The Tate-Farrell cohomology of the Morava Stabilizer Group S_{p-1} with coefficients in E_{p-1}

Peter Symonds

ABSTRACT. We calculate the Tate-Farrell cohomology of the Morava stabilizer group S_{p-1} with coefficients in the moduli space E_{p-1} for odd primes p.

1. Introduction

We present a calculation motivated by homotopy theory, although our methods are algebraic and involve the Tate-Farrell cohomology of a profinite group with compact coefficients. As a reference to the background in homotopy theory we suggest [4, 5]. For the Tate-Farrell cohomology of profinite groups with coefficients in compact module we refer to [15], although most of the results are analogues of one for discrete groups, for which see [2].

Let p be an odd prime and $n \in \mathbb{N}$ and let R be the ring of integers of the unramified extension of $\hat{\mathbb{Q}}_p$ of degree n, (so R is isomorphic to the Witt vectors $W_{\mathbb{F}_{p^n}}$): the residue class field is $k \cong \mathbb{F}_{p^n}$. Let χ be the Frobenius automorphism of R and $\operatorname{Gal} = \langle \chi \rangle$ the Galois group. Let S_n denote the (full) nth Morava stabilizer group: this is the group of units in the R-algebra M generated by S subject to the relations $S^n = p$ and $rS = S\chi(r)$ for $r \in R$. The Galois group Gal acts on S_n simply by $\chi(rS^i) = \chi(r)S^i$, or equivalently by conjugation by S.

It is known that S_n is virtually a pro-p group of virtual cohomological dimension n^2 and type FP_{∞} over $\hat{\mathbb{Z}}_p$.

If Γ_n denotes the commutative one-dimensional *p*-typical formal group law with *p*-series x^{p^n} , then S_n is isomorphic to the group of automorphisms of Γ_n over \mathbb{F}_p . It therefore acts on the ring of functions on the Lubin-Tate moduli space of \star -isomorphism classes of lifts of Γ_n , which is $E_{n,0} = R[[u_1, \ldots, u_{n-1}]]$, a profinite RS_n -module. We denote the category of profinite RG-modules by $\mathcal{C}_R(S_n)$ (and similarly with R replaced by $\hat{\mathbb{Z}}_p$). There is also an action of S_n on a graded version $E_{n,*} = E_{n,0}[u^{\pm 1}]$. This is graded by the power of u, normalized so that u has degree -2 (called the internal degree).

This combines with the action of Gal on $E_{n,*}$ via its action on the coefficients to give an action of the semi-direct product $S_n \rtimes \text{Gal}$ on $E_{n,*}$, and so each $E_{n,r} \in \mathcal{C}_{\hat{\mathbb{Z}}_n}(S_n \rtimes \text{Gal})$.

 $\bigcirc 00000$ (copyright holder)

²⁰⁰⁰ Mathematics Subject Classification. Primary 55Q52; Secondary 20J06.

PETER SYMONDS

We would like to calculate the ring $H^*(S_n, E_{n,*})^{\text{Gal}}$, by which we mean the sum $\bigoplus_{r,s} H^r(S_n \rtimes \text{Gal}, E_{n,s})$, since this is the initial term of a spectral sequence which converges to $\pi_* L_{K(n)}$, the homotopy groups of the localization of the sphere spectrum at the *n*th Morava K-theory (all at the prime *p*). Notice that, since Gal has order coprime to *p*, $H^*(S_n, E_{n,*})^{\text{Gal}}$ is actually isomorphic to the invariants of $H^*(S_n, E_{n,*})$ under the action of Gal. What we will actually do is calculate the Tate-Farrell cohomology in the case n = p - 1: this is equal to the ordinary cohomology in degrees greater than n^2 .

THEOREM 1.1. For odd p and n = p - 1

$$\hat{H}^*(S_n, E_{n,*})^{\text{Gal}} = \hat{H}^*(G, E_{n,*})^{\text{Gal}} \otimes \Lambda(x_0, \dots, x_{n-1})$$
$$= \hat{H}^*(S_n, \hat{\mathbb{Z}}_p) \otimes \Lambda(\alpha) \otimes \mathbb{F}_p[\Delta^{\pm 1}]$$
$$= \mathbb{F}_p[\Delta^{\pm 1}, \beta^{\pm 1}] \otimes \Lambda(\alpha, x_0, \dots, x_{n-1}).$$

Here G is a finite group that will be defined later, and the generators will be defined in the course of the calculation.

REMARK 1.2. It would be natural to regard $E_{n,*}$ as $\bigoplus_s E_{n,s}$, the sum in $\mathcal{C}_R(S_n)$, but $H^r(S_n, \bigoplus_s E_{n,s}) \cong \prod_s H^r(S_n, E_{n,s})$. Since only the homogeneous parts appear in the spectral sequence, the difference is immaterial, but we conform to the conventional usage.

We will need the following corollary of [15] 7.3 and the remark following it. It is what we would expect from the theory for discrete groups in [2]. Similar results for profinite groups but with discrete coefficients also appear in [13] and [12].

THEOREM 1.3. Let G be a profinite group of finite virtual cohomological dimension over $\hat{\mathbb{Z}}_p$. Suppose that G has no subgroup isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p$ and only a finite number of conjugacy classes of subgroups isomorphic to \mathbb{Z}/p , which we denote by $\mathcal{S}(p)$. Let M be a module in $\mathcal{C}_{\hat{\mathbb{Z}}_p}(G)$. Then the Tate-Farrell cohomology satisfies

$$\hat{H}^*(G,M) \cong \bigoplus_{P \in \mathcal{S}(p)} \hat{H}^*(N_G(P),M).$$

2. Trivial Coefficients

From now on n = p - 1 and we want to define a certain subgroup G of S_n of order pn^2 . This is done in [7], but we need to be precise about some of the details so we give the construction here. $M_{\hat{\mathbb{Q}}_p} = \hat{\mathbb{Q}}_p \otimes_{\hat{\mathbb{Z}}_p} M$ is a division algebra with center $\hat{\mathbb{Q}}_p$. It has a valuation ν such that $\nu(S) = \frac{1}{n}$, and S_n is the set of elements of valuation 0.

The general theory of division algebras tells us that the field $\hat{\mathbb{Q}}_{p}(\omega; \omega^{p} = 1)$ can be embedded in $M_{\hat{\mathbb{Q}}_{p}}$ and the image is self-centralizing ([11] 28.10, 31.10). Furthermore, by the Skolem-Noether Theorem ([11] 7.21), any two embeddings differ only by conjugation in $M_{\hat{\mathbb{Q}}_{p}}$.

In fact we can find a *p*th root of unity ω in $\mathbb{Z}_p[S] \subset M$ as follows: 1 + S is a *p*th root of unity modulo *p* and we can lift it by Hensel's Lemma ([**14**] II Prop. 7). For convenience we will regard $\hat{\mathbb{Q}}_p(\omega) = \hat{\mathbb{Q}}_p(S)$. It is easy to see that the only elements of $M_{\hat{\mathbb{Q}}_p}$ invariant under conjugation by S are in $\hat{\mathbb{Q}}_p(S)$, so $\hat{\mathbb{Q}}_p(\omega)$ is self centralizing.

If $\phi : \hat{\mathbb{Q}}_p(\omega) \to M_{\hat{\mathbb{Q}}_p}$ is another embedding then, by the discussion above, there is a $u \in M_{\hat{\mathbb{Q}}_p}$ such that $u\phi(x)u^{-1} = x$ for $x \in \hat{\mathbb{Q}}_p(\omega)$. But S^iU will serve as well as u, since S is central in $\hat{\mathbb{Q}}_p(\omega)$, and we can choose i to give this element valuation 0. Thus any two embeddings of $\hat{\mathbb{Z}}_p[\omega]$ in M are conjugate by an element of S_n and so any two elements of S_n of order p are conjugate in S_n .

Now let $e \in \mathbb{Z}$ be a generator of $(\mathbb{Z}/p)^*$, so $\hat{\mathbb{Z}}_p[\omega^e] = \hat{\mathbb{Z}}_p[\omega] \subset M$. The Galois automorphism $\omega \mapsto \omega^e$ must be realized by conjugation by some $v \in S_n$, as has just been shown, i.e. $v^{-1}\omega v = \omega^e$. Now v^n centralizes $\hat{\mathbb{Z}}_p[\omega]$, so $v^n \in \hat{\mathbb{Z}}_p[\omega]$. Clearly v^n is invariant under conjugation by v, so $v^n \in \hat{\mathbb{Z}}_p$.

Let $e' \in \hat{\mathbb{Z}}_p$ be an *n*th root of unity such that $e' \equiv v^n \pmod{p}$. Then $e'v^{-n} \equiv 1 \pmod{p}$ so has an *n*th root in $\hat{\mathbb{Z}}_p$ (constructed from the binomial power series). Let $v' = v(e'v^{-n})^{\frac{1}{n}}$, so $v'^{-1}\omega v' = \omega^e$ and also $v'^n = e'$, so $v'^{n^2} = 1$. In fact v' has order n^2 , since if it had order $\frac{n^2}{r}$ then $v'^{\frac{n}{r}}$ would be in $\hat{\mathbb{Z}}_p$, contradicting $v'^{-1}\omega v' = \omega^e$.

But *R* itself contains the n^2 th roots of unity so, by the Skolem-Noether Theorem again, there is an $x \in M_{\hat{\mathbb{Q}}_p}$ such that $xv'x^{-1} \in R$. Let $a = x\omega x^{-1}$ and $b = xv'x^{-1}$ and define the group $G = \langle a, b \rangle \cong \mathbb{Z}/p \rtimes \mathbb{Z}/n^2 \leq S_n$.

When we want to think of b as an element of R rather than G we will denote it by η .

The reason for the last conjugation in the definition of G is to ensure that our formulas are consistent with those of $[\mathbf{8}, \mathbf{9}]$.

Some more work with division algebras will show that any subgroup of S_n that is isomorphic to G is, in fact, conjugate to G in S_n , but we refer the reader to [7].

The significance of G is that it is a maximal finite subgroup of S_n and, up to conjugacy, the only one of order divisible by p. Again we refer the reader to [7].

LEMMA 2.1. ([8]) $e' \equiv e \pmod{p}$.

PROOF. Working in S_n modulo S^2 we have a = 1 + uS for some $u \not\equiv 0 \pmod{S}$. Now

$$1 + euS = a^e = b^{-1}ab = 1 + u\eta^{-1}S\eta = 1 + u\eta^n S = 1 + ue'S.$$

As mentioned above, $\hat{\mathbb{Q}}_p(a)$ is self-centralizing in $M_{\hat{\mathbb{Q}}_p}$, so $C = C_{S_n}(a)$ is equal to the units in $\hat{\mathbb{Z}}_p[a]$. In additive notation these are of the form $\hat{\mathbb{Z}}_p^n \times \mathbb{Z}/p \times \mathbb{Z}/n$. This is because the *p*-torsion is known from the construction and the *p'*-torsion corresponds to the units in the residue class field \mathbb{F}_p . To see that the free part has rank *n*, let U_1 denote the units congruent to 1 modulo *p*: then U_1 is isomorphic to $p\hat{\mathbb{Z}}_p[a]$ under the inverse exponential and logarithm power series ([**3**] 54.2). U_1 is of finite index in *C*, so *C* also has free rank *n*.

Notice that these maps respect the action of b, so $U_1 \cong \hat{\mathbb{Z}}_p[a]$. Also, since $\langle b \rangle$ is abelian of order coprime to p, any $\hat{\mathbb{Z}}_p \langle b \rangle$ -lattice is a sum of eigenspaces for b, and hence any sublattice of finite index is isomorphic to the original. In particular $U_1 \cong C/(\text{torsion})$. Thus C/(torsion) is isomorphic to $\hat{\mathbb{Z}}_p[a]$ as a $\hat{\mathbb{Z}}_p \langle b \rangle$ -lattice, so is a sum of rank 1 lattices; one for each *n*th root of unity on which b acts as multiplication by that root of unity. Finally, since $\hat{\mathbb{Z}}_p[a]$ is free as a $\hat{\mathbb{Z}}_p \langle b \rangle$ -module, the map $C \to C/(\text{torsion})$ is split over $\langle b \rangle$. We have shown:

PETER SYMONDS

LEMMA 2.2. As a $\hat{\mathbb{Z}}_p \langle b \rangle$ -module, $C \cong \hat{\mathbb{Z}}_p \langle b \rangle \oplus \langle a \rangle \oplus \mathbb{Z}/p$.

Now $N = N_{S_n}(\langle a \rangle) = \langle C, b \rangle \cong (\hat{\mathbb{Z}}_p[a] \times \langle a \rangle) \rtimes \langle b \rangle.$

Consider $N_{S_n \rtimes \text{Gal}}(G)/N_{S_n}(G)$. Every conjugate of G in $S_n \rtimes \text{Gal}$ is in S_n so, as mentioned above, is conjugate to G in S_n . It follows that $N_{S_n \rtimes \text{Gal}}(G)/N_{S_n}(G) \cong$ Gal. Choose $c \in N_{S_n \rtimes \text{Gal}}(G)$ to have image $\chi \in \text{Gal}$: we may also arrange for c to act trivially on $\langle a \rangle$ and for $\langle c \rangle$ to have no pro-p part.

Finally, for similar reasons, $N' = N_{S_n \rtimes \text{Gal}}(\langle a \rangle) = \langle N, c \rangle$.

First we calculate the Tate-Farrell cohomology with trivial coefficients. We use Λ to denote an exterior algebra over \mathbb{F}_p .

PROPOSITION 2.3. For p odd and n = p - 1:

$$\hat{H}^*(S_n, \hat{\mathbb{Z}}_p) = \hat{H}^*(G, \hat{\mathbb{Z}}_p) \otimes \Lambda(x_0, \dots, x_{n-1}) = \mathbb{F}_p[\beta^{\pm 1}] \otimes \Lambda(x_0, \dots, x_{n-1}),$$
$$\hat{H}^*(S_n, \mathbb{F}_p) = \hat{H}^*(G, \mathbb{F}_p) \otimes \Lambda(x_0, \dots, x_{n-1}) = \mathbb{F}_p[\beta^{\pm 1}] \otimes \Lambda(\alpha, x_0, \dots, x_{n-1}),$$

where $|\beta| = 2n$, $|x_i| = 1 - 2i$ and $|\alpha| = -1$.

PROOF. By Theorem 1.3 we find that $\hat{H}^*(S_n, \hat{\mathbb{Z}}_p) \cong \hat{H}^*(N, \hat{\mathbb{Z}}_p)$. Notice that $\hat{H}^*(N, \hat{\mathbb{Z}}_p) \cong \hat{H}^*(\hat{\mathbb{Z}}_p^n \times \langle a \rangle, \hat{\mathbb{Z}}_p)^{\langle b \rangle}$, since b has order coprime to p.

By the Künneth Theorem in Tate-Farrell cohomology ([2] X 3 ex. 4), we have $\hat{H}^*(C, \hat{\mathbb{Z}}_p) \cong \hat{H}^*(\langle a \rangle, \hat{\mathbb{Z}}_p) \otimes H^*(\hat{\mathbb{Z}}_p^n, \mathbb{F}_p).$

It is well known that $\hat{H}^*(\langle a \rangle, \mathbb{Z}_p) = \mathbb{F}_p[\zeta^{\pm 1}]$, where $|\zeta| = 2$. To find the action of b on ζ use dimension shifting to see that $H^2(\langle a \rangle, R) \cong H^1(\langle a \rangle, k) \cong \text{Hom}(\langle a \rangle, k)$. Then b acts on the latter by sending f to $(x \mapsto bf(b^{-1}xb))$, so $b(\zeta) = e\zeta$.

Now a basis y_0, \ldots, y_{n-1} of $H^1(\hat{\mathbb{Z}}_p^n, \mathbb{F}_p)$ can be chosen so that $b(y_i) = e^i y_i$. We finish by calculating the invariants under b using the last part of Lemma 4.1 and setting $x_i = \zeta^{-i} \otimes y_i$.

The calculation for \mathbb{F}_p coefficients is almost identical.

REMARK 2.4. Because c centralizes C we have $\hat{H}^*(N', \hat{\mathbb{Z}}_p) \cong \hat{H}^*(N, \hat{\mathbb{Z}}_p)$ and hence $\hat{H}^*(S_n \rtimes \text{Gal}, \hat{\mathbb{Z}}_p) \cong \hat{H}^*(S_n, \hat{\mathbb{Z}}_p)$. Since the action of Gal on S_n is via conjugation by S, which is not inner in S_n , this is not immediately obvious.

3. Coefficients in E_n

Next we calculate $\hat{H}^*(\langle a \rangle, E_{n,*})$ following the method of Nave [8, 9], which in turn is based on unpublished work of Hopkins and Miller. This is also treated in detail for the prime 3 in [6].

First we need a change of basis.

LEMMA 3.1. ([8, 9]) There are elements $z, z_1, \ldots, z_{n-1} \in E_{n,0}$ such that, where \mathfrak{m} denotes the ideal $(p, u_1, \ldots, u_{n-1})$ in $E_{n,0}$:

- (1) $z \equiv cu \mod (p, \mathfrak{m}^2)$ for some c a unit in R,
- (2) $z_i \equiv c_i u u_i \mod (p, u_1, \dots, u_{i-1}, \mathfrak{m}^2)$ for some c_i a unit in R.
- (3) $(1 + a + \dots + a^{p-1})z = 0$,
- (4) $b(z) = \eta z$,

(5) $(a-1)z = z_{n-1}$ and $(a-1)z_{i+1} = z_i$ for $1 \le i < n-1$.

It follows from (1) and (2) that $E_{n,*} = R[[z^{-1}z_1, \dots, z^{-1}z_{n-1}]][z^{\pm 1}].$

Let V be the R-submodule of $E_{n,-2}$ spanned by $\{z, z_1, \ldots, z_{n-1}\}$. It follows from (3),(4) and (5) that V is an RG-submodule. Let $\delta = \prod_{i=0}^{p-1} a^i(z)$: then $a(\delta) = \delta$ and $b(\delta) = \eta^p \delta = e\eta \delta$.

4

Consider the symmetric algebra $S[V] \subset E_{n,*}$. We claim that, as RG-modules,

(†)
$$R[V]_r = \begin{cases} 0 & r \text{ odd,} \\ \delta^{-r'}R \oplus (\text{proj}) & r = 2pr' \le 0, \\ \delta^{-r'}V \oplus (\text{proj}) & r = 2(pr'-1) \le 0, \\ (\text{proj}) & \text{otherwise.} \end{cases}$$

and

$$R[V]_{r-2p} = \delta R[V]_r \oplus (\text{proj}) \text{ for } r < 0.$$

Here (proj) indicates a projective summand. We will write this in the condensed form $R[V] = B \oplus (\text{proj})$, where $B = \bigoplus_i \delta^i(R \oplus V)$.

Recall that if G is a finite group of order not divisible by p^2 and $M \in C_R(G)$ is projective in C_R then the isomorphism class of M is uniquely determined by its reduction modulo $p, k \otimes_R M$. This is true for a cyclic group of order p by the classification of $R\mathbb{Z}/p$ -lattices, (see [10], [3] 34.31), and this classification extends to $C_R(\mathbb{Z}/p)$. The general case follows by a transfer argument.

Thus we only have to check the claim over kG. But it is true over $k\langle a \rangle$ from the calculation of the symmetric algebra by Almkvist and Fossum [1]. The general case follows because both $\delta^{-r'}R$ and $\delta^{-r'}V$ are defined over G, and the quotients by them must still be projective over G since this depends only on the restriction to the Sylow *p*-subgroup. Being projective they force the extension to split, and our claim is proved.

If we invert δ we obtain a dense subset $R[V][\delta^{-1}] \subset E_{n,*}$. As an *RG*-module this still has the same form $B \oplus (\text{proj})$, by the second identity in \dagger . In fact this form is preserved by completion:

PROPOSITION 3.2. As a sum of compact modules for RG, $E_{n,*} = B \oplus (\text{proj})$.

PROOF. Let $(z^{-1}z_1, \ldots, z^{-1}z_{n-1})$ denote the ideal generated (topologically) by the given elements in $E_{n,0}$. It is easy to check that

$$E_{n,-2r} = R[V]_{-2r} \oplus (z^{-1}z_1, \dots, z^{-1}z_{n-1})^{r+1}E_{n,-2r}, \quad r > 0$$

and also

$$R[V]_{-2r} = B_{-2r} \oplus P_{-2r}, \quad r > 0$$

for some projective P_{-2r} . Thus, for r + pt > 0,

$$E_{n,-2r} = \delta^{t} E_{n,-2(r+pt)}$$

= $\delta^{t} R[V]_{-2(r+pt)} \oplus \delta^{t} (z^{-1}z_{1}, \dots, z^{-1}z_{n-1})^{r+1} E_{n,-2(r+pt)}$
= $B_{-2r} \oplus P_{-2(r+pt)} \oplus (z^{-1}z_{1}, \dots, z^{-1}z_{n-1})^{r+1} E_{n,-2r}.$

Now $R[V][\delta^{-1}]_{-2r} = B_{-2r} \oplus \varinjlim_{P_{-2}(r+pt)}$ and $E_{n,2r} = B_{-2r} \oplus \varinjlim_{P_{-2}(r+pt)}$ as $t \to \infty$. As a consequence, if $\varinjlim_{P_{-2}(r+pt)} = \oplus_i Q_i$, as a sum of indecomposable projective RG-modules then $E_{n,2r} = B_{2r} \oplus \prod_i Q_i$.

We say that $x \in \hat{H}^r(-, E_{n,s})$ has bidegree |x| = (r, s). We will also write $\hat{H}^*(G, E_{n,*})^{\text{Gal}}$ for $\hat{H}^*(\langle G, c \rangle, E_{n,*}) \cong \hat{H}^*(G, E_{n,*})^{\langle c \rangle}$. This is not so strange since $\hat{H}^*(S_n, E_{n,*})^{\text{Gal}} \cong \hat{H}^*(\langle S_n, c \rangle, E_{n,*}) \cong \hat{H}^*(S_n, E_{n,*})^{\langle c \rangle}$.

COROLLARY 3.3. ([8]) The Tate cohomology is given by

$$H^*(\langle a \rangle, E_{n,*}) = k[\delta^{\pm 1}, \zeta^{\pm 1}] \otimes \Lambda(\nu),$$

where $|\delta| = (0, -2p), |\zeta| = (2, 0), |\alpha| = (1, -2)$ and b acts by

$$b(\delta) = e\eta\delta, \quad b(\zeta) = e\zeta, \quad b(\nu) = e\eta\nu.$$

As a consequence

$$H^*(G, E_{n,*}) = k[\Delta^{\pm 1}, \beta^{\pm 1}] \otimes \Lambda(\alpha),$$
$$\hat{H}^*(G, E_{n,*})^{\operatorname{Gal}} = \mathbb{F}_p[\Delta^{\pm 1}, \beta^{\pm 1}] \otimes \Lambda(\alpha).$$

where $|\Delta| = (0, 2pn^2)$, $|\beta| = (2, 2pn)$ and $|\alpha| = (1, 2n)$.

PROOF. The first calculation is an easy consequence of 3.2 (we identify δ with its image in $\hat{H}^0(\langle a \rangle, E_{n,-2p})$).

$$H^{*}(\langle a \rangle, E_{n,*}) = H^{*}(\langle a \rangle, B)$$

= $\bigoplus_{r \in \mathbb{Z}} \hat{H}^{*}(\langle a \rangle, \delta^{r}(R \oplus V))$
= $\bigoplus_{r \in \mathbb{Z}} \delta^{r} k[\zeta^{\pm 1}] \otimes \Lambda(\nu)$ (a well-known calculation)
= $k[\delta^{\pm 1}, \zeta^{\pm 1}] \otimes \Lambda(\nu).$

The action of b on δ is from the definition of δ and e and that on ζ was found in the proof of 2.3.

For the action on $\nu \in H^1(\langle a \rangle, V)$ it is easy to verify that the quotient map $V \to V/\operatorname{rad}(V) \cong kz$ induces an isomorphism on H^1 , so $H^1(\langle a \rangle, V) \cong zH^1(\langle a \rangle, k)$ as a $\langle b \rangle$ -module, and this combines the action on z with that found in calculating the action on ζ in 2.3.

Thus $\hat{H}^*(G, E_{n,*}) \cong \hat{H}^*(\langle a \rangle, E_{n,*})^{\langle b \rangle}$ and the invariants can be calculated using lemma 4.1 below. They are generated by $\Delta = \delta^{-n^2}$, $\beta = \zeta \delta^{-n}$ and their inverses and $\alpha = \delta^{-1}\nu$.

Finally, notice that c acts on the R-module $\hat{H}^r(G, E_{n,s})$ according to the formula $c(\ell x) = \chi(\ell)c(x), \ \ell \in R, x \in \hat{H}^r(G, E_{n,s})$. This cohomology group is either kor 0. We claim that in the former case the invariants are isomorphic to \mathbb{F}_p .

To see this let $0 \neq x \in \hat{H}^r(G, E_{n,s})$ be a generator over k. Then $c(x) = \lambda x$ for some $\lambda \in k$ and $x = c^n(x) = \lambda^{\frac{p^n-1}{p-1}}x$, so $\lambda^{\frac{p^n-1}{p-1}} = 1$. It follows that $\lambda = \omega^{p-1}$ for some $\omega \in k$ and the fixed points under c are $\mathbb{F}_p \omega^{-1} x$.

Since the generators Δ, β, α can be replaced by any non-zero element of the $\hat{H}^r(G, E_{n,s})$ that they appear in, we may assume that they are all invariant under c and hence generate the invariants under c.

PROOF. of 1.1. As before we use Theorem 1.3 to see that $\hat{H}^*(S_n, E_{n,*})^{\text{Gal}} \cong \hat{H}^*(N', E_{n,*})$.

Recall that, for any short exact sequence $I \to J \to K$ of profinite groups of finite virtual cohomological dimension with K torsion-free, there is a spectral sequence $H^*(K, \hat{H}^*(I, M)) \Rightarrow \hat{H}^*(J, M)$ ([2] X 3 ex. 5).

Apply this to $C = \hat{\mathbb{Z}}_p^n \times \langle a \rangle$ to obtain $H^*(\hat{\mathbb{Z}}_p^n, \hat{H}^*(\langle a \rangle, E_{n,*})) \Rightarrow \hat{H}^*(C, E_{n,*})$. If we fix both r and s then $\hat{H}^*(\langle a \rangle, E_{n,r})$ is either k or 0 so $\hat{\mathbb{Z}}_p^n$, being a pro-p group, must act trivially. Thus the E_2 -term is isomorphic to $\hat{H}^*(\langle a \rangle, E_{n,*}) \otimes H^*(\hat{\mathbb{Z}}_p^n, \mathbb{F}_p) \cong$ $\hat{H}^*(\langle a \rangle, E_{n,*}) \otimes \Lambda(y_0, \ldots, y_{n-1}).$ We claim that this spectral sequences collapses, so that we have $\hat{H}^*(C, E_{n,*}) \cong \hat{H}^*(\langle a \rangle, E_{n,*}) \otimes \Lambda_{\mathbb{F}_p}(y_0, \ldots, y_{n-1})$. To see this notice that, from the proof of 3.3, the map $E_{n,r} \to E_{n,r}/\mathfrak{m}E_{n,r} \cong k$ induces an injection on $\hat{H}^*(\langle a \rangle, -)$. The corresponding spectral sequence with coefficients k collapses, by the Künneth Theorem, so ours must too.

Now compute the invariants under *b* using Lemma 4.1. The result is that $\hat{H}^*(\langle a \rangle, E_{n,*})^{\langle b \rangle} \otimes \Lambda_{\mathbb{F}_p}(x_0, \ldots, x_{n-1})$, where the x_i are as in 2.3.

Finally, c acts only on the first factor, so taking the invariants under c just replaces $\hat{H}^*(G, E_{n,*})$ by $\hat{H}^*(G, E_{n,*})^{\text{Gal}}$.

4. Invariants

The following lemma is elementary, but systematic use of it simplifies the invariant calculations above. For example in the proof of 3.3, first calculate the invariants $k[\delta^{\pm 1}, \zeta^{\pm 1}]^{\langle b \rangle} = (k[\delta^{\pm 1}] \otimes k[\zeta^{\pm 1}])^{\langle b \rangle}$ and then $(k[\delta^{\pm 1}, \zeta^{\pm 1}] \otimes \Lambda(\nu))^{\langle b \rangle}$.

LEMMA 4.1. Let H be a finite abelian group and let R be a commutative integral domain such that |H| is invertible in R and that contains a root of unity of order the exponent of H. Suppose that A and B are two RH-modules such that A is a graded-commutative R algebra and the action of H is compatible with this structure. H acts on $A \otimes_R B$ diagonally.

Let C be the set of isomorphism classes of homomorphisms from H to R^{\times} . (This can be identified, perhaps not canonically, with the characters of H.) Then there are decompositions of RH-modules $A = \bigoplus_{c \in C} A_c$ and $B = \bigoplus_{c \in C} B_c$, where $A_c = \{a \in A | ha = c(h)a, h \in H\}$ and similarly for B. Let $C_A = \{c \in C | A_c \neq 0\}$ and similarly for B.

Suppose that for each $c \in C_A$ there is a homogeneous element $a_c \in A_c$ that is invertible in A. Then

$$(A \otimes B)^{H} = \bigoplus_{d \in C_{A}} A^{H} a_{d^{-1}} \otimes B_{d},$$
$$(A \otimes B)_{c} = \bigoplus_{d \in C_{A}} A^{H} a_{d^{-1}} \otimes B_{cd},$$

and if $C_B \subseteq C_A$ then

$$(A \otimes B)_c = a_c (A \otimes B)^H.$$

Suppose that B is also a graded commutative R-algebra and H acts compatibly with this structure. Then $A \otimes B$ is also a graded-commutative R-algebra in the usual way, and H acts as a group of automorphisms.

(1) If, for each $c \in C_A \cap C_B$, there is a homogeneous element $b_c \in B_c$ that is invertible in B, then $(A \otimes B)^H$ is a free $A^H \otimes B^H$ -module with basis $\{a_{c^{-1}} \otimes b_c : c \in C'\}.$

Furthermore if the monomials in $c_1, \ldots, c_r \in C_A \cap C_B$ yield all the $c \in C_A \cap C_B$ then $(A \otimes B)^H$ is generated as a ring by A^H , B^H and the $a_{c_i^{-1}} \otimes b_{c_i}$.

(2) If B is generated as an R-algebra by d_1, \ldots, d_s , where $d_i \in B_{cd_i}$ for some $c_{d_i} \in C_A \cap C_B$, then $(A \otimes B)^H$ is generated as a ring by A^H and the $a_{c_{d_i}}^{-1} \otimes d_i$.

PETER SYMONDS

If the d_i freely generate B as a graded-commutative R-algebra then the $a_{c_{d_i}^{-1}} \otimes d_i$ freely generate $(A \otimes B)^H$ over A^H . (So if $B = \Lambda_R(d_1, \ldots, d_s)$ then $(A \otimes B)^H = A^H \otimes_R \Lambda_R(a_{c_{d_1}^{-1}} \otimes d_1, \ldots, a_{c_{d_s}^{-1}} \otimes d_s)$.)

PROOF. This is left as an exercise for the reader. Notice that $(A \otimes B)^H = \bigoplus_{c \in C'} A_{c^{-1}} \otimes B_c$ and $A_c a_{c'} = A_{cc'}$.

References

- Almkvist, G. and Fossum, R., Decomposition of symmetric and exterior powers of indecomposable Z/pZ-modules in characteristic p and relations to invariants, in Séminaire d'Algèbre Paul Dubreil, Lecture Notes in Math. 641, Springer, Berlin (1978), 1-111.
- [2] Brown, K.S., Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin 1982.
- [3] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. 1, Wiley, New York (1981).
- [4] Devinatz, E.S., Morava's change of rings theorem, in The Čech Centennial, Contemp. Math. 181, Amer. Math. Soc., Providence (1995) 83-118.
- [5] Devinatz, E.S. and Hopkins, M.J., The action of the Morava stabilizer algebra on the Lubin-Tate moduli space of lifts, Amer. J. Math. 117 (1995) 669-710.
- [6] Gorbounov, V. and Symonds, P., Toward the homotopy groups of the higher real K-theory EO₂, in Homotopy Theory via Algebraic Geometry and Group Representations, Contemp. Math. 220, Amer. Math. Soc., Providence (1998) 103-116.
- [7] Hewett, T., Finite subgroups of division algebras over local fields, J. Algebra 173 (1995) 518-548.
- [8] Nave, L.S., The Cohomology of Finite Subgroups of Morava Stabilizer Groups and Smith-Toda Complexes, Ph.D. thesis, U. Washington (1999).
- [9] Nave, L.S., On the non-existence of Smith-Toda complexes, at http://hopf.math.purdue.edu (1998).
- [10] Reiner, I., Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146.
- [11] Reiner, I., Maximal Orders, Academic Press, London (1975).
- [12] Ribes, L. and Zalesskii, P., Profinite Groups, Springer-Verlag, Berlin 2000.
- Scheiderer, C., Farrell cohomology and Brown theorems for profinite groups, Manuscripta Math. 91 (1996), 247-281.
- [14] Serre, J.P., Local Fields, Springer-Verlag, New York (1979).
- [15] Symonds, P., Permutation resolutions for profinite groups, preprint.

DEPARTMENT OF MATHEMATICS, U.M.I.S.T., P.O. BOX 88, MANCHESTER M60 1QD, ENG-LAND

Email address: Peter.Symonds@umist.ac.uk