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The Tate-Farrell cohomology of the Morava Stabilizer Group
Sp—1 with coefficients in F,_;

Peter Symonds

ABSTRACT. We calculate the Tate-Farrell cohomology of the Morava stabilizer
group Sp_1 with coefficients in the moduli space F,_1 for odd primes p.

1. Introduction

We present a calculation motivated by homotopy theory, although our methods
are algebraic and involve the Tate-Farrell cohomology of a profinite group with
compact coefficients. As a reference to the background in homotopy theory we
suggest [4, 5]. For the Tate-Farrell cohomology of profinite groups with coefficients
in compact module we refer to [15], although most of the results are analogues of
one for discrete groups, for which see [2].

Let p be an odd prime and n € N and let R be the ring of integers of the
unramified extension of (@p of degree m, (so R is isomorphic to the Witt vectors
Wr,.): the residue class field is k = F,». Let x be the Frobenius automorphism of
R and Gal = (x) the Galois group. Let S,, denote the (full) nth Morava stabilizer
group: this is the group of units in the R-algebra M generated by S subject to the
relations S™ = p and rS = Sx(r) for r € R. The Galois group Gal acts on S,
simply by x(rS%) = x(r)S?, or equivalently by conjugation by S.

It is known that .S, is virtually a pro-p group of virtual cohomological dimension
n? and type FP, over Zp.

If I';, denotes the commutative one-dimensional p-typical formal group law with
p-series 2P, then S, is isomorphic to the group of automorphisms of I',, over Fp.
It therefore acts on the ring of functions on the Lubin-Tate moduli space of x-
isomorphism classes of lifts of I',,, which is E, o = R[[u1,...,un—1]], a profinite
RS,-module. We denote the category of profinite RG-modules by Cgr(S,) (and
similarly with R replaced by Zp). There is also an action of S, on a graded version
En. = Eno[u®!]. This is graded by the power of u, normalized so that u has
degree —2 (called the internal degree).

This combines with the action of Gal on E, . via its action on the coeflicients
to give an action of the semi-direct product S, x Gal on E, ., and so each E, , €

Cs (S % Gal).
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We would like to calculate the ring H*(S,, E,.)%?, by which we mean the
sum €, H"(S, x Gal, E,, ;), since this is the initial term of a spectral sequence
which cdnverges to T Lk (n), the homotopy groups of the localization of the sphere
spectrum at the nth Morava K-theory (all at the prime p). Notice that, since Gal
has order coprime to p, H *(Sn,Em*)Gal is actually isomorphic to the invariants
of H*(Sp, En ) under the action of Gal. What we will actually do is calculate
the Tate-Farrell cohomology in the case n = p — 1: this is equal to the ordinary

cohomology in degrees greater than n?.

THEOREM 1.1. For odd p andn=p—1
H* (S, B )% = H (G, Ep )% @ Ao, ..., 1)
— H*(S0,2,) ® Ala) © F,[A*]
=T, [A%!, 8 @ Ao, o, .oy Zn1)-

Here G is a finite group that will be defined later, and the generators will be
defined in the course of the calculation.

REMARK 1.2. It would be natural to regard E,, . as @SEM, the sum in Cg(Sy,),
but H"(S,, EBSEmS) = TI,H"(Sy, En,s). Since only the homogeneous parts appear
in the spectral sequence, the difference is immaterial, but we conform to the con-
ventional usage.

We will need the following corollary of [15] 7.3 and the remark following it. It
is what we would expect from the theory for discrete groups in [2]. Similar results
for profinite groups but with discrete coefficients also appear in [13] and [12].

THEOREM 1.3. Let G be a profinite group of finite virtual cohomological dimen-
sion over Zp. Suppose that G has no subgroup isomorphic to Z/p x Z/p and only a
finite number of conjugacy classes of subgroups isomorphic to Z/p, which we denote
by S(p). Let M be a module in CZP (G). Then the Tate-Farrell cohomology satisfies

H(G.M)= € H*(Na(P),M).
PeS(p)

2. Trivial Coefficients

From now on n = p — 1 and we want to define a certain subgroup G of S,, of
order pn?. This is done in [7], but we need to be precise about some of the details
so we give the construction here. M@p = Qp ®;, M is a division algebra with
center Qp. It has a valuation v such that v(S) = 1, and S, is the set of elements
of valuation 0.

The general theory of division algebras tells us that the field @p(w;wp =1)
can be embedded in Mgy and the image is self-centralizing ([11] 28.10, 31.10).
Furthermore, by the Skolem-Noether Theorem ([11] 7.21), any two embeddings
differ only by conjugation in MQp'

In fact we can find a pth root of unity w in Z,[S] C M as follows: 14 S is
a pth root of unity modulo p and we can lift it by Hensel’s Lemma ([14] II Prop.
7). For convenience we will regard Q,(w) = QP(S). It is easy to see that the only
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elements of My, =~ invariant under conjugation by S are in Qp(S), SO (@p(w) is self
centralizing.
If ¢: Qpw) — MQp is another embedding then, by the discussion above, there

isau € Mg such that up(z)u=l =z for z € Qp(w). But S'U will serve as well as

u, since S is central in Qp(w), and we can choose ¢ to give this element valuation
0. Thus any two embeddings of Zp [w] in M are conjugate by an element of S,, and
so any two elements of .S;, of order p are conjugate in S,,.

Now let e € Z be a generator of (Z/p)*, so Zy[w®] = Zy[w] € M. The Galois
automorphism w — w® must be realized by conjugation by some v € S,,, as has just
been shown, i.e. v~ 'wv = w®. Now v" centralizes Z,[w], so v" € Zy,[w]. Clearly v"
is invariant under conjugation by v, so v™ € Zp.

Let ¢/ € Z, be an nth root of unity such that ¢’ = v™ (mod p). Then ev™" =
(mod p) so has an nth root in Zp (constructed from the binomial power series). Let

2
"=l = w® and also v'™ = €/, so v = 1. In fact v’ has order

n?, since if it had order "72 then v'* would be in Zp, contradicting v/ ~lwv’ = we.
But R itself contains the n?th roots of unity so, by the Skolem-Noether Theorem

again, there is an = € M@p such that zv'z=! € R. Let a = 2wz~ ! and b = 20’z !

and define the group G = (a,b) 2 Z/p x Z/n? < S,,.

When we want to think of b as an element of R rather than G we will denote
it by 7.

The reason for the last conjugation in the definition of G is to ensure that our
formulas are consistent with those of [8, 9].

Some more work with division algebras will show that any subgroup of .S,, that
is isomorphic to G is, in fact, conjugate to G in S, but we refer the reader to [7].

The significance of G is that it is a maximal finite subgroup of S,, and, up to
conjugacy, the only one of order divisible by p. Again we refer the reader to [7].

v =v(v ™), so v

LEMMA 2.1. ([8] ) ¢’ =e (mod p).

ProoOF. Working in S,, modulo S? we have a = 14+uS for some u #Z 0 (mod S).
Now
l+euS=a®=blab=14+un"'Snp=14+un"S =1+ ue'S. O

As mentioned above, @p(a) is self-centralizing in Mg, , so C' = Cg, (a) is equal

to the units in Z,[a]. In additive notation these are of the form ZZ X Z/p X Z/n.
This is because the p-torsion is known from the construction and the p’-torsion
corresponds to the units in the residue class field IF,,. To see that the free part has
rank n, let U; denote the units congruent to 1 modulo p: then U; is isomorphic to
pZy|a] under the inverse exponential and logarithm power series ([3] 54.2). U is of
finite index in C, so C also has free rank n.

Notice that these maps respect the action of b, so Uy = Zp[a]. Also, since (b)
is abelian of order coprime to p, any Zp<b>—1attice is a sum of eigenspaces for b,
and hence any sublattice of finite index is isomorphic to the original. In particular
U, = C/(torsion). Thus C/(torsion) is isomorphic to Z,[a] as a Z,(b)-lattice, so
is a sum of rank 1 lattices; one for each nth root of unity on which b acts as
multiplication by that root of unity. Finally, since Zya] is free as a Z,(b)-module,
the map C — C/(torsion) is split over (b). We have shown:
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LEMMA 2.2. As a Z,(b)-module, C' = Z,(b) & (a) ® Z/p.

Now N = Ng, ({(a)) = (C,b) = (Zp[a] x {a)) x ().

Consider Ng, xcal(G)/Ns, (G). Every conjugate of G in S, x Gal is in S, so, as
mentioned above, is conjugate to G in S,,. It follows that Ng, wgal(G)/Ns, (G) =
Gal. Choose ¢ € Ng, wca1(G) to have image x € Gal: we may also arrange for ¢ to
act trivially on (a) and for (¢) to have no pro-p part.

Finally, for similar reasons, N’ = Ng_uca({(a)) = (N, c).

First we calculate the Tate-Farrell cohomology with trivial coefficients. We use
A to denote an exterior algebra over Fy,.

ProrosiTiON 2.3. For p odd and n =p — 1:
H*(8,,Z,) = H (G, Zp) @ Mo, ..., xn1) = F[8F] @ Az, . .., Tn_1),

ﬁ*(Sn,]FP) = I’j[*(G) FP) X A(:EO? ey ;Un_l) = Fp[ﬂil] ® A(a’ 0, .. 7xn—1)’
where |8| = 2n, |z;| = 1 — 2i and |a| = —1.

PROOF. By Theorem 1.3 we find that H*(S,,,Z,) = H*(N,Z,). Notice that
H*(N,Z,) = H* (ZZ x (a),Z,)" since b has order coprime to p.

By the Kiinneth Theorem in Tate-Farrell cohomology ([2] X 3 ex. 4), we have
H*(C,Zp) = H*((a), Zp) @ H* (Zy, Fp).

It is well known that H*((a),Z,) = F,[¢F'], where |¢| = 2. To find the action
of b on ¢ use dimension shifting to see that H?({a), R) = H'({(a), k) = Hom((a), k).
Then b acts on the latter by sending f to (z — bf(b~1ab)), so b(¢) = eC.

Now a basis 49, ..., Yn_1 of Hl(Z'I’j, F,,) can be chosen so that b(y;) = e'y;. We
finish by calculating the invariants under b using the last part of Lemma 4.1 and
setting x; = (7' ® ;.

The calculation for I, coefficients is almost identical. O

REMARK 2.4. Because ¢ centralizes C' we have H*(N',7Z,) = H*(N,Z,) and
hence H*(S, x Gal,Z,) = H*(Sy,Z,). Since the action of Gal on S,, is via conju-
gation by S, which is not inner in S,,, this is not immediately obvious.

3. Coefficients in F,,

Next we calculate H*((a), B, .) following the method of Nave [8, 9], which in
turn is based on unpublished work of Hopkins and Miller. This is also treated in
detail for the prime 3 in [6].

First we need a change of basis.

LEMMA 3.1. ([8, 9]) There are elements z,z1, ..., zn—1 € En o such that, where
m denotes the ideal (p,u1,...,Up—1) in Eyq:
(1) 2 =cu mod (p,m?) for some c a unit in R,
(2) 2 = cjuu; mod (p,u1,...,u;_1,m?) for some c; a unit in R.
3) A+a+-+aHz=0,
(4) b(z) = nz,
(5) (a—1)z=12zp_1 and (a —1)zj41 = 7 for 1 <i<n-—1.
It follows from (1) and (2) that E, . = R[[z7 21,..., 27 2, _1]][zF1].
Let V be the R-submodule of E,, _5 spanned by {z,z1,...,2,-1}. It follows
from (3),(4) and (5) that V is an RG-submodule. Let § = IT?_Ja’(2): then a(d) = &
and b(d) = nPd = end.
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Consider the symmetric algebra S[V] C E, .. We claim that, as RG-modules,
0 r odd,

5 R® (proj) r=2pr’ <0,

6"V @ (proj) r=2(pr' —1) <0,

(proj) otherwise.

() R[V], =

and

R[V],—2p = 0R[V], & (proj) forr < 0.
Here (proj) indicates a projective summand. We will write this in the condensed
form R[V] = B & (proj), where B =@, 6'(R® V).

Recall that if G is a finite group of order not divisible by p?> and M € Cr(G)
is projective in Cg then the isomorphism class of M is uniquely determined by its
reduction modulo p, k ® g M. This is true for a cyclic group of order p by the
classification of RZ/p-lattices, (see [10], [3] 34.31), and this classification extends
to Cr(Z/p). The general case follows by a transfer argument.

Thus we only have to check the claim over kG. But it is true over k(a) from
the calculation of the symmetric algebra by Almkvist and Fossum [1]. The general
case follows because both =" R and 6~V are defined over G, and the quotients
by them must still be projective over G since this depends only on the restriction
to the Sylow p-subgroup. Being projective they force the extension to split, and
our claim is proved.

If we invert § we obtain a dense subset R[V][6!] C E, .. As an RG-module
this still has the same form B @ (proj), by the second identity in {. In fact this
form is preserved by completion:

PROPOSITION 3.2. As a sum of compact modules for RG, E,, . = B & (proj).

PROOF. Let (z71z1,...,27 12, 1) denote the ideal generated (topologically) by
the given elements in E,, o. It is easy to check that

E, _or =R[V]_2 ® (zflzl, cee zilzn,l)”lEn’,g,«, r>0
and also
RV]_2p =B_9, ®P_3,, >0
for some projective P_o,.. Thus, for r + pt > 0,
En o = 5tEn,—2(r+pt)
=8"R[V] _a(ript) @6 (27 21, .., 27 20 ) T By (it
=B 2, ©P_g(ript) D (27121’ ce zilzn,l)T“Eny,gr.

Now R[V] [571]_27~ =B 5. &® @P_Q(r_,_pt) and En,2r = B_9. & yLnP—Q(r—&-pt) as
t — oo. As a consequence, if @P,g(r+pt) = ®;Q;, as a sum of indecomposable
projective RG-modules then FE,, o, = By, @ I1;Q;. u

We say that z € H"(—, E, ) has bidegree |z| = (r,s). We will also write
H*(G, E, )% for H*((G,¢), E,..) = H*(G, E,.)'. This is not so strange since
H*(Sna Em*)Gal = H*<<Sn; C>, En,*) = H*<Sn7 En,*)“)

COROLLARY 3.3. ([8]) The Tate cohomology is given by

H*({a), En,.) = k[0*1, (T @ A(v),
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where |§] = (0, —2p), || = (2,0), |a| = (1,—2) and b acts by
b(0) =end, b(C)=eC, bv)=env.
As a consequence
H*(G, En) = K[A*, 5] @ A(a),
(G, E,.,)% = F,[A*, 351 @ A).
where |A| = (0,2pn?), |8] = (2,2pn) and |a| = (1,2n).

PROOF. The first calculation is an easy consequence of 3.2 (we identify § with
its image in H°({(a), B, —2p)).

H*((a), En,.) = H*((a), B)
=P E"(a),5"(ReV))

rEZ
= ED SE[CFY @ A(v)  (a well-known calculation)
rEZ

= k[0E, ¢ @ A(v).

The action of b on § is from the definition of § and e and that on ¢ was found in
the proof of 2.3.

For the action on v € H'({(a),V) it is easy to verify that the quotient map
V — V/rad(V) 2 kz induces an isomorphism on H*', so H!({a),V) = zH*((a), k)
as a (b)-module, and this combines the action on z with that found in calculating
the action on ¢ in 2.3.

Thus H*(G, B, .) = H*({a), E,..)® and the invariants can be calculated using
lemma 4.1 below. They are generated by A = (5‘"2, B = (6™ and their inverses
and o = 61

Finally, notice that ¢ acts on the R-module H" (G, E,, ;) according to the for-
mula ¢(fx) = x(O)e(x), £ € R,z € H(G, E,_). This cohomology group is either k
or 0. We claim that in the former case the invariants are isomorphic to F,

To see this let 0 # z € H” (G En s) bea generator over k. Then ¢(z) = Az for

some A € k and z = ¢"(x )*/\p 1:c so AT *1 It follows that A\ = wP~! for
some w € k and the fixed points under c are Fpw™ Ig.

Since the generators A, 8, can be replaced by any non-zero element of the
H "(G, E, ) that they appear in, we may assume that they are all invariant under
c and hence generate the invariants under c. O

PROOF. of 1.1. As before we use Theorem 1.3 to see that H*(S,, B, )% =
H*(N', B, ).

Recall that, for any short exact sequence I — J — K of profinite groups
of finite virtual cohomological dimension with K torsion-free, there is a spectral
sequence H*(K, H*(I, M)) = H*(J,M) ([2] X 3 ex. 5).

Apply this to C' = Z x (a) to obtain H*(Z2, H*((a), Enx)) = H*(C, En ). If
we fix both r and s then I:I*(<a>, E, ) is either k or 0 so ZZ, being a pro-p group,
must act trivially. Thus the Es-term is isomorphic to f[*((a>, E,..) <§§>H*(Zg7 F,) =

I:I*(<a>7En,*) ® A(y07 s ayn—l)'
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We claim that this spectral sequences collapses, so that we have H (C, Epx) =
H*((a), Bp.) ® Ag,(Yo,---,Yyn—1). To see this notice that, from the proof of 3.3,
the map E, , — E, ,/mE, , = k induces an injection on fI*((a>, —). The corre-
sponding spectral sequence with coefficients k collapses, by the Kiinneth Theorem,
so ours must too.
Now compute the invariants under b using Lemma 4.1. The result is that
IT‘((@),EW*)(”> ® Ag, (20, - .., Tn_1), where the z; are as in 2.3.
Finally, ¢ acts only on the first factor, so taking the invariants under c¢ just
replaces H*(G, E,,..) by H*(G, E, ). O

4. Invariants

The following lemma is elementary, but systematic use of it simplifies the invari-
ant calculations above. For example in the proof of 3.3, first calculate the invariants
KI6EL, CE1)0) = (K[5+1] @ K[CH1])® and then (k[51, 1] ® A(v))®).

LEMMA 4.1. Let H be a finite abelian group and let R be a commutative integral
domain such that |H| is invertible in R and that contains a root of unity of order
the exponent of H. Suppose that A and B are two RH-modules such that A is a
graded-commutative R algebra and the action of H is compatible with this structure.
H acts on A ®g B diagonally.

Let C be the set of isomorphism classes of homomorphisms from H to R*.
(This can be identified, perhaps not canonically, with the characters of H.) Then
there are decompositions of RH-modules A = ®c.ccAe and B = BeccB., where
A. = {a € Alha = c¢(h)a,h € H} and similarly for B. Let Cy = {c € C|A. # 0}
and similarly for B.

Suppose that for each ¢ € Cy4 there is a homogeneous element a. € A, that is
invertible in A. Then

(Ao B)" = P Aag-1 @ Ba,
deCa

(A® B). = @ A"a4-1 @ Bea,
deCa

and if Cg C Cy then
(A®B). = a.(A® B)".

Suppose that B is also a graded commutative R-algebra and H acts compatibly with
this structure. Then A ® B is also a graded-commutative R-algebra in the usual
way, and H acts as a group of automorphisms.
(1) If, for each c € Cy N Cp, there is a homogeneous element b, € B, that
is invertible in B, then (A ® B)H is a free A @ BH -module with basis
{a4c-1 ®@b.: c€ C'}.

Furthermore if the monomials in c1,...,¢, € Ca N Cp yield all the
c € CaNnCp then (A® B)H is generated as a ring by A®, BH and the
a.-1® bci.

(2) If B is generated as an R-algebra by dy, ..., ds, where d; € Be,, for some
ca, € CaNCp, then (A® B)! is generated as a ring by A™ and the
a.-1®d;.

Ca;
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If the d; freely generate B as a graded-commutative R-algebra then the
a1 ® d; freely generate (A ® B)H over A™. (So if B = Ag(dy,...,ds)

then (A® B)H = AH @p AR(aC;1 ®d1,...,ac;1 ®ds).)
1 El

PROOF. This is left as an exercise for the reader. Notice that (4 ® B) =
®C€C/Ac_1 ® B, and Acap = Ao Il
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