i.e. a quasi-isomorphism P∗ →M∗.

In general, a module might not possess a complete resolution, but for groups of type Φk they
always exist.

Theorem 3.9. If G is a group of type Φk then any complex of kG-modules with only finitely
many non-zero homology groups has a complete resolution.

We defer the proof to the end of this section.
Thus, for groups of type Φk, we obtain a functor CompRes : Db(Mod(kG))→ Ktac(kG), where

Db(Mod(kG)) is the derived category of complexes of kG-modules with only finitely many non-
zero homology groups. It is easy to see that Kb(Proj(kG)) is in the kernel, where Kb(Proj(kG))
is the homotopy category of bounded complexes of projective kG-modules, so we have a functor
on the Verdier quotient CompRes : Db(Mod(kG))/Kb(Proj(kG))→ Ktac(kG).

There is a functor [0] : Stab(kG)→ Db(Mod(kG))/Kb(Proj(kG)). On modules it can be given
by regarding a module as the degree 0 term of a complex that is 0 elsewhere. For morphisms
it is better to regard this slightly differently. Take a projective resolution PM of the module M
and consider the truncation σ≥n(PM ) for some n ≥ 0 (see [38, 1.2.7]); it is clearly a projective
resolution of ΩnM [−n] and it is also equal to PM in the Verdier localisation. Thus we have
M ∼= ΩnM [−n] in Db(Mod(kG))/Kb(Proj(kG)). A morphism f ∈ HomStab(kG)(M,N) must
correspond to a homomorphism f ′ ∈ HomStab(kG)(Ω

nM,ΩnN) for some n, so f [0] can be defined
as f ′[−n] : ΩnM [−n]→ ΩnN [−n].

The next theorem is essentially due to Buchweitz [9], at least for parts (2–4); there are many
variants in the literature.

Theorem 3.10. For a group of type Φk, the following categories are equivalent:

(1) Stab(kG),
(2) GP(kG),
(3) Ktac(kG),
(4) Db(Mod(kG))/Kb(Proj(kG)).

The equivalences are obtained from the functors Inc, Ω0, CompRes and [0] introduced in Defini-
tion 3.7. These are equivalences of triangulated categories, except for those involving Stab(kG),
where a triangulated structure has not yet been defined.

Proof. The equivalences not involving Stab(kG) are shown in [4, 4.16] (replacing Inc and [0] by
[0] Inc). The theorem will follow when we show that the cyclic permutations of the composition
Inc Ω0 CompRes[0] are naturally isomorphic to the identity. But the cases with [0] and Inc
adjacent follow from [4, 4.16] , so we only have to check Inc Ω0 CompRes[0] itself. By definition,

this sends M to the degree 0 kernel M̃ in its complete resolution. But large enough syzygies of
M and M̃ are identical in Stab(kG). �

Of course, we can use these equivalences to define a triangulated structure on Stab(kG). The
distinguished triangles are all the triangles isomorphic to a short exact sequence of modules. The
shift Ω−1M is obtained by finding a complete resolution of the module M and then taking the
kernel in degree −1. The kernel in degree 0 we denote by M̃ ; from the definition of a complete
resolution, M̃ is Gorenstein projective and it comes with a map of modules αM : M̃ → M that
is an isomorphism in Stab(kG).

Definition 3.11. We call the map αM : M̃ →M the Gorenstein approximation of M .

We can consider any of these categories to be the stable module category of kG and we will

use the notation M̂od(kG) when we do not wish to specify which one. We will use the symbol

' to denote isomorphism in M̂od(kG).
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A kG-module is called a lattice if it is projective over k. The full subcategory of Stab(kG) on

the lattices is also equivalent to M̂od(kG), because Stab(kG) also contains the full subcategory

GP(kG) (and so GP(kG) ⊆ Stab(kG) ⊆ M̂od(kG) where GP(kG) and M̂od(kG) are equivalent
categories).

Lemma 3.12. If a kG-module M is Gorenstein projective then for any kG-module N the natural
map HomkG(M,N)→ HomStab(kG)(M,N) is surjective.

Proof. Any f ∈ HomStab(kG)(M,N) is the image under Inc of some f̃ ∈ HomGP(kG)(M̃, Ñ), which

we can compose with the natural map αN : Ñ → N . Since M itself is Gorenstein projective, we
have M̃ ∼= M in GP(kG), so we obtain a map M → N in Mod(kG), which must be the image
of one in Mod(kG). �

Recall that for H ≤ G there are two functors IndGH and CoindGH from Mod(kH) to Mod(kG),
the left and right adjoints of restriction. They satisfy the identity

Homk(M,CoindGH N) ∼= CoindGH Homk(M,N) ∼= Homk(IndGH ,M), M,N ∈ Mod(kG),

where Homk(M,N) is considered as a kG-module in the usual way and all restrictions are
implicit.

Lemma 3.13. (1) A kG-module is projective if and only if it is a summand of a module
induced from a free module for the trivial subgroup; it is injective if and only if it is a
summand of a module coinduced from an injective module for the trivial subgroup.

(2) A kG module induced from the trivial subgroup has finite projective dimension. If G has
type Φk then a module coinduced from the trivial subgroup has finite projective dimension.

Proof. The first part is trivial. For the second part, if M = IndG1 X, take a projective resolution
of X over k. This is of finite length since k has finite global dimension. Because IndG1 is exact
we can apply it to obtain a projective resolution of finite length for M .

If N = CoindG1 Y , note that, since G is assumed to be of type Φk, we only have to check
finite projective dimension on restriction to finite subgroups. If F is a finite subgroup then the
Mackey formula shows that the restriction of N to F is of the form CoindF1 Z. But for finite
groups, coinduction is equivalent to induction, so we can use the result for induced modules just
proved. �

Now for the proof of Theorem 3.9. In [23], two invariants are defined:

spli(kG) = sup {projdimkG I | I injective} silp(kG) = sup{injdimkG P | P projective}.
From Lemma 3.13 we know that projdimkG I is finite for any injective module I. Thus projdimkG I
is bounded by findim kG, which is finite by Lemma 2.4, since G is of type Φk. We conclude that
spli(kG) is finite. Now [23, 4.1] constructs the acyclic complex of projectives in the definition of
a complete resolution (they call this a complete resolution even though they do not require it to
be totally acyclic), see also [25]. In fact, total acyclicity is automatic.

Lemma 3.14. If G is of type Φk then any acyclic complex of modules is totally acyclic.

Proof. Let X∗ be the acyclic complex. We claim that HomkG(X∗,M) is acyclic for M of finite
injective dimension. This is clearly true for M injective and the general case is proved by an
easy induction on injdimkGM . Thus all we need to know to finish the proof is that silp(kG) is
finite and this is proved in [23, 2.4]. �

Remark 3.15. The proof of [23, 2.4] is the only place in this section where the argument requires
k to be noetherian.

Following [5, 25], we can define Êxt
i

kG(M,N) = ĤomkG(ΩiM,N) and Ĥ i(G;N) = Êxt
i

kG(k,N),
for all i ∈ Z. When G has finite vcdk then this is the same as the Tate-Farrell cohomology in [8].
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4. Functors

From now on we assume that all groups are of type Φk and we continue to assume that k is
noetherian of finite global dimension.

We want to know when and how a functor F : Mod(kG)→ Mod(kH) induces a triangulated

functor between the stable categories M̂od. Most, but not all, of the problems only arise when k
is not a field. If F is exact and takes projectives to projectives, then clearly it induces a functor

of triangulated categories on M̂od; this is easy to see using any version of M̂od. In this way we
obtain induction IndGH and restriction ResGH of stable categories for any subgroup H of G.

In fact, it suffices for F to be exact and to take projective modules to modules of finite pro-
jective dimension. For a short exact sequence ΩM → P → M in Mod(kG) with P projective
is taken to a short exact sequence F (ΩM) → F (P ) → F (M) in Mod(kH); but F (P ) = 0
in Stab(kH), so F (ΩM) = ΩF (M) in Stab(kH). If f ∈ HomStab(kG)(M,N) is represented
by f ′ : ΩnM → ΩnN , then F (f ′) : ΩnF (M) → ΩnF (N) determines an element F (f) ∈
HomStab(kH)(F (M), F (N)).

In this way we obtain an inflation map Inf
G/N
G when N is a normal subgroup of G such that

G/N is of type Φk and any element of finite order in N has order a unit in k. For given a
projective k(G/N)-module P inflate it to G; then for any finite subgroup F ≤ G, P is projective
over k(F/(F ∩ N)) and |F ∩ N | is a unit in k, so P is projective over kF . Thus P is of finite
projective dimension over kF so, since G is of type Φk, we find that P is of finite projective
dimension over kG.

More generally, for any homomorphism h : J → K between groups of type Φk such that
any element of finite order in the kernel has order a unit in k, there is a pullback map h∗ :

M̂od(kK)→ M̂od(kJ).

Lemma 4.1. Change of scalars across a homomorphism of rings f : k → ` in either direction,
i.e. restriction f∗ or base change f∗, induce functors between Mod(kG) and Mod(`G) that take
projective modules to modules of finite projective dimension (the assumptions at the beginning of
this section holding for both k and `). Also f∗ is exact.

Proof. By Lemma 3.13(1), a projective module is a summand of one of the form IndG1 X for X
free. Both f∗ and f∗ commute with IndG1 ; f∗X is still free so IndG1 f∗X is free and for f∗ use
Lemma 3.13(2). Exactness of f∗ is clear. �

Lemma 4.2. For a given kG-module M , the following functors from Mod(kG) to itself take
projective modules to modules of finite projective dimension. If M is a lattice then the first two
are exact.

(1) −⊗kM ,
(2) Homk(M,−),
(3) Homk(−,M).

Proof. Any projective module is a summand of IndG1 X for some free k-module X.
1) It is well known that (IndG1 X)⊗kM ∼= IndG1 (X ⊗kM). Now use Lemma 3.13.
2) For any finite subgroup F ≤ G, ResGF Homk(M, IndG1 X) ∼= Homk(M, IndF1 Y ) for some

k-module Y , by the Mackey formula. Now,

Homk(M, IndF1 Y ) ∼= Homk(M,CoindF1 Y ) ∼= CoindF1 Homk(M,Y ),

so we can use Lemma 3.13 to see that ResGF Homk(M, IndG1 X) has finite projective dimension.

Since G is of type Φk we can deduce that Homk(M, IndG1 X) is also of finite projective dimension.
3) Homk(IndG1 X,M) ∼= CoindG1 Homk(X,M), so we can use Lemma 3.13 again.
The exactness statement is trivial. �
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The lemmas above together with the discussion at the beginning of this section show that if
M is a lattice then −⊗kM and Homk(M,−) induce triangulated functors of the stable category
as before; so does f∗. In the other cases, we see that each of the functors in Lemmas 4.1 and
4.2 naturally defines a functor GP(kG)→ Stab(kG) (with the obvious variation for f∗), because
now the triangles are isomorphic to short exact sequences, and all modules are projective over k
so short exact sequences are split and exactness is automatic. By Theorem 3.10, we can regard

this as a functor from M̂od(kG) to itself. This second approach also makes it transparent what
the functor does to morphisms, in particular for Homk(−,M).

By Theorem 3.10, the categories M̂od(kG) and Stab(kG) are equivalent, so we can regard
any of these functors as a functor from Stab(kG) to itself. However, it might not be given by
the usual formula on objects that are not Gorenstein projective, because we need to replace a
module M by its Gorenstein approximation M̃ before applying the formula (see Definition 3.11).

Example 4.3. Let C be a cyclic group of order p and Ẑp the p-adic integers. Consider the

trivial module Fp for ẐpC. An easy calculation (cf. [33, 2.6]) shows that F̃p ' Ẑp ⊕ ΩẐp, hence

F̃p ⊗Ẑp F̃p ' (Ẑp)2 ⊕ (ΩẐp)2. By definition, Fp ⊗Ẑp Fp ' F̃p ⊗Ẑp F̃p ' (Fp)2, which is not what

might have been expected.

For any H ≤ G, coinduction CoindGH also induces a functor of stable categories. For a
projective kH-module P and any finite subgroup F ≤ G, we have

ResGF CoindGH P =
∏

g∈F\G/H

CoindFF∩gH
g ResHF g∩H P.

Since coinduction is equivalent to induction for finite groups, the factors in the product are
clearly projective, thus so is the product, by Lemma 4.4 below. It follows that CoindGH P must
be projective.

Lemma 4.4. If the kG-modules Pi, i ∈ I, are projective then the product
∏
i∈I Pi is of finite

projective dimension.

Proof. Because G is of type Φk, it suffices to prove the case when G is finite. For each i ∈ I
we can write Pi as a summand of IndG1 Xi for some free k-module Xi. Thus

∏
i∈I Pi is a

summand of
∏
i∈I IndG1 Xi. But since G is finite, IndG1 Xi is isomorphic to CoindG1 Xi, and

CoindG1 , being a right adjoint, commutes with products. Hence
∏
i∈I IndG1 Xi

∼= IndG1
∏
i∈I Xi,

which is projective. �

It is easy to check that IndGH is still the left adjoint and CoindGH is still the right adjoint of
restriction on the stable categories.

Proposition 4.5. M̂od(kG) has products and coproducts, i.e.,∏
i Ĥom(Ai, B) ∼= Ĥom(⊕iAi, B)∏
j Ĥom(A,Bj) ∼= Ĥom(A,

∏
j Bj),

where
∏

and ⊕ are the usual ones in Mod.

Proof. We may assume that all the modules are Gorenstein projective, so we are working in
Mod(kG). The only part that is not entirely routine is to check that if each fi : Ai → B factors
through a projective Pi then the induced map ⊕iAi → B factors through a projective. But it
factors through ⊕iPi, which is projective.

If the gj : A → Bj each factor through a projective Qj then the induced map A →
∏
j Bj

factors through
∏
j Qj . This has finite projective dimension, by Lemma 4.4, so the induced map

is 0 in M̂od(kG). �
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5. Decompositions

The Eckmann-Hilton argument, on sets with two monoid structures (also called the Eckmann-
Hilton theorem, see [21]), applies and gives us the following fundamental result.

Proposition 5.1. Let G be a group of type Φk. The ring ÊndkG(k) and the group ÂutkG(k) are
commutative. The product under composition agrees with the product under tensor product.

Unlike EndkG(k), the k-algebra ÊndkG(k) can be quite complicated, as we shall see.
The next lemma is very useful.

Lemma 5.2. Let G be a group of type Φk and let f : M → N be a morphism in M̂od(kG) that
restricts to a stable isomorphism on any finite subgroup. Then f is a stable isomorphism.

Proof. Consider the cone of f . It is stably 0 on restriction to any finite subgroup, so by the
definition of type Φk it is stably 0 over G. �

Proposition 5.3. Let G be a finite group and let ∆ be a G-CW-complex. Suppose that the
reduced homology groups H̃i(∆

H ; k) = 0 for i ≥ 0 and any non-trivial subgroup H ≤ G.

(1) The augmented cellular chain complex C̃∗(∆) is chain homotopy equivalent to a bounded-
below complex of projective kG-modules.

(2) If Hi(∆; k) = 0 for large enough i then C̃∗(∆) is chain homotopy equivalent to a bounded
complex of projective kG-modules.

The original version of this result is due to Webb [37] for k a complete p-local ring and ∆
finite dimensional. There is another proof of the first part by Bouc [7] for k a field and general
∆.

Proof. The first part is proved in [32]; it is the case H = 1 of the statement that q is a homotopy
equivalence that appears just before the lemma (there is no assumption on k; see the remark
at the end). There is a similar proof in [31, 6.6], but note that in 6.4 and 6.6 there the word
bounded should not appear unless ∆ is finite dimensional.

For the second part, let C∗ = C̃∗(∆) and let P∗ be the bounded below complex of projectives.
Let τ<nC∗ be a good truncation of C∗, truncated in some degree n greater than the degree of
any non-zero homology group [38, 1.2.7]. Then we have a quasi-isomorphism P∗ → τ<nC∗. By
[31, 6.5], P∗ is a summand of a complex that is split in high degrees, so it is split in high degrees
itself. Thus P∗ is homotopy equivalent to a good truncation of itself. �

Theorem 5.4. Let G be a group of type Φk and let ∆ be a G-CW-complex such that Hi(∆; k) = 0

for large enough i. Suppose that H̃i(∆
H ; k) = 0 for i ≥ 0 and any non-trivial finite subgroup H ≤

G. Then the chain complex C(∆), considered as an element of Db(Mod(kG))/Kb(Proj(kG)), is
equal to k. The same is true if k is p-local and we only require Hi(∆

H ; k) = 0 for non-trivial
p-groups H. In these cases k decomposes as a direct sum of non-zero pieces corresponding to
those path components of ∆/G for which some cell of ∆ above them is fixed by an element of
finite order not a unit in k.

Proof. By the previous proposition, for any finite subgroup F (p-subgroup if k a p-local ring), the
restriction of the augmented chain complex is 0 in Db(Mod(kF ))/Kb(Proj(kF )). By Lemma 5.2,
the augmented chain complex is 0 in Db(Mod(kG))/Kb(Proj(kG)). Thus the augmentation is
an isomorphism from C(∆) to k.

Let X be the part of ∆ corresponding to a given component of ∆/G. If X〈g〉 6= ∅ for some
g then the augmentation of C(X) is split over 〈g〉. Since k 6= 0 over k〈g〉 when |g| is finite but

not a unit (because Ĥ0(〈g〉; k) = k/|g|k), we see that C(X) 6= 0. If no such g exists, then the
restriction of C(X) to any finite subgroup F is a complex of projectives. By the proof of the
previous proposition, it is homotopy equivalent to a bounded complex of projectives, so is 0 in
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Db(Mod(kF ))/Kb(Proj(kF )) for all F , hence 0 in Db(Mod(kG))/Kb(Proj(kG)), since G is of
type Φk. �

An obvious candidate for ∆ when k is p-local is the Quillen complex ∆(Sp(G)), the simplicial
complex constructed from chains of non-trivial p-subgroups, or the Brown complex ∆(Ap(G)),
the simplicial complex constructed from chains of non-trivial elementary abelian p-subgroups.
These are known to satisfy the condition on fixed point sets and in fact they are equivariantly
homotopy equivalent. The latter is finite dimensional if the p-rank of G is finite, so in this case
they both satisfy the condition on their homology groups.

For general k we can always use ∆(F(G)), constructed from chains of non-trivial finite sub-
groups.

In the p-local case, this decomposition is the best possible. Let I index the components of
∆(Sp(G))/G and let kei denote the part of C(∆(Sp(G))) corresponding to component i. Then

k ' ⊕ikei . Let ei ∈ ÊndkG(k) be the idempotent corresponding to projection onto kei ; then

ÊndkG(k) =
∏

ÊndkG(kei) =
∏
ei ÊndkG(k).

Theorem 5.5. When k is p-local, the primitive idempotents of ÊndkG(k) correspond to the path
components of ∆(Sp(G))/G, or equivalently to the equivalence classes of non-trivial p-subgroups
of G under the equivalence relation generated by inclusion and conjugation.

Proof. Let Xi be the part of ∆(Sp(G)) corresponding to component i ∈ I. If P is a p-subgroup
that appears in this part of Sp(G) then XP

i 6= ∅, so the augmentation C(Xi) → k is split over
kP and so k ↓P | C(Xi) ↓P . But ei acts as the identity on C(Xi), so e ↓P acts as the identity on
k ↓P , i.e. resGP (ei) = 1. The idempotents are orthogonal, so resGP (ej) = 0 for j 6= i.

Suppose that e = ei decomposes in ÊndkG(k) as a sum of idempotents, e = f1 + f2. For

any finite p-group P , we have ÊndkP (k) = k/|P |k, which is still local if P 6= 1, so the only
idempotents are 0 and 1. Thus resP (f1) is 0 or 1. This choice is preserved by restriction and
conjugation, so it is constant on all subgroups P in the component i; say resP (f1) = 1 and
resP (f2) = 0. Thus f1 : ke → ke is an isomorphism on restriction to any subgroup in i and also
on restriction to any subgroup in any other component because then the restriction of ke is 0.
By Lemma 5.2, f1 is an automorphism and so, being an idempotent, f1 = e and thus f2 = 0. �

A version of this result was obtained for H1F groups by Cornick and Leary [16]; this class
includes groups of unbounded p-rank. They use the complex that appears in the definition
of H1F as ∆; the condition on the fixed point spaces of finite p-groups is satisfied, by Smith

Theory. It is worth noting that, by work of Freyd [22], idempotents in ÊndkG(k) split k stably;
our construction avoids quoting this.

Example 5.6. Let G = A ∗ B be the free product of two groups A and B, both of type Φk.
We know that G is of type Φk and that any non-trivial finite subgroup of G is conjugate to a
subgroup of A or B but not both [8, II.A3]. Thus there are at least two components provided
both A and B contain elements of order not a unit in k.

Since ÊndkG(k) ∼= Ĥ0(G; k), we can use the complete cohomology version of [8, VI.3] to

see that ÊndkG(k) ∼= ÊndkA(k) × ÊndkB(k). If both A and B are finite then ÊndkG(k) ∼=
k/|A|k × k/|B|k.

This method of calculation can be generalised to any group of type Φk that acts on a tree.

6. Invertible modules

Throughout this section, G denotes a group of type Φk.

Definition 6.1. A kG-moduleM is invertible if there exists a kG-moduleN such thatM⊗N ∼= k
in M̂od(kG). The tensor product − ⊗ − = − ⊗k − of Section 4 equips the set of isomorphism
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classes of invertible kG-modules in M̂od(kG) with the structure of an abelian group, which we
denote by Tk(G) and call the group of invertible kG-modules.

For finite groups, the endotrivial modules are defined in the same way, except that the modules
are required to be finitely generated.

If we take M and N to be Gorenstein projective then we have M ⊗N ∼= k̃ in GP(kG), with
the usual tensor product (recall that the tensor product of two Gorenstein projective modules is
Gorenstein projective since gldim k <∞).

First we check that for finite groups the basic theory of endotrivial modules carries over to our
context, where k need not be a field and the modules need not be finitely generated. Note that
for a finite group a module being Gorenstein projective is equivalent to it being a lattice and if
a module is finitely generated then it has a finitely generated Gorenstein projective approxima-
tion. This is because a sufficiently high syzygy is finitely generated (since k is noetherian) and
Gorenstein projective; it is a kernel in a complete resolution with finitely generated terms by [8,
VI.2.6].

The following result is stated for k a field in [3, 2.1]).

Theorem 6.2. Let G be a finite group and M an invertible kG-module. Then M is stably a
summand of a finitely generated kG-module and the natural map M →M∗∗ is a stable isomor-
phism. If k is a complete local ring and M is a lattice then M decomposes as a kG-module as a
direct sum M ′ ⊕ P with M ′ a finitely generated lattice and P projective.

Proof. We may assume that M is Gorenstein projective. Let f : k → M ⊗ N be a stable
isomorphism; since k is a lattice, f is a genuine homomorphism. Write f(1) =

∑
imi ⊗ ni for

mi ∈M , ni ∈ N , and let M ′ be the kG-submodule of M generated by the mi. We have a stable

isomorphism k
f→ f(k) ≤ M ′ ⊗N ⊆ M ⊗N f−1

→ k, so k | M ′ ⊗N stably. It follows that stably
M |M ′ ⊗N ⊗M 'M ′.

Let L = M̃ ′, so M | L stably. L is a finitely generated lattice, so the natural map L→ L∗∗ is
a stable isomorphism. This property is inherited by stable summands, in particular M .

Somehow we need to deduce the last part. The authors of [3] probably had in mind the
method of Rickard [29, 3.2], but this is for k a field; instead we use the Crawley-Jønsson-Warfield
Theorem [1, 26.6], which is a version of the Krull-Schmidt Theorem that applies in this case.
Since both L and M are Gorenstein projective, we know that M is a summand as a module of
some U = L ⊕ (⊕i∈IkG). Both L and kG are finitely generated and k is noetherian, so they
can both be expressed as a finite sum of finitely generated indecomposables and thus so can U ,
say U = ⊕j∈JXj , with only finitely many Xj not projective. By [17, 6.10], since k is a complete
local ring, each of these indecomposables has a local endomorphism ring and is clearly countably
generated, so the Crawley-Jønsson-Warfield Theorem tells us that M is isomorphic to ⊕j∈KXj

for some K ⊆ J . �

This theorem, together with Lemma 3.1, yields the following result.

Corollary 6.3. For a finite group G and a complete local (noetherian) ring k we get the same

group Tk(G) whether we consider invertible modules in M̂od(kG), as we do in this paper, or the
classical group of endotrivial modules in mod(kG).

The next result is well known when M is finitely generated and k is a field. Note that we
do not assume that the trivial module k is stably indecomposable, so we cannot assume that
an invertible module is stably indecomposable (a decomposition can occur when k = Z, for
example).

Theorem 6.4. Let G be a finite group and let M and N be kG-modules such that M ⊗N ' k.
Then:
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(1) N 'M∗,
(2) the evaluation map ev : M ⊗M∗ → k is a stable isomorphism and
(3) the natural map θM : M ⊗M∗ → Endk(M) is a stable isomorphism.

Proof. We can assume that M and N are Gorenstein projective and, by the previous theorem,
stably isomorphic to their double duals. From the stable isomorphism f : M ⊗N → k, realised
as a genuine homomorphism, we obtain a map f ′ : N → M∗ such that f = ev(IdM ⊗f ′). Thus
k | M ⊗M∗ stably and so N | N ⊗M ⊗M∗ ' M∗ stably. By symmetry, M | N∗ stably; say
N ' M∗ ⊕X and M ' N∗ ⊕ Y . Eliminating N and using the fact that M ' M∗∗, we obtain
M 'M ⊕X∗ ⊕ Y .

By Theorem 6.2, there is a finitely generated lattice L such that M | L stably. Applying

ĤomkG(L,−) to the equation, we obtain ĤomkG(L,M) ∼= ĤomkG(L,M) ⊕ ĤomkG(L,X∗) ⊕
ĤomkG(L, Y ). These are finitely generated k-modules and k is noetherian, so we must have

ĤomkG(L, Y ) = 0. But Y | M stably, hence Y | L stably, so ÊndkG(Y ) = 0; thus Y ' 0. By
symmetry, X ' 0, yielding N 'M∗.

The equation f = ev(IdM ⊗f ′) shows that ev is split, so k is stably a summand of M ⊗M∗,
say M ⊗M∗ ' k ⊕ Z. But we now know that M ⊗M∗ ' M ⊗N ' k, so we have k ' k ⊕ Z.

As before, applying ĤomkG(k,−) shows that Z ' 0.
For the final part, L is finitely generated, so we know that the natural map θL : L ⊗ L∗ →

Endk(L) is a stable isomorphism. But L ' M ⊕ U for some U , so we can write L ⊗ L∗ '
(M ⊗ M∗) ⊕ (M ⊗ U∗ ⊕ U ⊗ M∗ ⊕ U ⊗ U∗) and Endk(L) ' (Endk(M)) ⊕ (Homk(U,M) ⊕
Homk(M,U)⊕Endk(U)), both considered as a sum of two submodules. By definition, θL respects
these decompositions and restricts to θM on M ⊗M∗. In other words, the direct sum of θM and
another morphism is a stable isomorphism; it follows that θM is a stable isomorphism. �

Now for infinite groups of type Φk.

Theorem 6.5. A kG-module M is invertible if and only if M↓GF is invertible for every finite
subgroup F of G. Moreover, if M is invertible, then M∗ is an inverse for M .

Note that if k is p-local then the condition that M↓GF be invertible for every finite subgroup
F of G is satisfied if and only if it is satisfied when F runs through a set of representatives of
the conjugacy classes of finite elementary abelian p-subgroups of G ([11]).

Proof. Clearly, if M is invertible, then so is M ↓GF . For the converse, consider the map ev :
M ⊗M∗ → k. The previous theorem shows that for finite groups this is a stable isomorphism
if and only if M is invertible. Thus if M is invertible on all finite subgroups then ev is a stable
isomorphism on all finite subgroups, hence a stable isomorphism over kG, by Lemma 5.2. �

A similar proof works for the next result.

Proposition 6.6. If M is an invertible kG-module then θM : M ⊗M∗ → Endk(M) is a stable
isomorphism, as is the natural map M →M∗∗.

Here is another result from the theory of endotrivial modules for finite groups which extends
to invertible modules for groups of type Φk.

Corollary 6.7. Let M be a kG-module. For any n ∈ Z, if M ⊗N ' k then ΩnM ⊗Ω−nN ' k.

Proof. The assertion holds for all finite subgroups of G (see [11, Section 2]) and therefore for G
too. �

Lemma 6.8. Let H be a subgroup of G and let N be a normal subgroup such that any element
of finite order has order a unit in k and the quotient group G/N is of type Φk. Restriction and
inflation induce group homomorphisms

ResGH : T (G)→ T (H) and Inf
G/N
G : T (G/N)→ T (G),
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which commute with Ω. More generally, there is a pullback map h∗ : T (K) → T (J) for any
homomorphism h : J → K such that any element of finite order in the kernel has order a unit
in k. There is also a base change map f∗ : Tk(G)→ T`(G) for any f : k → ` for suitable `.

Proof. This follows immediately from the fact that the functors commute with tensor product

in M̂od. However, given the way we have defined functors on M̂od in Section 4, the latter is not

quite obvious. In the case of Inf, for example, we need to check that Inf
G/N
G M ⊗ Inf

G/N
G N '

Inf
G/N
G (M ⊗N). By taking Gorenstein approximations (Definition 3.11), we can assume that M

and N are Gorenstein projective, hence lattices; the same will be true of their inflations. By the

discussion at the beginning of Section 4, both Inf
G/N
G (−) and −⊗k − applied to these modules

have their usual meaning, and therefore commute. �

Lemma 6.9. If G and N are as above and the quotient map π : G→ G/N is split then Inf
G/N
G

is split.

Proof. Let σ be a splitting homomorphism, so πσ = Id. Then σ∗ Inf
G/N
G = σ∗π∗ = Id. �

Another source of invertible modules comes from the observation that any kG-module that is
a free k-module of rank 1 is invertible.

Proposition 6.10. Suppose that G is finite and k is a complete discrete valuation ring with
residue class field k. Then there is a short exact sequence

0→ Hom(G, torp(k
×))→ Tk(G)→ Tk(G)→ 0,

which is split. Here torp denotes the p-torsion subgroup and we are identifying Hom(G, k×) with
the rank 1 lattices.

Proof. By Theorem 6.2, we may take the modules to be finite rank lattices. Surjectivity at Tk(G)
is proved in [26, 1.3] in the case when k has characteristic 0. When it has characteristic p then
k lifts to a subring of k (Cohen’s Structure Theorem, see e.g. [27, 28.3]), so modules lift too.

IfM is a kG-lattice such that k⊗kM ∼= k⊕(proj) as kG-modules, then the projective summand
lifts to a projective summand of M . The complement is of rank 1 and thus corresponds to an
element of Hom(G, torp(k

×)); this proves exactness in the middle. For injectivity on the left,
note that if two rank 1 lattices are isomorphic modulo projectives then they are isomorphic, by
the Krull-Schmidt theorem, unless p does not divide |G|, in which case the proposition is trivial.

For the splitting, first note that if k has characteristic p then torp(k
×) = 1 and there is nothing

to prove, so we may assume that k has characteristic 0. Let ` ≤ k be a coefficient ring (Cohen’s
Structure Theorem again, [27, 29.3]), so ` is a complete local ring with maximal ideal generated
by p, and also ` ∼= k. Thus ` contains no pth roots of unity and the first part of the proposition
tells us that Tk(G) ∼= T`(G) ∼= T`(G). The base change map T`(G)→ Tk(G) of Lemma 6.8 now
completes the splitting. �

7. Groups Acting on Trees

In this section, we describe Tk(G) for groups G of type Φk which act on trees, in other words
for the fundamental group of a graph of groups. We follow [20] for the notation and conventions.
As special cases, we will obtain Tk(G) for amalgamated free products and HNN extensions of
groups of type Φk.

Suppose that a group G acts on a tree T with vertex set V T and edge set ET . If all the vertex
stabilisers are of type Φk (hence the edge stabilisers too) and there exists a common bound on
their finistic dimensions, then G is of type Φk by Proposition 2.5. In particular, this applies
when the stabilisers are finite.
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We continue to impose our assumptions on k from the beginning of Section 2 , and all groups
will be of type Φk except where indicated (and of course, this does not apply to groups such as

Tk(G)). We will omit the subscript k on T and Φ and write ÂutG(k) for ÂutkG(k).
The edges of T are oriented, so each edge e ∈ ET has an initial vertex ι(e) and a terminal

vertex τ(e). We pick a fundamental G-transversal Y of T and a maximal subtree Y0 of Y . (So
Y is a fundamental domain for the action of G on T and V Y = V Y0; an edge in Y0 has both
vertices in Y0, but an edge in Y r Y0 has only its initial vertex in Y0.) For each vertex v ∈ V T ,
let v̄ be the unique vertex of Y0 in the same G-orbit as v and choose tv ∈ G such that tvv̄ = v,
with tv = 1 if v̄ = v.

Let Gv and Ge denote the stabilisers in G of v ∈ V T and e ∈ ET , so Ge = Gi(e) ∩Gt(e). For

each edge v ∈ V T there is an isomorphism fv : Gv → Gv̄, given by g 7→ t−1
v gtv.

Suppose that for each v ∈ V Y , we are given a Gorenstein projective kGv-module Mv, and for
each edge e ∈ EY a stable kGe-isomorphism (which we can assume to be a genuine morphism,
by Lemma 3.12)

ϕe : Mι(e)↓
Gι(e)
Ge

−→
(
tτ(e) ⊗Mτ(e)

)
↓Gτ(e)Ge

,

where tτ(e) ⊗ M
τ(e)

is considered as a kGτ(e)-module in the same way as it would be in the

restriction of kG ⊗kG
τ(e)

MkG
τ(e)

, i.e. g(tτ(e) ⊗ m) = tτ(e) ⊗ (t−1
τ(e)gtτ(e))m for g ∈ Gτ(e). Thus

tτ(e) ⊗Mτ(e)
' f∗τ(e)Mτ(e)

. We refer to this data as (M,ϕ).

Now, for v ∈ V T , set Mv = tv⊗Mv̄, a kGv-module, and for e ∈ ET , Me = Mι(e)↓
Gι(e)
Ge

. Define

ϕe : Me −→Mτ(e)↓
Gτ(e)
Ge

by ϕe(tι(e) ⊗m) = tτ(e)t
−1

τ(e)
ϕe(m).

Set

C0 =
⊕
v∈V T

Mv and C1 =
⊕
e∈ET

Me,

equipped with the canonical G-action, so that

C0
∼=
⊕
v∈V Y

Mv↑GGv and C1
∼=
⊕
e∈EY

Me↑GGe .

Define a kG-homomorphism d : C1 → C0 as follows: for e ∈ ET and m ∈ Me = Mi(e)↓
Gi(e)
Ge

,
let dm be the difference of m ∈ Mι(e) and ϕe(m). Let C(M,ϕ) be the two-term complex

C1
d // C0 and define C(M,ϕ) to be its cone.

Note that this description of d requires us to work with modules and genuine homomorphisms.
A construction entirely in the stable category would proceed by defining maps Me → C0↓GGe for
e ∈ EY and then inducing.

This construction gives canonical maps αv : Mv −→ C(M,ϕ)↓GGv .

Lemma 7.1. The following hold.

(1) For each v ∈ V T , the map αv is a stable kGv-isomorphism.

(2) For each e ∈ ET , we have
(
ατ(e)↓

Gτ(e)
Ge

)−1(
αι(e)↓

Gι(e)
Ge

)
= ϕe in M̂od(kGe).

Proof. For (1) it suffices to show that the composite map d̄ : C1
d−→ C0 −→ C0/Mw is a kGw-

isomorphism for all w ∈ V Y . We shall construct an inverse s. Write (C0/Mw)↓GGw =

∞⊕
i=1

Ci0,

where Ci0 is the sum of all the Mv for v at a distance i from w. We shall define s inductively on

the Ci0 as follows. Suppose that we have already defined s on

j⊕
i=1

Ci0 for some j ≥ 0. Given a



THE STABLE CATEGORY AND INVERTIBLE MODULES FOR INFINITE GROUPS 15

vertex v at a distance j+1 from w, there is a unique edge e with one vertex v and the other at a
distance j from w. Let m ∈Mv: if v = ι(e) then define s(m) to be the sum of m ∈Me = Mv↓GvGe
and sϕe(m); if v = τ(e) define s(m) to be the sum of −ϕ−1

e (m) ∈ Me = Mι(e) ↓
Gι(e)
Ge

and

s(ϕ−1
e (m)). Here ϕ−1

e denotes a genuine homomorphism that is a stable inverse to ϕe.
It is straightforward to check that s is a kGw-homomorphism that is a stable inverse to d̄.
For (2), note that, by construction, we have αi(e)(m) − αt(e)(ϕe(m)) ∈ im(d) for all m ∈ Mv

and all v ∈ V T . The equality follows. �

Suppose that each Mv is stably trivial. Let k̃ be the Gorenstein projective approximation of
the trivial kG-module k and choose stable isomorphisms θv : k̃↓GGv −→ Mv for all v ∈ V Y . We

extend the definition of these maps to all of V T by setting θv = tvθv̄t
−1
v for v ∈ V T .

Lemma 7.2. The assignment ϕe 7→ ϕ′e = θ−1
τ(e)ϕeθι(e) identifies the stable classes of isomophisms

Mι(e)↓
Gι(e)
Ge

→Mτ(e)↓
Gτ(e)
Ge

with the elements of ÂutGe(k).

Proof. This is immediate from the definition of the maps θv and ϕe. �

As a direct consequence of Lemmas 7.1 and 7.2, we obtain the following.

Corollary 7.3. For every edge e ∈ ET , ϕ′e = θ−1
t(e)α

−1
t(e)αi(e)θi(e) in M̂od(kGe).

Now take Mv = k̃↓GGv and θv to be the identity map. Define

(1) ∂ :
∏
e∈EY

ÂutGe(k) −→ T (G) by ∂
(
(ϕ′e)e∈EY

)
= C(k, ϕ),

where C(k, ϕ) is the cone defined above. This yields an invertible module by Lemma 7.1 and
Theorem 6.5, since every finite subgroup must fix some vertex, but we do not yet know that ∂
is a group homomorphism.

Theorem 7.4. Let G be a group acting on a tree with vertex set V T and edge set ET , and
assume that all the vertex stabilisers are groups of type Φk and that there exists a common bound
on their finistic dimensions. Then G is of type Φk and there is an exact sequence of abelian
groups

ÂutG(k)
Res−−→

∏
v∈V Y

ÂutGv(k)
Res−Resf−−−−−−−→

∏
e∈EY

ÂutGe(k)
∂−→ ...

...
∂−→ T (G)

Res−−→
∏
v∈V Y

T (Gv)
Res−Resf−−−−−−−→

∏
e∈EY

T (Ge).

Here, for M ∈ T (G), the T (Gv)-coordinate of Res(M) is M↓GGv ; for Mv ∈ T (Gv),

the T (Ge)-coordinate of Res(Mv) is

{
Mv↓GvGe if v = ι(e)
0 otherwise

and the T (Ge)-coordinate of Resf (Mv) is

{
f∗e (Mv)↓GvGe if v = τ(e)
0 otherwise.

We take the product of the maps on the coordinates, which is well defined since each edge
has only two vertex maps associate to it. The maps for the groups of stable automorphisms are
defined analogously and ∂ is the map defined in Equation (1).

Proof. First we check that ∂ is constant on the cosets of the image of Res−Resf . Given ψv ∈
ÂutGv(k) for v ∈ V Y , we extend it to v ∈ V T by ψv = t−1

v ψv̄tv. Then

(Res−Resf )(ψv) =
(
ψι(e)↓

Gι(e)
Ge

)(
ψτ(e)↓

Gτ(e)
Ge

)−1
.
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The maps ψv combine in the obvious way to yield a map of complexes

C(k̃↓GGv , ϕe) −→ C
(
k̃↓GGv , ϕe(ψι(e)↓

Gι(e)
Ge

)(ψτ(e)↓
Gτ(e)
Ge

)−1
)
,

in the sense that the diagram commutes in the stable module category. It is also a stable
isomorphism on the modules, and so the third objects in the triangles are isomorphic, as required.

The image of ∂ is contained in ker(Res) by Lemma 7.1, so we obtain a function

∂ : coker(Res−Resf ) −→ ker(Res).

We shall construct an inverse s as follows. Given M ∈ T (G) such that M↓GGv ' k for v ∈ V Y ,

set Mv = M↓GGv and choose isomorphisms θv : k̃↓GGv −→ Mv; extend these to all the vertices

V T by setting θv = sv ⊗ θv̄. Put ϕ′e =
(
θτ(e) ↓

Gτ(e)
Ge

)−1
(θι(e) ↓

Gι(e)
Ge

) for e ∈ EY and define

s(M) = (ϕ′e)e∈EY . As element of coker(Res−Resf ), s(M) does not depend on the choice of the

maps θv. This function s is actually a group homomorphism, because given θj ∈ ĤomGe(k̃,Mj)
for j = 1, 2, we can combine them to obtain a homomorphism

k // k ⊗ k θ1⊗θ2 // M1 ⊗M2 .

Moreover, σ∂ is the identity by Corollary 7.3, since we can choose θv = α−1
v (the maps θv in the

statement of Corollary 7.3 are now the identity maps).

Given M ∈ ker(Res) and θv as above, notice that C(k̃, Id) = k, since this is the simplicial

chain complex on the tree T and so M is the third module in the triangle for C(k̃, Id)⊗M . The
maps θv provide an isomorphism of complexes

C(k̃, Id)⊗M −→ C
(
k̃,
(
θτ(e)↓

Gτ(e)
Ge

)−1
(θι(e)↓

Gι(e)
Ge

)
)
,

so M = ∂σ(M) as required. It follows that ∂ is a group homomorphism and that the complex

in the statement of the theorem is exact at
∏
e∈EY ÂutGe(k) and T (G).

To check the exactness at
∏
v∈V Y T (Gv), observe that if (Mv)v∈V Y ∈ ker(Res−Resf ), then

for each edge e ∈ EY we have Mι(e)↓
Gι(e)
Ge

' f∗eMτ(e)
; let ϕe : Mι(e)↓

Gι(e)
Ge

−→ Mτ(e)↓
Gτ(e)
Ge

be a

stable isomorphism. Then (Mv)v∈V Y = Res
(
C(M,ϕ)

)
by Lemma 7.1.

Exactness at
∏
v∈V Y ÂutGv(k) is proved by an argument analogous to that used for cohomol-

ogy [8, VII, §9], and is left to the reader.
�

As special cases of Theorem 7.4, we obtain descriptions of T (G) for amalgamated free products
and HNN extensions of groups of type Φ.

Corollary 7.5. Let G = A∗CB be an amalgamated free product with A and B of type Φk. Then
G is of type Φk and there is an exact sequence of abelian groups

ÂutGk
Res−−→ ÂutAk ⊕ ÂutBk

Res−Resf−−−−−−−→ ÂutC(k)
∂−→ T (G)

Res−−→ T (A)⊕ T (B)
Res−Resf−−−−−−−→ T (C),

where the maps are those defined in Theorem 7.4.
If C is finite and k is a field or a complete discrete valuation ring then ∂ = 0.

Proof. The main part is a special case of Theorem 7.4. If C is finite then ÊndC(k) ∼= Ĥ0(C; k) ∼=
k/|C|k, so ÂutC(k) ∼= (k/|C|k)×. Given the restrictions on k, these units lift to units in k, so
they are certainly in the image of restriction from A, thus restriction is onto and ∂ = 0. �
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Example 7.6. Let G = SL(2,Z) ∼= C6∗C2C4. Then for k a field or a complete discrete valuation
ring the sequence

0 // T (G) // T (C6)⊕ T (C4) // T (C2) // 0

is exact. This follows directly from Corollary 7.5, except for exactness at T (C2), where it follows
from the fact that T (C2) is generated by Ωk, which is in the image of restriction from T (C4).

(1) Suppose that k is a field of characteristic 2. Then T (C2) ∼= 0, T (C4) ∼= Z/2 and T (C6) ∼=
Hom(C6, k

×). It follows that T (G) ∼= Z/6 if k contains a cube root of unity and T (G) ∼=
Z/2 otherwise.

(2) Suppose that k is a field of characteristic 3. Then T (C4) ∼= 0 ∼= T (C2) and T (C6) ∼=
Z/2⊕ Z/2 (using [28] for T (C6)). Thus T (G) ∼= Z/2× Z/2.

Here is an example of inflation, which shows that inflation can be neither surjective nor
injective.

Example 7.7. Let G = X ∗Z Y ∼= C4 ∗C2 C4 where X and Y are generated by x and y
respectively. Let N be the normal subgroup generated by xyxy−1, let Ḡ = G/N ∼= Q8, and
denote the quotient map by π. The subgroup N has no torsion, since any torsion subgroup of

G must be conjugate to a subgroup of either X or Y . Thus we do have an inflation map InfḠG.
Let k be a field of characteristic 2. Then T (C4) ∼= Z/2 and T (C2) ∼= 0, so by Corollary 7.5

T (G) ∼= Z/2 ⊕ Z/2. We claim that the image of InfḠG is the diagonal subgroup of T (G). The
diagonal subgroup is generated by Ωk, which is the image under inflation of the module of the
same name in T (Ḡ). The elements of T (G) are detected by restriction to the cyclic subgroups X

and Y , and ResGX InfḠG = (π �X)∗ResḠ
X̄

and similarly for Y . But ResḠ
X̄

and ResḠ
Ȳ

take the same
value, 0 or 1: this can be seen by an easy calculation, since T (Q8) is generated by Ωk together
with an explicit module of dimension 3 if k contains a cube root of unity [13, 6.3]. Both π �X
and π �Y are isomorphisms, so ResGX InfḠG = ResGY InfḠG.

The group T (Q8) has order at least 4 (it depends on k), so the inflation map is not injective.

We now turn to the case of HNN extensions. An HNN extension G = H∗f , for A ≤ H and
f : A ↪→ H, is the fundamental group of a graph of groups with one vertex H and one edge A,
where A is included into H at the initial vertex and is mapped by f at the terminal vertex. In
terms of generators and relations, G = 〈H, t | tat−1 = f(a) ∀ a ∈ A〉.
Corollary 7.8. Let G = H∗f be a HNN extension with H of type Φk. Then G is of type Φk

and there is an exact sequence of abelian groups

ÂutGk
Res−−→ ÂutHk

Res−Resf−−−−−−−→ ÂutA(k)
∂−→ T (G)

Res−−→ T (H)
Res−Resf−−−−−−−→ T (A),

where the maps are those defined in Theorem 7.4. If H is finite and k is a field or a complete
discrete valuation ring then ∂ is injective.

Proof. The main part is a special case of Theorem 7.4. If H is finite then Res : ÂutG(k) →
ÂutH(k) is onto by the same argument as in the previous proof. Thus Res−Resf = 0 and ∂ is
injective. �

Note that if f is the identity map on H then H∗f ∼= Z×H and Res−Resf = 0 = 0
In the next three examples, k is a field of characteristic p or a complete discrete valuation ring

with residue field of characteristic p and A is a finite group of order divisible by p.

Example 7.9. Consider G = Z × A as an HNN extension and apply Corollary 7.8. Since f

is the identity, we have Res−Resf = 0, so there is a short exact sequence 0 −→ (k/|A|k)×
∂−→

T (G)
Res−−→ T (A) −→ 0; by Lemma 6.9 it is split by inflation. Thus T (G) is generated by modules

inflated from A and the rank 1 lattices.
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This shows that T (G) can be very big: we cannot bound its cardinality independently of k.

We want to calculate ÂutG(k) for use in the next example. This can be done by noting that

ÊndG(k) ∼= Ĥ0(G; k) (the cup product agrees with the composition product [8, VI.6, X.ex.6])

and using the spectral sequence in Tate-Farrell cohomology Hp(Z; Ĥq(A; k))⇒ Ĥp+q(G; k) from

[8, X.4 ex.5]. The result is that ÊndG(k) ∼= k[x]/(x2) as a k-algebra if p = 0 in k, and ÊndG(k) ∼=
k/|A|k otherwise. Thus ÂutG(k) ∼= k× ⊕ k as a group if p = 0 in k and ÂutG(k) ∼= (k/|A|k)×

otherwise. We can write this in a uniform fashion as ÂutG(k) ∼= (k/|A|k)× ⊕ torp(k).

Example 7.10. Consider F = Z × G = Z × Z × A. A similar calculation to the previous one

shows that T (F ) ∼= ÂutG(k) ⊕ T (G). Combining this with our previous calculations we obtain
T (F ) ∼= Hom(Z× Z, (k/|A|k)×)⊕ torp(k)⊕ T (A).

The rank 1 lattices still appear, as Hom(Z × Z, (k/|A|k)×) and part of T (A), but with iden-
tifications. The image of inflation from A accounts for the T (A) summand. The modules
corresponding to the torp(k) summand are more mysterious. They do not appear to be stably
isomorphic to a lattice of finite rank. They also only occur when p = 0 in k, so they cannot lift
to characteristic 0, in contrast to the case for finite groups in Proposition 6.10.

Example 7.11. Consider E = Z × (A ∗ A). From Corollary 7.5 we know that T (A ∗ A) ∼=
T (A)⊕T (A). By Example 5.6 we have ÂutA∗A(k) ∼= ÂutA(k)⊕ÂutA(k) ∼= (k/|A|k)×⊕(k/|A|k)×.

We obtain T (G) ∼= (k/|A|k)× ⊕ (k/|A|k)× ⊕ T (A) ⊕ T (A). Only one copy of (k/|A|k)× can
be explained by the rank 1 lattices; in some sense this is because we should think instead of

homomorphisms from Z to ÂutA∗A(k),
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