
MACKEY FUNCTORS AND CONTROL OF FUSION

PETER SYMONDS

Abstract. We present an algebraic approach to Mislin’s theorem that control of p-
fusion is equivalent to inducing a mod-p cohomology isomorphism. There are conse-
quences for the cohomology of p-permutation modules.

1. Introduction

In 1990 Guido Mislin published the following theorem.

Theorem 1.1. (Mislin [4]) Let H < G be finite groups. Then the restriction in mod-p
cohomology resG

H : H∗(G, Fp) → H∗(H, Fp) is an isomorphism if and only if H controls
p-fusion in G.

(Actually Mislin proved a result for compact Lie groups.) Recall that H is said to
control p-fusion in G if the following two conditions are satisfied:

(1) the index |G/H| is coprime to p and
(2) if Q ≤ H is a p-subgroup and g ∈ G is such that Qg ≤ H also then g = ch for

some c ∈ CG(Q) and h ∈ H.

This is a fundamental concept in group theory.
It is not hard to see that control of fusion implies a cohomology isomorphism. What

is surprising is that cohomology controls the subgroup structure of the group in such
a strong way. Mislin’s proof uses deep results from algebraic topology, in particular
Carlsson’s proof of Segal’s Burnside ring conjecture [1]. Jon Alperin issued a challenge to
produce an algebraic proof.

We do not achieve this. What we do is to show that Mislin’s theorem is a consequence
of the following algebraic statement, which we verify using topological methods.

First recall that Peter Webb showed that a global Mackey functor, such as cohomology,
can be decomposed into its simple composition factors [10]. We will prove:

Theorem. (4.1) Cohomology, considered as a global Mackey functor, contains every
simple cohomological global Mackey functor as a composition factor.

There is the following consequence, where k is a field of characteristic p and PermG
P,V

denotes the p-permutation kG-module parametrized by the p-subgroup P and the simple
kNG(P )-module V .

Theorem. (5.3) H∗(G, PermG
P,V ) 6= 0 if and only if CG(P ) acts trivially on V .

It appears that this is currently inaccessible by algebraic means.
1
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2. Mackey Functors

Mackey functors have been described in many places, for example [8], [10] and [11], but
we will attempt to provide a summary of what we need here.

We will always work over a field k of prime characteristic p.
Given a finite group G, define a category S(G) to have as objects the subgroups of G

and as morphisms from K to H the symbols (g; H, K), for g ∈ G such that gK ≤ H.
These compose according to the rule (g; H, J)(h; J, K) = (gh; H, K).

To (g; H, K) we associate the group homomorphism K → H given by x 7→ gx. However
(g1; H, K) 6= (g2; H, K) if g1 6= g2 even though the associated group homomorphisms might
be equal.

A Mackey functor on G is a pair of functors M∗, M∗ from S(G) to finite-dimensional
k-vector spaces. The first is contravariant and the second is covariant and they coincide
on objects, i.e. M∗(H) = M∗(H), and we denote this common value by M(H).

We normally write cg = M∗((g; H, H)), (regardless of H), resH
K = M∗((1; H, K)) and

trH
K = M∗((1; H, K)).
The pair of functors must satisfy three axioms:

(1) M∗((g; gH, H))M∗((g; gH, H)) = IdM(H),
(2) ch acts trivially on M(H) when h ∈ H,
(3) The Mackey double coset formula for K, L ≤ G

resH
L trH

K =
∑

h∈L\H/K

trL
L∩hK ch resK

Lh∩K .

There are many naturally occurring examples. If V is a kG-module then the fixed point
functor V ? is a Mackey functor, where we take the evident maps for cg and res, and tr is
defined by trH

K v =
∑

h∈H/K hv. Here we see for the first time the convention of using the
symbol ? to denote the place in the formula where we put the subgroup on which we are
evaluating.

More generally, homology H∗(?, V ) and cohomology H∗(?, V ) are both Mackey functors
with the usual transfer or corestriction maps.

There is a natural concept of a morphism of Mackey functors, and we obtain an abelian
category Mack(G) of Mackey functors on G.

The simple Mackey functors are described explicitly in [8]. Each one has a minimal
subgroup H on which it is non-zero, unique up to conjugation, and the kNG(H)/H-module
V say obtained by evaluation at H is simple. In fact any pair consisting of a subgroup
H and a simple kNG(H)/H-module can occur, and these parametrize the simple Mackey
functors, which we denote by SG

H,V . There are explicit formulas for these functors. One
that we will need is

SG
H,V (J) =

⊕
g∈J\G/H

H≤Jg

tr
NJg (H)/H
1 V,

where tr is as for the fixed point functor.
We are particularly interested in global Mackey functors. Again, one of these consists

of a pair of functors, but they are defined on the category of finite groups and the injective
homomorphisms between them. They take values in finite-dimensional k-vector spaces.



MACKEY FUNCTORS AND CONTROL OF FUSION 3

If α denotes an injective homomorphism then we write α∗ = M∗(α) and α∗ = M∗(α).
We require the relation:
(1′) If α is an isomorphism then α∗α∗ = 1.
Given any finite group the obvious forgetful map yields a pair of functors on S(G), and

we require that this should be a Mackey functor, i.e. we impose axioms (2) and (3). Thus
a global Mackey functor is a pair of functors that is globally defined and locally a Mackey
functor. Examples are homology and cohomology with trivial coefficients. The category
of global Mackey functors is denoted by Mack.

We will also deal with inflation functors. Again an inflation functor consists of a pair
of functors defined on finite groups; but M∗ is defined on all group homomorphisms,
although M∗ is still only defined on injective homomorphisms.

This time the first axiom is replaced by
(1′′) Given a commutative diagram of finite groups with exact rows and injective

columns
J ′ −−−→ G′ α−−−→ H ′y∼=

yβ

yγ

J −−−→ G
δ−−−→ H

we have β∗α
∗ = δ∗γ∗.

We keep axioms (2) and (3).
Any inflation functor is naturally a global Mackey functor. An example is cohomology

with trivial coefficients. The category is denoted by Mack∗.
The simple functors in Mack and Mack∗ were classified by Webb in [10]. Again there

is a minimal subgroup H on with the functor is non-zero, unique up to isomorphism, and
the value at H is a simple k Out(H)-module V . All such pairs H, V can occur.

The simple functors in Mack are denoted by SH,V and their projective covers by PH,V .
The simple functors in Mack∗ are denoted by SH,V and their projective covers by PH,V .
Again there are explicit formulas, but we will not need them. Just notice that when SH,V

is considered as an object of Mack it has SH,V as a subfunctor.
All the Mackey functors that we will deal with are cohomological, that is they satisfy

a fourth axiom
(4) If K ≤ H then trH

K resH
K = |K/H| Id.

Cohomology with trivial coefficients is, of course, an example. The categories of coho-
mological Mackey functors will be denotes by coMack etc..

The next lemma is easy to prove.

Lemma 2.1. For Mackey functors in Mack(G), Mack or Mack∗:

(1) If L → M → N is exact then M is cohomological if and only if both L and N are
cohomological.

(2) If |H/K| is coprime to p then resH
K is injective.

In fact (2) has a more precise version known as the method of stable elements.

Lemma 2.2. If S is a Sylow p-subgroup of H and M is in coMack then resH
S is injective

and its image consists of the elements x ∈ M(S) satisfying ch resS
Sh∩S

= resS
S∩hS

for all
h ∈ H.
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The simple cohomological Mackey functors (of whichever sort) are those with minimal
subgroup H a p-group, see [9] and [10].

One way of understanding a Mackey functor in Mack(G) is to look at its simple com-
position factors. In fact Webb showed in [10] that this also makes sense for Mack and
Mack∗. There might be infinitely many simple factors, but only finitely many of them
show up at any particular evaluation and so there are only finitely many in any given
isomorphism class.

We see from 2.1 that for a cohomological functor it makes no difference whether we
take the composition factors in Mack or coMack.

One of the ideas of Peter Webb was that if we could calculate the composition factors
of cohomology Hr(?, k) in coMack or coMack∗ then the explicit formulas for the simples
would give an explicit formula for Hr(G, k) for any finite group G.

Of course this would be a very difficult calculation, but we will show in theorem 4.1
that every simple does occur for some r.

3. Algebraic Results

For any group G, let Sp(G) denote the set of p-subgroups of G and Cp(G) = Sp(G)/G
the set of their conjugacy classes. Set

λp(G) =
∑

U∈Cp(G)

1

|NG(U)/CG(U)|

and, for any p-group Q,

λQ(G) =
∑

U∈Cp(G)

U∼=Q

1

|NG(U)/CG(U)|
.

Lemma 3.1. For any finite groups H < G, the following are equivalent.

(1) H controls p-fusion in G,
(2) Every conjugacy class of p-subgroups of G has intersection with Sp(H) consisting of

exactly one conjugacy class from Cp(H) and for any Q ∈ Sp(H) we have NG(Q) =
NH(Q)CG(Q),

(3) The index |G/H| is coprime to p and λp(G) = λp(H).

Proof. (1) ⇒ (2) ⇒ (3) is clear.
For (3) ⇒ (1), note that every conjugacy class in Cp(G) intersects Sp(H). So

(†) s = |Cp(H)| ≥ |Cp(G)| = r

and we can choose representative subgroups Q1, . . . , Qr for Cp(G), all in H, and enlarge
this to representatives Q1, . . . , Qr, . . . , Qs for Cp(H).

In addition

(‡) |NG(Qi)/CG(Qi)| ≥ |NH(Qi)/CH(Qi)| i = 1, . . . , s.

It follows that if
s∑
1

1

|NG(Qi)/CG(Qi)|
= λp(H) = λp(G) =

r∑
1

1

|NH(Qi)/CH(Qi)|
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then all inequalities in † and ‡ above must be equalities, as required. �

For finite groups Q and G, let Inj(Q, H) denote the set of injective group homomor-
phisms Q → H. Then H acts on the left by conjugation and Aut(Q) on the right by
composition.

Definition 3.2. Given a finite p-group Q we now construct a global Mackey functor MQ

as follows.
On a group H,

MQ(H) = k ⊗kH k[Inj(Q,H)].

If φ : K ↪→ H then

φ∗(f) =
∑

h∈K\H

chf(Q)≤φ(K)

φ−1chf,

where f ∈ Inj(Q,H) and ch denotes conjugation by h. Also

φ∗(f
′) = φf,

for f ′ ∈ Inj(Q,K).
(Here k[Inj(Q,H)] denotes the free k-module on the set Inj(Q, H).)

It is easy to check that MQ is a global Mackey functor. For example, if H, K ≤ G then

resG
K trG

H f =
∑

g∈K\G
gf(Q)≤K

cgf =
∑

g∈K\G/H
gf(Q)≤K

∑
h∈Kg∩H\H

cgchf =
∑

g∈K\G/H

trK
K∩gH cg resH

Kg∩H f.

Lemma 3.3. MQ is cohomological.

Proof. This is true for quite general reasons (cf. [7]) but we give an elementary proof.
We need to show that for K < H we have trH

K resH
K f = |H/K|f , where f : Q → H.

That is
∑

h∈K\H
hf(Q)≤K

f = |H/K|f . This would certainly be true without the second condition

in the sum.
If K < J < H then trH

K resH
K = trH

J (trJ
K resJ

K) resH
J and |H/K| = |H/J ||J/K|. Thus it

suffices to prove the case when K < H is maximal. There are two cases, and in both we
identify f(Q) with Q for convenience:

(a) NH(K) = H: this subdivides into two more cases:
(i) All conjugates of Q lie in K and the result is clear from the formulas.
(ii) No conjugate of Q is in K, so trH

K resH
K f = 0. But then K can not contain a Sylow

p-subgroup of H, so p divides |H/K|.
(b) NH(K) = K: Rewrite the condition hQ ≤ K as Q ≤ Kh. In this case {Kh|h ∈

K\H} is precisely the conjugacy class of K in H (without repetition).
Q acts on this set by conjugation. We claim that the fixed point set consists exactly of

the Kh containing Q. Thus the size of the rest is divisible by p and the result follows.
Clearly if Q ≤ Kh then Kh is fixed under conjugation by Q. Conversely, if Q fixes Kh

then KhQ is a subgroup of H. If Q 6≤ Kh then KhQ = H, by our hypothesis that K is
maximal. Thus Kh, and hence K, is normal, a contradiction. �



MACKEY FUNCTORS AND CONTROL OF FUSION 6

Lemma 3.4. Suppose that H < G is of index coprime to p and that L → M → N
is a short exact sequence of Mackey functors on G such that N is cohomological. Then
resG

H : M(G) → M(H) is an isomorphism if and only if both resG
H : L(G) → L(H) and

resG
H : N(G) → N(H) are isomorphisms.

Proof. The if part is just the Five Lemma, so it is the only if part that concerns us.
The map resG

H : N(G) → N(H) is injective by 2.1. The rest follows by an easy diagram
chase. �

Theorem 3.5. Let {M i : i ∈ I} be a set of cohomological global Mackey functors. Let
G be a finite group and H < G. Suppose that every simple cohomological global Mackey
functor with minimal subgroup isomorphic to a subgroup of G occurs as a composition
factor of some M i.

The following are equivalent:

(1) resG
H : M i(G) → M i(H) is an isomorphism for every i ∈ I and |G : H| is coprime

to p.
(2) resG

H : M(G) → M(H) is an isomorphism for every cohomological global Mackey
functor M .

(3) resG
H : S(G) → S(H) is an isomorphism for every simple cohomological global

Mackey functor S.
(4) H controls p-fusion in G.

The theorem remains valid if we replace global Mackey functor by inflation functor
throughout.

Proof. (1) ⇒ (3): If the minimal subgroup of S is not isomorphic to a subgroup of G then
both S(G) and S(H) are zero and (3) holds.

Otherwise S is a composition factor of some M i and so there are two short exact
sequences of cohomological global Mackey functors L → M i → N and K → L → S. Now
we apply lemma 3.4 twice.

(3) ⇒ (2) by induction on the number of composition factors with minimal subgroup
isomorphic to a subgroup of G.

(2) ⇒ (1): We only need to check that |G : H| is coprime to p. Let P be a Sylow
p-subgroup of G. Then SP,k(G) ∼= k by 2.2 so, by hypothesis, SP,k(H) ∼= k and P must
be isomorphic to a subgroup of H.

(4) ⇒ (2) by the method of stable elements 2.2.
(2) ⇒ (4): For any p-group Q consider the cohomological global Mackey functor MQ

of 3.2. We have λQ(G) = dim MQ(G) = dim MQ(H) = λQ(H). By summing over the
isomorphism classes of p-subgroups of G we obtain λp(G) = λp(H). Now apply lemma
3.1.

This proof remains valid if we work with inflation functors instead, except for (2) ⇒ (4).
For this we could show that the dual of MQ is naturally an inflation functor.

Alternatively just notice that SP,V , considered as a global Mackey functor, contains
SP,V as a composition factor. So we can use the simple cohomological inflation functors
SP,V as the M i in the global Mackey functor version of the theorem and use (1) ⇒ (4). �
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4. Composition Factors of H∗(?, k)

Now we show that the functors H i(?, k), i ∈ N0 satisfy condition (1) of 3.5, completing
a proof of Mislin’s Theorem. However our methods are topological, making crucial use of
Carlsson’s proof of the Segal Conjecture, [1], as does Mislin’s original proof.

Theorem 4.1. Considering cohomology as an inflation functor, every simple cohomolog-
ical inflation functor occurs as a composition functor of some H i(?, k).

The same is true with global Mackey functor instead of inflation functor.

Proof. First we prove the case with k = Fp. We need to show that Hom(PP,V , H∗(?, Fp)) 6=
0 for each PP,V . Our proof is based on one by Harris and Kuhn, [3].

Recall that there are inflation functors A(?, P ) = HomΩ+
Fp

(?, P ), where Ω+
Fp

is a cer-

tain category defined in terms of G-sets in [10], [11]. They have the property that
HomMack∗(A(?, P ), M) ∼= M(P ) for any inflation functor M , so in particular they are
projective and also EndMack∗(A(?, P )) ∼= A(P, P ). In this way we can regard M(P ) as an
A(P, P )-module in a manner consistent with morphisms of inflation functors.

Consider the composition of ring homorphisms

A(P, P ) → {(BP+)∧p , (BP+)∧p } ⊗ Fp → End(H∗(P, Fp))
opp,

where {} denotes homotopy classes of stable maps.
In [3] 2.14 it is shown that the first has nilpotent kernel, by the Segal Conjecture, and

so does the second, by Whitehead’s Theorem. In particular all idempotents survive.
Now PP,V is a direct summand of A(?, P ), because HomMack∗(A(?, P ), SP,V ) ∼= SP,V (P ) =

V 6= 0. Let e ∈ A(P, P ) be the corresponding idempotent. We find

HomMack∗(PP,V , H∗(?, Fp)) = HomMack∗(eA(?, P ), H∗(?, Fp))
∼= HomMack∗(A(?, P ), eH∗(?, Fp))
∼= eH∗(P, Fp)

6= 0.

as required.
To obtain the result over a general field k note that any simple kP -module V is a

composition factor of W⊗Fp k for some simple FpP -module W . Then SP,V is a composition
factor of SP,W ⊗Fp k.

But we have just shown that the latter is a composition factor of some H i(?, Fp)⊗Fp k ∼=
H i(?, k).

For the global Mackey functor version just note that SP,V , regarded as a global Mackey
functor, has SP,V as a composition factor. �

Corollary 4.2. If we consider H∗(?, k) as a Mackey functor on a particular group G
only then we still find as a composition factor every simple cohomological SG

P,V for which
CG(P ) acts trivially on V , and only these.

Proof. The global simple SP,W , restricted to G, contains every simple SG
P,Wi

as a compo-
sition factor, where Wi is a composition factor of W regarded as a kNG(P )-module via
the conjugation map NG(P ) → Out(P ). This map has kernel PCG(P ), so every simple
module V for NG(P )/PCG(P ) will occur as some Wi.
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Of course, since CG(P ) acts trivially on H∗(P, k), it must act trivially on SG
P,V (P ) = V

for any composition factor SG
P,V . �

5. Permutation Modules

It was shown by Thévenaz and Webb [9] that if P co,G
P,V denotes the projective cover of SG

P,V

as a cohomological Mackey functor then the evaluation at the trivial subgroup P co,G
P,V (1)

is the p-permutation kG-module PermG
P,V , which is defined by taking the projective cover

of V as an NG(P )/P -module, inflating to NG(P ) and taking the Green correspondent.

Proposition 5.1. For any kG-module M and r ≥ 0,

HomcoMack(G)(P
co,G
P,V , Hr(?, M)) ∼= Extr

kG(PermG
P,V , M).

Proof. Both sides have long exact sequences in M and vanish on injective M for r >
0. They agree when r = 0 by the following lemma, and the result follows by general
homological algebra. �

Lemma 5.2. For F a Mackey functor on G over k and M a kG-module, evaluation at 1
yields an isomorphism

HomMack(G)(F, M ?) ∼= HomkG−mod(F (1), M).

Proof. We construct the inverse map. Given f : F (1) → M then F (H)
res→ F (1)

f→ M has
image in MH , so we obtain a map F (H) → MH . These piece together to give a map of
Mackey functors F → M ?. �

We can now deduce a result that does not mention Mackey functors.

Theorem 5.3. H∗(G, PermG
P,V ) 6= 0 if and only if CG(P ) acts trivially on V .

Proof. For any left kH-module V let V ∗ denote the contragredient left kG-module Homk−mod(V, k).
Then, using 5.1, we find that

H∗(G, PermG
P,V ) ∼= Ext∗kG(k, PermG

P,V )

∼= Ext∗kG((PermG
P,V )∗, k)

∼= Ext∗kG(PermG
P,V ∗ , k)

∼= HomMFk(G)(P
co,G
P,V ∗ , H∗(?, k)).

Now apply corollary 4.2. �

Remark. This result tells us something about the discarded terms in the Green corre-
spondence. For example suppose that P < H < G and NG(P ) < H. Then we have
IndG

H PermH
P,V = PermG

P,V ⊕U , where U is a sum of p-permutation modules PermG
Qi,Wi

with Qi � P . By considering cohomology we see that if CG(P ) acts non-trivially on V
then each CG(Qi) acts non-trivially on Wi.

Remark. Geoff Robinson’s strategy for finding an algebraic proof of Mislin’s theorem was
essentially to try to prove the above theorem algebraically, see [5].

We can only find an algebraic proof in the local case (as could Robinson).
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Proposition 5.4. If P C G then we can prove algebraically that if CG(P ) acts trivially
on V then H∗(G, PermG

P,V ) 6= 0.

Proof. The first part of the previous proof can still be used, so we need to show that
H∗(?, k), considered as a Mackey functor on G, contains the simple SG

P,V ∗ whenever CG(P )
acts trivially on V .

Suppose that Q � P and W is a simple kNG(Q)/Q-module. Then from the explicit
formula for SG

Q,W we see that

SG
Q,W (P ) ∼=

⊕
g∈G/PNG(Q)

tr
NP (gQ)/gQ
1

gW ∼= SG
Q,W (P ) ∼=

⊕
g∈G/PNG(Q)

tr
NP (Q)/Q
1 W.

But NP (Q) is strictly bigger than Q, yet it is normal in NG(Q), so acts trivially on W .

Thus tr
NP (Q)/Q
1 W = 0 and so SG

Q,W (P ) = 0. Thus all of H i(P, k) is accounted for by the

SG
P,V , and the multiplicity of SG

P,V in H i(?, k) is is that of V in H i(P, k) regarded as a
G/P -module.

But, regarded as a k Out(P )-module, H∗(P, k) contains every simple, by [2] or [6].
Thus, as a kG/P -module, it contains every simple on which CG(P ) acts trivially. �
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