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Abstract. Let k be a perfect field of characteristic p > 0, and let G be a finite group. We

consider the pointed G-curves over k associated by Harbater, Katz, and Gabber to faithful

actions of G on k[[t]] over k. We use such “HKG G-curves” to classify the automorphisms of

k[[t]] of p-power order that can be expressed by particularly explicit formulas, namely those

mapping t to a power series lying in a Z/pZ Artin–Schreier extension of k(t). In addition,

we give necessary and sufficient criteria to decide when an HKG G-curve with an action of a

larger finite group J is also an HKG J-curve.

1. Introduction

Throughout this article, k denotes a perfect field of characteristic p > 0, and k denotes an

algebraic closure of k, while ℘ denotes the Artin–Schreier operator defined by ℘(x) := xp − x.

1.A. Finite-order automorphisms of k[[t]]. Let Aut(k[[t]]) be the automorphism group

of k[[t]] as a k-algebra. Then every order p element of Aut(k[[t]]) is conjugate to t 7→
t(1+ctm)−1/m for some c ∈ k× and some positive integer m prime to p (see [20, Proposition 1.2],

[21, §4], and Theorem 2.2).

The natural question arises whether there is an equally explicit description of automor-

phisms of order pn for n > 1. Each such automorphism is conjugate to t 7→ σ(t) for

some σ(t) ∈ k[[t]] that is algebraic over k(t) (see Corollary 4.11). In this case, the field

L := k(t, σ(t), . . . , σp
n−1(t)) ⊆ k((t)) is algebraic over k(t). When n > 1, we cannot have

L = k(t), because the group Autk(k(t)) ' PGL2(k) has no element of order p2. The next

simplest case from the point of view of explicit power series is the following:

Definition 1.1. Call σ ∈ Aut(k[[t]]) almost rational if the field L := k({σ(t) : σ ∈ G})
is a Z/pZ Artin–Schreier extension of k(t); i.e., L = k(t, β) where β ∈ k((t)) satisfies

℘(β) = βp − β = α for some α ∈ k(t).
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By subtracting an element of k[t−1] from β, we may assume that β ∈ tk[[t]] and hence

α ∈ k(t) ∩ tk[[t]]. Then we have an explicit formula for β, namely

β = −
∞∑
i=0

αp
i

,

and σ(t) is a rational function in t and β. This is the sense in which almost rational

automorphisms have explicit power series.

Prior to the present article, two of us found one explicit example of an almost rational σ

of order pn > p (and its inverse); see [5]. Our first main theorem describes all such σ up to

conjugacy.

Theorem 1.2. Suppose that σ is an almost rational automorphism of k[[t]] of order pn for

some n > 1. Then p = 2, n = 2, and there exists b ∈ k (unique modulo ℘(k)) such that σ is

conjugate to the order 4 almost rational automorphism

σb(t) :=
b2t+ (b+ 1)t2 + β

b2 + t2
, (1.3)

where β is the unique solution to β2 − β = t3 + (b2 + b+ 1)t2 in tk[[t]].

Remark 1.4. If k is algebraically closed, then ℘(k) = k, so Theorem 1.2 implies that all almost

rational automorphisms of order 4 lie in one conjugacy class in Aut(k[[t]]).

Remark 1.5. The example in [5] was

σ0(t) = t+ t2 +
∞∑
j=0

2j−1∑
`=0

t6·2
j+2`

= t+ t2 + (t6) + (t12 + t14) + (t24 + t26 + t28 + t30) + · · ·

=
t

1 + t
+

γ

(1 + t)2

over F2, where the series γ :=
∑∞

i=0(t
3 + t4)2

i
satisfies γ2 − γ = t3 + t4. (If β is as in

Theorem 1.2, then γ = β + t2.) Zieve and Scherr communicated to us that the inverse of σ0
has a simpler series, namely

σ1(t) = t−2
∞∑
i=0

(t3 + t4)2
i

=
∞∑
i=0

t3·2
i−2 +

∞∑
j=2

t2
j−2.

In general, the inverse of σb is σb+1 (Remark 5.14).

Remark 1.6. Let σ be any element of finite order in Aut(k[[t]]). Even if σ is not almost

rational, we can assume after conjugation that the power series σ(t) =
∑

i≥1 ait
i is algebraic

over k(t), as mentioned above. When k is finite, this implies that the sequence (ai) is Turing

computable, and even p-automatic; i.e., there is a finite automaton that calculates ai when

supplied with the base p expansion of i [6, 7].
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1.B. Harbater–Katz–Gabber G-curves. An order pn element of Aut(k[[t]]) induces an

injective homomorphism Z/pnZ −→ Aut(k[[t]]). Suppose that we now replace Z/pnZ with

any finite group G. Results of Harbater [14, §2] when G is a p-group, and of Katz and Gabber

[19] in general, show that any injective α : G −→ Aut(k[[t]]) arises from a G-action on a

curve. More precisely, α arises from a triple (X, x, φ) consisting of a smooth projective curve

X, a point x ∈ X(k), and an injective homomorphism φ : G −→ Aut(X) such that G fixes x:

here α expresses the induced action of G on the completed local ring ÔX,x with respect to

some uniformizer t. In §4.B we will define a Harbater–Katz–Gabber G-curve (HKG G-curve)

to be a triple (X, x, φ) as above satisfying some extra conditions. (We will sometimes omit φ

from the notation.)

HKG G-curves play a key role in our proof of Theorem 1.2. Our overall strategy is to

reduce Theorem 1.2 to the classification of certain HKG G-curves, and then to use geometric

tools such as the Hurwitz formula to complete the classification.

1.C. Harbater–Katz–Gabber G-curves with extra automorphisms. In this section,

(X, x) is an HKG G-curve and J is a finite group such that G ≤ J ≤ Aut(X). We do not

assume a priori that J fixes x. Let gX be the genus of X.

Question 1.7. Must (X, x) be an HKG J-curve?

The answer is sometimes yes, sometimes no. Here we state our three main theorems in

this direction; we prove them in §7.

Theorem 1.8. We have that (X, x) is an HKG J-curve if and only if J fixes x.

When gX > 1, Theorem 1.10 below gives a weaker hypothesis that still is sufficient to

imply that (X, x) is an HKG J-curve. Let Jx be the decomposition group StabJ(x).

Definition 1.9. We call the action of J mixed if there exists σ ∈ J such that σ(x) 6= x

and σ(x) is nontrivially but tamely ramified with respect to the action of Jx, and unmixed

otherwise.

Theorem 1.10. If gX > 1 and the action of J is unmixed, then (X, x) is an HKG J-curve.

We will also answer Question 1.7 in an explicit way when gX ≤ 1, whether or not the

action of J is mixed.

Finally, if J is solvable, the answer to Question 1.7 is almost always yes:

Theorem 1.11. If J is solvable and (X, x) is not an HKG J-curve, then one of the following

holds:

• X ' P1;

• p is 2 or 3, and X is an elliptic curve of j-invariant 0;

• p = 3, and X is isomorphic over k to the genus 3 curve z4 = t3u− tu3 in P2; or
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• p = 2, and X is isomorphic over k to the smooth projective model of the genus 10

affine curve z9 = (u2 + u)(u2 + u+ 1)3.

Each case in Theorem 1.11 actually arises. For more details, see Theorem 7.13.

2. Automorphisms of k[[t]]

The purpose of this section is to recall some basic results about Aut(k[[t]]).

2.A. Groups that are cyclic mod p. A p′-group is a finite group of order prime to p.

A finite group G is called cyclic mod p if it has a normal Sylow p-subgroup such that the

quotient is cyclic. Equivalently, G is cyclic mod p if G is a semidirect product P o C with

P a p-group and C a cyclic p′-group. In this case, P is the unique Sylow p-subgroup of G,

and the Schur–Zassenhaus theorem [18, Theorem 3.12] implies that every subgroup of G

isomorphic to C is conjugate to C.

2.B. The Nottingham group. Any k-algebra automorphism σ of k[[t]] preserves the

maximal ideal and its powers, and hence is t-adically continuous, so σ is uniquely determined

by specifying the power series σ(t) =
∑

n≥1 ant
n (with a1 ∈ k×). The map Aut(k[[t]]) −→ k×

sending σ to a1 is a surjective homomorphism. The Nottingham group N (k) is the kernel of

this homomorphism; it consists of the power series t+
∑

n≥2 ant
n under composition. Then

Aut(k[[t]]) is a semidirect product N (k)o k×. For background on N (k), see, e.g., [3].

If k is finite, then N (k) is a pro-p group. In general, N (k) is pro-solvable with a filtration

whose quotients are isomorphic to k under addition; thus every finite subgroup of N (k) is a

p-group. Conversely, Leedham-Green and Weiss, using techniques of Witt, showed that any

finite p-group can be embedded in N (Fp); indeed, so can any countably based pro-p group [2].

The embeddability of finite p-groups follows alternatively from the fact that the maximal

pro-p quotient of the absolute Galois group of k((t−1)) is a free pro-p group of infinite rank

[19, (1.4.4)].

On the other hand, any finite subgroup of k× is a cyclic p′-group. Thus any finite subgroup

of Aut(k[[t]]) is cyclic mod p, and any finite p-group in Aut(k[[t]]) is contained in N (k).

2.C. Algebraic automorphisms of k[[t]]. Call σ ∈ Aut(k[[t]]) algebraic if σ(t) is algebraic

over k(t).

Proposition 2.1. The set Autalg(k[[t]]) of all algebraic automorphisms of k[[t]] over k is a

subgroup of Aut(k[[t]]).

Proof. Suppose that σ ∈ Autalg(k[[t]]), so σ(t) is algebraic over k(t). Applying another

automorphism τ ∈ Aut(k[[t]]) to the algebraic relation shows that σ(τ(t)) is algebraic over

k(τ(t)). So if τ is algebraic, so is σ ◦ τ . On the other hand, taking τ = σ−1 shows that t is

algebraic over k(σ−1(t)). Since t is not algebraic over k, this implies that σ−1(t) is algebraic

over k(t). �
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2.D. Automorphisms of order p. The following theorem was proved by Klopsch [20,

Proposition 1.2] and reproved by Lubin [21, §4] (they assumed that k was finite, but this is

not crucial). Over algebraically closed fields it was shown in [1, p. 211] by Bertin and Mézard,

who mention related work of Oort, Sekiguchi and Suwa in [22]. For completeness, we give

here a short proof, similar to the proofs in [20, Appendix] and [1, p. 211]; it works over any

perfect field k of characteristic p > 0.

Theorem 2.2. Every σ ∈ N (k) of order p is conjugate in N (k) to t 7→ t(1 + ctm)−1/m for

a unique positive integer m prime to p and a unique c ∈ k×. The automorphisms given by

(m, c) and (m′, c′) are conjugate in Aut(k[[t]]) if and only if m = m′ and c/c′ ∈ k×m.

Proof. Extend σ to the fraction field k((t)). By Artin–Schreier theory, there exists y ∈ k((t))

such that σ(y) = y + 1. This y is unique modulo k((t))σ. Since σ acts trivially on the residue

field of k[[t]], we have y /∈ k[[t]]. Thus y = ct−m+ · · · for some m ∈ Z>0 and c ∈ k×. Choose y

so that m is minimal. If the ramification index p divided m, then we could subtract from y an

element of k((t))σ with the same leading term, contradicting the minimality of m. Thus p - m.

By Hensel’s lemma, y = c(t′)−m for some t′ = t + · · · . Conjugating by the automorphism

t 7→ t′ lets us assume instead that y = ct−m. Substituting this into σ(y) = y + 1 yields

c σ(t)−m = ct−m + 1. Equivalently, σ(t) = t(1 + c−1tm)−1/m. Rename c−1 as c.

Although y is determined only modulo ℘(k((t))), the leading term of a minimal y is

determined. Conjugating σ in Aut(k[[t]]) amounts to expressing σ with respect to a new

uniformizer u = u1t + u2t
2 + · · · . This does not change m, but it multiplies c by um1 .

Conjugating σ in N (k) has the same effect, except that u1 = 1, so c is unchanged too. �

Remark 2.3. For each positive integer m prime to p, let Dispm : N (k) −→ N (k) be the map

sending t 7→ f(t) to t 7→ f(tm)1/m (we take the mth root of the form t + · · · ). This is an

injective endomorphism of the group N (k), called m-dispersal in [21]. It would be conjugation

by t 7→ tm, except that t 7→ tm is not in Aut(k[[t]]) (for m > 1). The automorphisms in

Theorem 2.2 may be obtained from t 7→ t(1 + t)−1 by conjugating by t 7→ ct and then

dispersing.

3. Ramification and the Hurwitz Formula

Here we review the Hurwitz formula and related facts we need later.

3.A. Notation. By a curve over k we mean a 1-dimensional smooth projective geometrically

integral scheme X of finite type over k. For a curve X, let k(X) denote its function field,

and let gX or gk(X) denote its genus. If G is a finite group acting on a curve X, then X/G

denotes the curve whose function field is the invariant subfield k(X)G.

3.B. The local different. Let G be a finite subgroup of Aut(k[[t]]). For i ≥ 0, define

the ramification subgroup Gi := {g ∈ G | g acts trivially on k[[t]]/(ti+1)} as usual. Let

d(G) :=
∑∞

i=0(|Gi|−1) ∈ Z≥0; this is the exponent of the local different [24, IV, Proposition 4].
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3.C. The Hurwitz formula. In this paragraph we assume that k is an algebraically closed

field of characteristic p > 0. Let H be a finite group acting faithfully on a curve X over k.

For each s ∈ X(k), let Hs ≤ H be the inertia group. We may identify ÔX,s with k[[t]] and

Hs with a finite subgroup G ≤ Aut(k[[t]]); then define ds = ds(H) := d(Hs). We have ds > 0

if and only if s is ramified. If s is tamely ramified, meaning that Hs is a p′-group, then

ds = |Hs| − 1. The Hurwitz formula [15, IV, 2.4] is

2gX − 2 = |H|(2gX/H − 2) +
∑

s∈X(k)

ds.

Remark 3.1. When we apply the Hurwitz formula to a curve over a perfect field that is not

algebraically closed, it is understood that we first extend scalars to an algebraic closure.

3.D. Lower bound on the different. We continue to assume that k is an algebraically

closed field of characteristic p > 0. The following material is taken from [24, IV], as interpreted

by Lubin in [21]. Let G and the Gi be as in Section 3.B. An integer i ≥ 0 is a break in the

lower numbering of the ramification groups of G if Gi 6= Gi+1. Let b0, b1, . . . be the breaks in

increasing order; they are all congruent modulo p. The group G0/G1 embeds into k×, while

Gi/Gi+1 embeds in the additive group of k if i ≥ 1.

From now on, assume that G is a cyclic group of order pn with generator σ. Then G0 = G1

and each quotient Gi/Gi+1 is killed by p. Thus there must be exactly n breaks b0, . . . , bn−1.

If 0 ≤ i ≤ b0, then Gi = G; if 1 ≤ j ≤ n − 1 and bj−1 < i ≤ bj, then |Gi| = pn−j; and if

bn−1 < i, then Gi = {e}. According to the Hasse–Arf theorem, there exist positive integers

i0, . . . , in−1 such that bj = i0 + pi1 + · · ·+ pjij for 0 ≤ j ≤ n− 1. Then

d(G) = (i0 + 1)(pn − 1) + i1(p
n − p) + · · ·+ in−1(p

n − pn−1). (3.2)

The upper breaks b(j) we do not need to define here, but they have the property that in the

cyclic case, b(j) = i0 + · · ·+ ij for 0 ≤ j ≤ n− 1.

Local class field theory shows that p - b(0), that b(j) ≥ pb(j−1) for 1 ≤ j ≤ n− 1, and that

if this inequality is strict then p - b(j); this is proved in [24, XV, §2 Thm. 2] for quasi-finite

residue fields, and extended to algebraically closed residue fields in [4, Prop. 13.2]. Conversely,

any sequence of positive numbers b(0), . . . , b(n−1) that satisfies these three conditions is realized

by some element of order pn in Aut(k[[t]]) [21, Observation 5].

Thus i0 ≥ 1, and ij ≥ (p − 1)pj−1 for 1 ≤ j ≤ n − 1. Substituting into (3.2) yields the

following result.

Lemma 3.3. If G is cyclic of order pn, then

d(G) ≥ p2n + pn+1 + pn − p− 2

p+ 1

and this bound is sharp.
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Remark 3.4. Lemma 3.3 is valid over any perfect field k of characteristic p, because extending

scalars to k does not change d(G).

4. Harbater–Katz–Gabber G-curves

Let k be a perfect field of characteristic p > 0.

4.A. Pointed G-curves.

Definition 4.1. A pointed G-curve over k is a triple (X, x, φ) consisting of a curve X, a

point x ∈ X(k), and an injective homomorphism φ : G −→ Aut(X) such that G fixes x. (We

will sometimes omit φ from the notation.)

Suppose that (X, x, φ) is a pointed G-curve. The faithful action of G on X induces a

faithful action on k(X). Since G fixes x, the latter action induces a G-action on the k-algebras

OX,x and ÔX,x. Since Frac(OX,x) = k(X) and OX,x ⊆ ÔX,x, the G-action on ÔX,x is faithful

too. Since x ∈ X(k), a choice of uniformizer t at x gives a k-isomorphism ÔX,x ' k[[t]]. Thus

we obtain an embedding ρX,x,φ : G ↪→ Aut(k[[t]]). Changing the isomorphism ÔX,x ' k[[t]]

conjugates ρX,x,φ by an element of Aut(k[[t]]), so we obtain a map

{pointed G-curves} −→ {conjugacy classes of embeddings G ↪→ Aut(k[[t]])} (4.2)

(X, x, φ) 7−→ [ρX,x,φ].

Also, G is the inertia group of X −→ X/G at x.

Lemma 4.3. If (X, x, φ) is a pointed G-curve, then G is cyclic mod p.

Proof. The group G is embedded as a finite subgroup of Aut(k[[t]]). �

4.B. Harbater–Katz–Gabber G-curves.

Definition 4.4. A pointed G-curve (X, x, φ) over k is called a Harbater–Katz–Gabber G-curve

(HKG G-curve) if both of the following conditions hold:

(i) The quotient X/G is of genus 0. (This is equivalent to X/G ' P1k, since x maps to a

k-point of X/G.)

(ii) The action of G on X −{x} is either unramified everywhere, or tamely and nontrivially

ramified at one G-orbit in X(k)− {x} and unramified everywhere else.

Remark 4.5. Katz in [19] focused on the base curve X/G as starting curve. He fixed an

isomorphism of X/G with P1k identifying the image of x with ∞ and the image of a tamely

and nontrivially ramified point of X(k) − {x} (if such exists) with 0. He then considered

Galois covers X −→ X/G = P1k satisfying properties as above; these were called Katz–Gabber

covers in [4]. For our applications, however, it is more natural to focus on the upper curve X.

HKG curves have some good functoriality properties that follow directly from the definition:
7



• Base change: Let X be a curve over k, let x ∈ X(k), and let φ : G −→ Aut(X) be a

homomorphism. Let k′ ⊇ k be a field extension. Then (X, x, φ) is an HKG G-curve

over k if and only if its base change to k′ is an HKG G-curve over k′.

• Quotient: If (X, x, φ) is an HKG G-curve, and H is a normal subgroup of G, then X/H

equipped with the image of x and the induced G/H-action is an HKG G/H-curve.

Example 4.6. Let P be a finite subgroup of the additive group of k, so P is an elementary

abelian p-group. Then the addition action of P on A1
k extends to an action φ : P −→ Aut(P1

k)

totally ramified at ∞ and unramified elsewhere, so (P1k,∞, φ) is an HKG P -curve.

Example 4.7. Suppose that C is a p′-group and that (X, x, φ) is an HKG C-curve. By

Lemma 4.3, C is cyclic. By the Hurwitz formula, X must have genus 0 since there are

at most two C-orbits of ramified points and all the ramification is tame. Moreover, X

has a k-point (namely, x), so X ' P1k, and C is a p′-subgroup of the stabilizer of x inside

Aut(X) ' Aut(P1k) ' PGL2(k). It follows that after applying an automorphism of X = P1
k,

we can assume that C fixes the points 0 and ∞ and corresponds to the multiplication action

of a finite subgroup of k× on A1
k. Conversely, such an action gives rise to an HKG C-curve

(P1k,∞, φ).

The following gives alternative criteria for testing whether a pointed G-curve is an HKG

G-curve.

Proposition 4.8. Let (X, x, φ) be a pointed G-curve. Let P be the Sylow p-subgroup of G.

Then the following are equivalent:

(i) (X, x, φ) is an HKG G-curve.

(ii) (X, x, φ|P ) is an HKG P -curve.

(iii) The quotient X/P is of genus 0, and the action of P on X − {x} is unramified.

(iv) Equality holds in the inequality gX ≥ 1− |P |+ dx(P )/2.

Proof. Let C = G/P .

(iii)⇒(ii): Trivial.

(i)⇒(iii): By the quotient property of HKG curves, X/P is an HKG C-curve, so X/P ' P1
k

by Example 4.7. At each y ∈ X(k)− {x}, the ramification index ey for the P -action divides

|P | but is prime to p, so ey = 1. Thus the action of P on X − {x} is unramified.

(ii)⇒(i): Applying the result (i)⇒(iii) to P shows that X −→ X/P is unramified outside

x. There is a covering P1k ' X/P −→ X/G, so X/G ' P1k. We may assume that C 6= {1}.
By Example 4.7, the cover X/P −→ X/G is totally tamely ramified above two k-points, and

unramified elsewhere. One of the two points must be the image of x; the other is the image

of the unique tamely ramified G-orbit in X(k), since X −→ X/P is unramified outside x.

(iii)⇔(iv): The Hurwitz formula (see Remark 3.1) for the action of P simplifies to the

inequality in (iv) if we use gX/P ≥ 0 and discard ramification in X − {x}. Thus equality

holds in (iv) if and only if gX/P = 0 and the action of P on X − {x} is unramified. �
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4.C. The Harbater–Katz–Gabber theorem. The following is a consequence of work of

Harbater [14, §2] when G is a p-group and of Katz and Gabber [19] when G is arbitrary.

Theorem 4.9 (Harbater, Katz–Gabber). The assignment (X, x, φ) 7→ ρX,x,φ induces a

surjection from the set of HKG G-curves over k up to equivariant isomorphism to the set of

conjugacy classes of embeddings of G into Aut(k[[t]]).

Corollary 4.10. Any finite subgroup of Autk(k[[t]]) can be conjugated into Autk′(k
′[[t]]) for

some finite extension k′ of k in k.

Proof. The subgroup is realized by some HKG curve over k. Any such curve is defined over

some finite extension k′ of k. �

Corollary 4.11. Any finite subgroup of Aut(k[[t]]) can be conjugated into Autalg(k[[t]]).

Proof. The subgroup is realized by some HKG curve X. By conjugating, we may assume

that the uniformizer t is a rational function on X. Then each power series σ(t) represents

another rational function on X, so σ(t) is algebraic over k(t). �

5. Almost rational automorphisms

5.A. The field generated by a group of algebraic automorphisms. Let G be a finite

subgroup of Autalg(k[[t]]). Let L := k({σ(t) : σ ∈ G}) ⊆ k((t)). Then L is a finite extension

of k(t), so L ' k(X) for some curve X. The t-adic valuation on k((t)) restricts to a valuation

on L associated to a point x ∈ X(k). The G-action on k((t)) preserves L. This induces an

embedding φ : G −→ Aut(X) such that G fixes x, so (X, x, φ) is a pointed G-curve over k.

Theorem 5.1. Let G be a finite subgroup of Autalg(k[[t]]). Let L and (X, x, φ) be as above.

Let d := [L : k(t)].

(a) We have gX ≤ (d− 1)2.

(b) If G is cyclic of order pn, then gX ≥
p(pn − 1)(pn−1 − 1)

2(p+ 1)
. Moreover, if equality holds,

then (X, x, φ) is an HKG G-curve.

(c) Suppose that G is cyclic of order pn. Then

d ≥ 1 +

√
p(pn − 1)(pn−1 − 1)

2(p+ 1)
. (5.2)

In particular, if d ≤ p and n ≥ 2, then d = p = n = 2 and (X, x, φ) is an HKG

Z/4Z-curve of genus 1.

Proof.

(a) In [23, §2], a subfield F ⊆ L is called d-controlled if there exists e ∈ Z>0 such that

[L : F ] ≤ d/e and gF ≤ (e− 1)2. In our setting, the G-action on k((t)) preserves L, so

[L : k(σ(t))] = d for every σ ∈ G. By [23, Corollary 2.2], L ⊆ L is d-controlled. Here

d/e = 1, so gL ≤ (e− 1)2 = (d− 1)2.
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(b) In the inequality gX ≥ 1− |G|+ dx(G)/2 of Proposition 4.8(iv), substitute |G| = pn and

the bound of Lemma 3.3. If equality holds, then Proposition 4.8(iv)⇒(i) shows that

(X, x, φ) is an HKG G-curve.

(c) Combine the upper and lower bounds on gX in (a) and (b). If d ≤ p and n ≥ 2, then

p ≥ d ≥ 1 +

√
p(p2 − 1)(p− 1)

2(p+ 1)
= 1 + (p− 1)

√
p

2
≥ 1 + (p− 1) = p,

so equality holds everywhere. In particular, p = d, n = 2, and p/2 = 1, so d = p = n = 2.

Also, (b) shows that (X, x, φ) is an HKG G-curve, and gX = (d− 1)2 = 1. �

Remark 5.3. Part (c) of Theorem 5.1 implies the first statement in Theorem 1.2, namely that

if σ is an almost rational automorphism of order pn > p, then p = n = 2. To complete the

proof of Theorem 1.2 we will classify in §5.B the σ when p = n = 2.

5.B. Almost rational automorphisms of order 4. In this section, k is a perfect field of

characteristic 2, and G = Z/4Z.

Definition 5.4. For a, b ∈ k, let Ea,b be the projective closure of

z2 − z = w3 + (b2 + b+ 1)w2 + a.

Let O ∈ Ea,b(k) be the point at infinity, and let φ : Z/4Z −→ Aut(Ea,b) send 1 to the order 4

automorphism

σ : (w, z) 7−→ (w + 1, z + w + b).

Proposition 5.5. Each (Ea,b, O, φ) in Definition 5.4 is an HKG Z/4Z-curve over k.

Proof. The automorphism σ fixes O. Also, σ2 maps (w, z) to (w, z + 1), so σ2 fixes only O;

hence the G-action on Ea,b − {O} is unramified. Since Ea,b −→ Ea,b/G is ramified, the genus

of Ea,b/G is 0. �

Proposition 5.6. Let k be a perfect field of characteristic 2. Let G = Z/4Z. For an HKG

G-curve (X, x, φ′) over k, the following are equivalent:

(i) The genus of X is 1.

(ii) The lower ramification groups for X −→ X/G at x satisfy |G0| = |G1| = 4, |G2| =

|G3| = 2, and |Gi| = 1 for i ≥ 4.

(iii) The ramification group G4 equals {1}.
(iv) There exist a, b ∈ k such that (X, x, φ′) is isomorphic to the HKG G-curve (Ea,b, O, φ)

of Definition 5.4.

Proof. Let g be the genus of X. Since G is a 2-group, |G0| = |G1| = 4.

(ii)⇒(i): This follows from the Hurwitz formula (see Remark 3.1)

2g − 2 = 4(−2) +
∑
i≥0

(|Gi| − 1).
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(i)⇒(ii): If g = 1, then the Hurwitz formula yields 0 = −8 + 3 + 3 +
∑

i≥2(|Gi| − 1). Since

the |Gi| form a decreasing sequence of powers of 2 and include all the numbers 4, 2, and 1

(see Section 3.D), the only possibility is as in (ii).

(ii)⇒(iii): Trivial.

(iii)⇒(ii): The lower breaks (see Section 3.D) satisfy 1 ≤ b0 < b1 < 4. Since b0 ≡ b1
(mod 2), (ii) follows.

(iv)⇒(i): The formulas in [25, III.§1] show that Ea,b is an elliptic curve, hence of genus 1.

(i)⇒(iv): By [25, A.1.2(c)], an elliptic curve with an order 4 automorphism has j-invariant

1728 = 0 ∈ k. By [25, A.1.1(c)], it has an equation y2 + a3y = x3 + a4x+ a6. Substituting

y 7→ y + a−13 a4x leads to an alternative form y2 + a3y = x3 + a2x
2 + a. Let u ∈ k× be such

that σ∗ acts on H0(X,Ω1) by multiplication by u−1. Then u4 = 1, so u = 1. By [25, p. 49],

σ has the form (x, y) 7→ (x+ r, y + sx+ t) for some r, s, t ∈ k. Since σ2 6= 1, we have s 6= 0.

Conjugating by a change of variable (x, y) 7→ (ε2x, ε3y) lets us assume that s = 1. The

condition that (x, y) 7→ (x + r, y + x + t) preserves y2 + a3y = x3 + a2x
2 + a implies that

a3 = r = 1 and a2 = t2 + t+ 1. Rename t, x, y as b, w, z. �

Corollary 5.7. The HKG Z/4Z-curves that are minimally ramified in the sense of having

the smallest value of inf{i : Gi = {1}} are those satisfying the equivalent conditions in

Proposition 5.6.

Let ℘(x) := x2−x be the Artin–Schreier operator in characteristic 2. The following lemma

is clear.

Lemma 5.8. Let L/K be a Z/2Z Artin–Schreier extension, so there exist a ∈ K and

b ∈ L−K such that ℘(b) = a. If x ∈ L−K satisfies ℘(x) ∈ K, then x ∈ b+K.

Theorem 5.9. Let k be a perfect field of characteristic 2. Let G = Z/4Z. Let X be the set

of HKG G-curves satisfying the equivalent conditions in Proposition 5.6. Then

(a) The map (4.2) restricts to a surjection from X to the set of conjugacy classes in Aut(k[[t]])

containing an almost rational automorphism of order 4.

(b) Explicitly, Ea,b (made into an HKG G-curve as in Proposition 5.5) maps to the conjugacy

class of

σb(t) :=
b2t+ (b+ 1)t2 + β

b2 + t2
, (5.10)

where β :=
∑∞

i=0(t
3 + (b2 + b+ 1)t2)2

i
is the unique solution to β2−β = t3 + (b2 + b+ 1)t2

in tk[[t]].

(c) For b, b′ ∈ k, the automorphisms σb, σb′ ∈ Aut(k[[t]]) are conjugate if and only if b ≡ b′

(mod ℘(k)).

Proof.

(a) First we show that each E0,b maps to a conjugacy class containing an almost rational

automorphism; the same will follow for Ea,b for a 6= 0 once we show in the proof of (c) that
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Ea,b gives rise to the same conjugacy class as E0,b. Let P := (0, 0) ∈ E0,b(k). Composing w

with translation-by-P yields a new rational function wP = z/w2 on E0,b; define zP similarly,

so zP = 1 − z2/w3. Since w has a simple zero at P , the function t := wP has a simple

zero at O. Also, σj(t) ∈ k(E0,b) = k(t, zP ), which shows that σ is almost rational since

z2P − zP = w3
P + (b2 + b+ 1)w2

P .

Now suppose that σ is any almost rational automorphism of order 4. Theorem 5.1(c) shows

that σ arises from an HKG Z/4Z-curve of genus 1, i.e., a curve as in Proposition 5.6(i).

(b) Again by referring to the proof of (c), we may assume a = 0. Follow the first half of

the proof of (a) for E0,b. In terms of the translated coordinates (wP , zP ) on E0,b, the order 4

automorphism of the elliptic curve is

(t, β) 7−→ σ((t, β)− P ) + P.

It is a straightforward but lengthy exercise to show that the first coordinate equals the

expression σb(t) in (5.10). One uses t = wP = z/w2, β = zP = 1 − z2/w3, and the

formulas σ(w) = w + 1 and σ(z) = z + w + b. In verifying equalities in the field k(t, β),

one can use the fact that k(t, β) is the quadratic Artin–Schreier extension of k(t) defined by

β2 − β = t3 + (b2 + b+ 1)t2.

(c) Let v := w2 − w. Let Ô be the completion of the local ring of Ea,b at the point O

at infinity, and let K̂ := Frac(Ô) = k((w−1))(z−1). Thus K̂G = k((v−1)). Define w′, z′, v′,

σ′, Ô ′, and K̂ ′ = k((w′−1))(z′−1) similarly for Ea′,b′ . By definition of the map (4.2), Ea,b
and Ea′,b′ give rise to the same conjugacy class if and only if there exists a G-equivariant

continuous isomorphism Ô
∼−→ Ô ′ or equivalently α : K̂

∼−→ K̂ ′. It remains to prove that α

exists if and only if b ≡ b′ (mod ℘(k)).

=⇒ : Suppose that α exists. Lemma 5.8 shows that α(w) = w′+ f for some f ∈ k((v′−1)).

Since α preserves valuations, f ∈ k[[v′−1]]. Since v′ has valuation −2, we may write

f = c +
∑

i≥2 fiw
′−i. Similarly, α(z) = z′ + h for some h =

∑
i≥−1 hiw

′−i ∈ w′k[[w′−1]].

Subtracting the equations

α(z)2 − α(z) = α(w)3 + (b2 + b+ 1)α(w)2 + a

z′
2 − z′ = w′

3
+ (b′

2
+ b′ + 1)w′

2
+ a′

yields

h2 − h = (w′ + f)3 − w′3 + (b2 + b+ 1)(w′ + f)2 − (b′
2

+ b′ + 1)w′
2

+ a− a′ (5.11)

= w′
2
f + w′f 2 + f 3 + ℘(b− b′)w′2 + (b2 + b+ 1)f 2 + a− a′

h2 − h ≡ (c+ ℘(b− b′))w′2 + c2w′ + (f2 + c3 + (b2 + b+ 1)c2 + a− a′) (mod w′−1k[[w′−1]]).

(5.12)
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Equating coefficients of w′ yields h−1 = c2. The G-equivariance of α implies

α(σ(z)) = σ′(α(z))

(z′ + h) + (w′ + f) + b = (z′ + w′ + b′) + σ′(h)

h+ f + b = b′ + σ′(h)

h−1w
′ + h0 + c+ b ≡ b′ + h−1(w

′ + 1) + h0 (mod w′
−1
k[[w′

−1
]]) (5.13)

b− b′ = h−1 − c = c2 − c = ℘(c).

⇐= : Conversely, suppose that b−b′ = ℘(c) for some c ∈ k. We must build a G-equivariant

continuous isomorphism α : K̂
∼−→ K̂ ′. Choose f := c+

∑
i≥2 fiw

′−i in k[[v′−1]] so that the

value of f2 makes the coefficient of w′0 in (5.12), namely the constant term, equal to 0. The

coefficient of w′2 in (5.12) is c+ ℘(℘(c)) = c4. So (5.12) simplifies to

h2 − h ≡ c4w′
2

+ c2w′ (mod w′
−1
k[[w′

−1
]]).

Thus we may choose h := c2w′ +
∑

i≥1 hiw
′−i so that (5.11) holds. Define α : k((w−1)) −→

k((w′−1)) by α(w) := w′ + f . Equation (5.11) implies that α extends to α : K̂ −→ K̂ ′ by

setting α(z) := z′ + h. Then α|k((w−1)) is G-equivariant since (w′ + 1) + f = (w′ + f) + 1. In

other words, σ−1α−1σ′α ∈ Gal(K̂/k((w−1))) = {1, σ2}. If σ−1α−1σ′α = σ2, then

ασ3 = σ′α

α(σ3(z)) = σ′(α(z))

α(z + w + b+ 1) = σ′(z′ + h)

(z′ + h) + (w′ + f) + b+ 1 = (z′ + w′ + b′) + σ′(h);

by the calculation leading to (5.13), this is off by 1 modulo w′−1k[[w′−1]]. Thus σ−1α−1σ′α = 1

instead. In other words, α is G-equivariant. �

Remark 5.14. Changing b to b+ 1 does not change the curve Ea,b, but it changes σ to σ−1.

Thus σ and σ−1 are conjugate in Aut(k[[t]]) if and only if 1 ∈ ℘(k), i.e., if and only if k

contains a primitive cube root of unity.

Combining Theorems 5.1(c) and 5.9 proves Theorem 1.2 (and a little more).

6. Constructions of Harbater–Katz–Gabber curves

Let k be an algebraically closed field of characteristic p > 0. Let (Y, y) be an HKG H-curve

over k. If the H-action on Y −{y} has a tamely ramified orbit, let S be that orbit; otherwise

let S be any H-orbit in Y −{y}. Let S ′ = S ∪ {y}. Let m,n ∈ Z≥1. Suppose that p - n, that

mn divides |S ′|, that the divisor
∑

s∈S′(s− y) is principal, and that for all s ∈ S ′, the divisor

m(s− y) is principal.
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Choose f ∈ k(Y )× with divisor
∑

s∈S′(s − y). Let π : X −→ Y be the cover with

k(X) = k(Y )(z), where z satisfies zn = f . Let C := Aut(X/Y ), so C is cyclic of order n.

Let x be the point of X(k) such that π(x) = y. Let G := {γ ∈ Aut(X) : γ|k(Y ) ∈ H}.

Proposition 6.1. Let k, Y,H, S ′, n,X,C,G be as above.

(a) Every automorphism of Y preserving S ′ lifts to an automorphism of X (in n ways).

(b) The sequence 1 −→ C −→ G −→ H −→ 1 is exact.

(c) We have that (X, x) is an HKG G-curve.

Proof.

(a) Suppose that α ∈ Aut(Y ) preserves S ′. Then div(αf/f) = (|S| + 1)(αy − y), which

is n times an integer multiple of the principal divisor m(αy − y), so αf/f = gn for

some g ∈ k(Y )×. Extend α to an automorphism of k(X) by defining αz := gz; this is

well-defined since the relation zn = f is preserved. Given one lift, all others are obtained

by composing with elements of C.

(b) Only the surjectivity of G −→ H is nontrivial, and that follows from (a).

(c) The quotient X/G is isomorphic to (X/C)/(G/C) = Y/H, which is of genus 0. In the

covers X −→ X/C ' Y −→ X/G ' Y/H, all the ramification occurs above and below

S ′. The valuation of f at each point of S ′ is 1 mod n, so X −→ Y is totally ramified

above S ′. Hence each ramified G-orbit in X maps bijectively to an H-orbit in Y , and

each nontrivial inertia group in G is an extension of a nontrivial inertia group of H by C.

Thus, outside the totally ramified G-orbit {x}, there is at most one ramified G-orbit and

it is tamely ramified. �

Example 6.2. Let (Y, y) = (P1,∞), with coordinate function t ∈ k(P1). Let H ≤ PGL2(Fq)

be a group fixing ∞ and acting transitively on A1(Fq). (One example is H :=

(
1 Fq
0 1

)
.)

Let n be a positive divisor of q + 1. Then the curve zn = tq − t equipped with the point

above ∞ is an HKG G-curve, where G is the set of automorphisms lifting those in H. (Here

S ′ = P1(Fq), m = 1, and f = tq − t ∈ k(P1). Degree 0 divisors on P1 are automatically

principal.)

Example 6.3. Let p = 2. Let (Y, y) be the j-invariant 0 elliptic curve u2 + u = t3 with its

identity, so # Aut(Y, y) = 24 [16, Chapter 3, §6]. Let H be Aut(Y, y) or its Sylow 2-subgroup.

Then k(Y )( 3
√
t4 + t) is the function field of an HKG G-curve X, for an extension G of H

by a cyclic group of order 3. (Here S ′ = Y (F4), which is also the set of 3-torsion points on

Y , and m = n = 3, and f = t4 + t.) Eliminating t by cubing z3 = t4 + t and substituting

t3 = u2 + u leads to the equation z9 = (u2 + u)(u2 + u+ 1)3 for X.

Example 6.4. Let p = 3. Let (Y, y) be the j-invariant 0 elliptic curve u2 = t3 − t with its

identity, so # Aut(Y, y) = 12 [16, Chapter 3, §5]. Let H be a group between Aut(Y, y) and
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its Sylow 3-subgroup. Then k(Y )(
√
u) is the function field of an HKG G-curve X, for an

extension G of H by a cyclic group of order 2. (Here S ′ is the set of 2-torsion points on

Y , and m = n = 2, and f = u.) Thus X has affine equation z4 = t3 − t. (This curve is

isomorphic to the curve in Example 6.2 for q = 3, but |C| here is 2 instead of 4.)

7. Harbater–Katz–Gabber curves with extra automorphisms

We return to assuming only that k is perfect of characteristic p. Throughout this section,

(X, x) is an HKG G-curve over k, and J is a finite group such that G ≤ J ≤ Aut(X). Let

Jx be the decomposition group of x in J . Choose Sylow p-subgroups P ≤ Px ≤ PJ of

G ≤ Jx ≤ J , respectively. In fact, P ≤ G is uniquely determined since G is cyclic mod p by

Lemma 4.3; similarly Px ≤ Jx is uniquely determined.

7.A. General results.

Proof of Theorem 1.8. If (X, x) is an HKG J-curve, then J fixes x, by definition.

Now suppose that J fixes x. By Lemma 4.3, J is cyclic mod p. By Proposition 4.8(i)⇒(ii),

(X, x) is an HKG P -curve. Identify X/P with P1k so that x maps to ∞ ∈ X/P ' P1k.
Case 1: J normalizes G. Then J normalizes also the unique Sylow p-subgroup P of

G. In particular, P is normal in PJ . If a p-group acts on P1k fixing ∞, it must act by

translations on A1
k; applying this to the action of PJ/P on X/P shows that X/P −→ X/PJ

is unramified outside ∞. Also, X −→ X/P is unramified outside x. Thus the composition

X −→ X/P −→ X/PJ is unramified outside x. On the other hand, X/PJ is dominated by

X/P , so gX/PJ
= 0. By Proposition 4.8(iii)⇒(i), (X, x) is an HKG J-curve.

Case 2: J is arbitrary. There exists a chain of subgroups beginning at P and ending at

PJ , each normal in the next. Ascending the chain, applying Case 1 at each step, shows

that (X, x) is an HKG curve for each group in this chain, and in particular for PJ . By

Proposition 4.8(ii)⇒(i), (X, x) is also an HKG J-curve. �

Corollary 7.1. We have that (X, x) is an HKG Jx-curve and an HKG Px-curve.

Proof. Apply Theorem 1.8 with Jx in place of J . Then apply Proposition 4.8(i)⇒(ii). �

Lemma 7.2. Among p′-subgroups of Jx that are normal in J , there is a unique maximal

one; call it C. Then C is cyclic, and central in Jx.

Proof. Let C be the group generated by all p′-subgroups of Jx that are normal in J . Then C

is another group of the same type, so it is the unique maximal one. By Lemma 4.3, Jx is

cyclic mod p, so Jx/Px is cyclic. Since C is a p′-group, C −→ Jx/Px is injective. Thus C is

cyclic. The injective homomorphism C −→ Jx/Px respects the conjugation action of Jx on

each group. Since Jx/Px is abelian, the action on Jx/Px is trivial. Thus the action on C is

trivial too; i.e., C is central in Jx. �
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7.B. Low genus cases. Define A := Aut(X, x), so G ≤ A. By Theorem 1.8, (X, x) is an

HKG J-curve if and only if J ≤ A. When gX ≤ 1, we can describe A very explicitly.

Example 7.3. Suppose that gX = 0. Then (X, x) ' (P1k,∞). Thus Aut(X) ' PGL2(k),

and A is identified with the image in PGL2(k) of the group of upper triangular matrices in

GL2(k).

Example 7.4. Suppose that gX = 1. Then (X, x) is an elliptic curve, and Aut(X) ' X(k)oA.

Let A := Aut(Xk, x) be the automorphism group of the elliptic curve over k. Now p divides

|G|, since otherwise it follows from Example 4.7 that gX = 0. Thus G contains an order p

element, which by the HKG property has a unique fixed point. Since G ≤ A ≤ A, the group

A also contains such an element. By the computation of A (in [16, Chapter 3], for instance),

p is 2 or 3, and X is supersingular, so X has j-invariant 0. Explicitly:

• If p = 2, then A ' SL2(F3) ' Q8 o Z/3Z (order 24), and G is Z/2Z, Z/4Z, Q8, or

SL2(F3).
• If p = 3, then A ' Z/3Z o Z/4Z (order 12), and G is Z/3Z, Z/6Z, or Z/3Z o Z/4Z.

Because of Corollary 7.1, the statement about G is valid also for Jx.

7.C. Cases in which p divides |G|. If p divides |G|, then we can strengthen Theorem 1.8:

see Theorem 7.6 and Corollary 7.7 below.

Lemma 7.5. If p divides |G| and G is normal in J , then J fixes x.

Proof. Ramification outside x is tame, so if p divides |G|, then x is the unique point fixed by

G. If, in addition, J normalizes G, then J must fix this point. �

Theorem 7.6. If p divides |G|, then the following are equivalent:

(i) (X, x) is an HKG J-curve.

(ii) J fixes x.

(iii) J is cyclic mod p.

Proof.

(i)⇔(ii): This is Theorem 1.8.

(ii)⇒(iii): This is Lemma 4.3.

(iii)⇒(i): By Proposition 4.8(i)⇒(ii), (X, x) is an HKG P -curve. Again choose a chain

of subgroups beginning at P and ending at PJ , each normal in the next. Since J is cyclic

mod p, we may append J to the end of this chain. Applying Lemma 7.5 and Theorem 1.8 to

each step of this chain shows that for each group K in this chain, K fixes x and (X, x) is an

HKG K-curve. �

Corollary 7.7. If p divides |G|, then

(a) Px = PJ .
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(b) The prime p does not divide the index (J : Jx).

(c) If j ∈ Jx, then jPx = Px.

(d) If j /∈ Jx, then jPx ∩ Px = 1.

(e) If J contains a nontrivial normal p-subgroup A, then (X, x) is an HKG J-curve.

Proof.

(a) Since p divides |Px| and PJ is cyclic mod p, Corollary 7.1 and Theorem 7.6(iii)⇒(ii) imply

that PJ fixes x. Thus PJ ≤ Px, so Px = PJ .

(b) The exponent of p in each of |Jx|, |Px|, |PJ |, |J | is the same.

(c) By Lemma 4.3, Jx is cyclic mod p, so Px is normal in Jx.

(d) A nontrivial element of Px ∩ jPx would be an element of p-power order fixing both x and

jx, contradicting the definition of HKG Jx-curve.

(e) The group A is contained in every Sylow p-subgroup of J ; in particular, A ≤ PJ = Px. This

contradicts (d) unless Jx = J . By Theorem 7.6(ii)⇒(i), (X, x) is an HKG J-curve. �

Lemma 7.8. Suppose that gX > 1. Let A ≤ J be an elementary abelian `-subgroup for some

prime `. Suppose that Px normalizes A. Then A ≤ Jx.

Proof. It follows from Example 4.7 that p divides |G|. If ` = p, then PxA is a p-subgroup of

J , but Px is a Sylow p-subgroup of J by Corollary 7.7(a), so A ≤ Px ≤ Jx.

Now suppose that ` 6= p. The conjugation action of Px on A leaves the group Ax = Jx ∩A
invariant. By Maschke’s theorem, A = Ax × C for some other subgroup C normalized by

Px. Then Cx = 1. By Corollary 7.1, (X, x) is an HKG Px-curve. Since Px normalizes C, the

quotient X/C equipped with the image y of x and the induced Px-action is another HKG

Px-curve. Since Cx = 1, we have dx(Px) = dy(Px); thus Proposition 4.8(i)⇒(iv) implies that

gX = gX/C . Since gX > 1, this implies that C = 1. So A = Ax ≤ Jx. �

7.D. Unmixed actions.

Proof of Theorem 1.10. By the base change property mentioned after Remark 4.5, we may

assume that k is algebraically closed. By Corollary 7.1, we may enlarge G to assume that

G = Jx.

First suppose that the action of G has a nontrivially and tamely ramified orbit, say Gy,

where y ∈ X(k). The Hurwitz formula applied to (X,G) gives

2gX − 2 = −2|G|+ dx(G) + |G/Gy|(|Gy| − 1). (7.9)

Since the action of J is unmixed, Jx and Jy are disjoint. The Hurwitz formula for (X, J)

therefore gives

2gX − 2 ≥ −2|J |+ |J/G|dx(G) + |J/Jy|(|Jy| − 1). (7.10)

Calculating |J/G| times the equation (7.9) minus the inequality (7.10) yields

(|J/G| − 1)(2gX − 2) ≤ |J/Jy| − |J/Gy| ≤ 0,
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because Gy ≤ Jy. Since gX > 1, this forces J = G.

If a nontrivially and tamely ramified orbit does not exist, we repeat the proof while omitting

the terms involving y. �

7.E. Mixed actions. Here is an example, mentioned to us by Rachel Pries, that shows that

Theorem 1.10 need not hold if the action of J is mixed.

Example 7.11. Let n be a power of p; assume that n > 2. Let k = Fn6 . Let X be the

curve over k constructed by Giulietti and Korchmáros in [11]; it is denoted C3 in [13]. Let

J = Aut(X ). Let G be a Sylow p-subgroup of J ; by [11, Theorem 7], |G| = n3. Then X is

an HKG G-curve by [13, Lemma 2.5 and proof of Proposition 3.12], and gX > 1 by [11, Thm.

2]. Taking σ in Definition 1.9 to be the automorphism denoted W̃ on [11, p. 238] shows that

the action of J on X is mixed. In fact, [11, Theorem 7] shows that J fixes no k-point of X ,

so the conclusion of Theorem 1.10 does not hold.

7.F. Solvable groups. Here we prove Theorem 1.11. If p does not divide |G|, then Exam-

ple 4.7 shows that X ' P1k, so the conclusion of Theorem 1.11 holds. For the remainder of

this section, we assume that p divides |G|. In this case we prove Theorem 1.11 in the stronger

form of Theorem 7.13, which assumes a hypothesis weaker than solvability of J . We retain

the notation set at the beginning of Section 7, and let C denote the maximal p′-subgroup of

Jx that is normal in J , as in Lemma 7.2.

Lemma 7.12. Suppose that gX > 1 and that (X, x) is not an HKG J-curve. If J contains a

nontrivial normal abelian subgroup, then C 6= 1.

Proof. The last hypothesis implies that J contains a nontrivial normal elementary abelian

`-subgroup A for some prime `. By Corollary 7.7(e), ` 6= p. By Lemma 7.8, A ≤ Jx. Thus

1 6= A ≤ C. �

Theorem 7.13. Suppose that p divides |G| and (X, x) is not an HKG J-curve.

(a) Suppose that gX = 0, so Aut(X) ' Aut(P1k) ' PGL2(k). Then J is conjugate in PGL2(k)

to precisely one of the following groups:

• PSL2(Fq) or PGL2(Fq) for some finite subfield Fq ≤ k (these groups are the same if

p = 2); note that PSL2(Fq) is simple when q > 3.

• If p = 2 and m is an odd integer at least 5 such that a primitive mth root of unity

ζ ∈ k satisfies ζ + ζ−1 ∈ k, the dihedral group of order 2m generated by

(
ζ 0

0 ζ−1

)

and

(
0 1

1 0

)
if ζ ∈ k, and generated by

(
ζ + ζ−1 + 1 1

1 1

)
and

(
0 1

1 0

)
if ζ /∈ k.

(The case m = 3 is listed already, as PSL2(F2).)

• If p = 3 and F9 ≤ k, a particular copy of the alternating group A5 in PSL2(F9) (all

such copies are conjugate in PGL2(F9)); the group A5 is simple.
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If, in addition, J contains a nontrivial normal abelian subgroup, then p = q ∈ {2, 3} and

|PJ | = p.

(b) Suppose that gX = 1. Then p is 2 or 3, and the limited possibilities for X and Jx are

described in Example 7.4. The group J is a semidirect product of Jx with a finite abelian

subgroup T ≤ X(k).

(c) Suppose that gX > 1. Let C ≤ J be as in Lemma 7.2. Let Y = X/C, let y be the image of

x under X −→ Y , and let U = StabJ/C(y). If J/C contains a nontrivial normal abelian

subgroup (automatic if J is solvable), then one of the following holds:

i. p = 3, gX = 3, gY = 0, C ' Z/4Z, Px ' Z/3Z, (J : Jx) = 4, and (X, x) is isomorphic

over k to the curve z4 = t3u− tu3 in P2 equipped with (t : u : z) = (1 : 0 : 0), which

is the curve in Example 6.2 with q = 3. Moreover,

PSL2(F3) ≤ J/C ≤ PGL2(F3).

ii. p = 2, gX = 10, gY = 1, C ' Z/3Z, Px ' Q8, (J : Jx) = 9, and (X, x) is isomorphic

over k to the curve in Example 6.3. The homomorphism J −→ J/C sends the

subgroups Jx ⊃ Px to subgroups Jx/C ⊃ PxC/C of U . Also, PxC/C ' Px ' Q8 and

U ' SL2(Z/3Z), and U acts faithfully on the 3-torsion subgroup Y [3] ' (Z/3Z)2 of

the elliptic curve (Y, y). The group J/C satisfies

Y [3]oQ8 ' (Z/3Z)2 oQ8 ≤ J/C ≤ (Z/3Z)2 o SL2(Z/3Z) ' Y [3]o U.

iii. p = 3, gX = 3, gY = 1, C ' Z/2Z, Px ' Z/3Z, (J : Jx) = 4, and (X, x) is isomorphic

over k to the curve z4 = t3u − tu3 in P2 equipped with (t : u : z) = (1 : 0 : 0) as in

Example 6.4. The homomorphism J −→ J/C sends the subgroups Jx ⊃ Px to

subgroups Jx/C ⊃ PxC/C of U . Also PxC/C ' Px ' Z/3Z and U ' Z/3Z o Z/4Z,

and U/Z(U) acts faithfully on the group Y [2] ' (Z/2Z)2. The group J/C satisfies

Y [2]o Z/3Z = (Z/2Z)2 o Z/3Z ≤ J/C ≤ (Z/2Z)2 o (Z/3Z o Z/4Z) = Y [2]o U.

In each of i., ii., and iii., if (X, x) is the curve over k specified, from Examples 6.2–6.4,

then any group satisfying the displayed upper and lower bounds for J/C is actually realized

as J/C for some subgroup J ≤ Aut(X) satisfying all the hypotheses.

Proof.

(a) The groups listed in the statement of (a) are pairwise non-isomorphic, hence not

conjugate. Thus it remains to prove that J is conjugate to one of them. By Corollary 7.7(e),

J has no normal Sylow p-subgroup. We will show that every finite subgroup J ≤ PGL2(k)

with no normal Sylow p-subgroup is conjugate to a group listed in (a). This would follow

immediately from [9, Theorem B], but [9] has not yet been published, so we now give a proof

not relying on it. We will use the exact sequence

1 −→ PSL2(k) −→ PGL2(k)
det−→ k×/k×2 −→ 1.

19



Case 1: k is finite and J ≤ PSL2(k). For finite k, the subgroups of PSL2(k) up to conjugacy

were calculated by Dickson [8, §260]; see also [17, Ch.2 §8], [26, Ch.3 §6]. The ones with

no normal Sylow p-subgroup are among those listed in (a). (Dickson sometimes lists two

PSL2(k)-conjugacy classes of subgroups of certain types, but his proof shows that they map

to a single PGL2(k)-conjugacy class.)

Case 2: k is infinite and J ≤ PSL2(k). Let J̃ be the inverse image of J under the finite

extension SL2(k) � PSL2(k). So J̃ is finite. The representation of J̃ on k2 is absolutely

irreducible, since otherwise J̃ would inject into the group

(
∗ ∗
0 ∗

)
of 2× 2 upper triangular

invertible matrices over k, and J̃ would have a normal Sylow p-subgroup J̃ ∩

(
1 ∗
0 1

)
, and J

would have one too, contrary to assumption. By [10, Theorem 19.3], this representation is

definable over the field k0 generated by the traces of the elements of J̃ . Each trace is a sum of

roots of unity, so k0 is finite. Thus J is conjugate in PGL2(k) to a subgroup J0 ≤ PGL2(k0).

Conjugation does not change the determinant, so J0 ≤ PSL2(k0). By Case 1, J0 is conjugate

to a group in our list, so J is too.

Case 3: k is finite or infinite, and J ≤ PGL2(k), but J � PSL2(k). If p = 2, then, since k

is perfect, k× = k×2, so PGL2(k) = PSL2(k). Thus p > 2. Let J ′ := J ∩PSL2(k). Then J/J ′

injects into k×/k×2, so p - (J : J ′). The Sylow p-subgroups of J ′ are the same as those of J ,

so J ′ has exactly one if and only if J has exactly one; i.e., J ′ has a normal Sylow p-subgroup

if and only if J has one. Since J does not have one, neither does J ′. By Case 1, we may

assume that J ′ appears in our list.

The group J is contained in the normalizer NPGL2(k)(J
′). We now break into cases according

to J ′. If J ′ is PSL2(Fq) or PGL2(Fq) for some subfield Fq ≤ k, then NPGL2(k)(J
′) = PGL2(Fq)

by [8, §255] (the proof there works even if k is infinite), so J = PGL2(Fq), which is in our

list. Recall that p > 2, so J ′ is not dihedral. Thus the only remaining possibility is that

J ′ ' A5 ≤ PSL2(F9) ≤ PGL2(k). Let {1, a} be a subgroup of order 2 in the image of J in

k×/k×2 and let J ′′ be its inverse image in J . Then J ′′ < PSL2(k(
√
a)), so J ′′ should appear

in our list, but |J ′′| = 120 and there is no group of order 120 there for p = 3.

(b) In the notation of Example 7.4, let ψ : J −→ A be the projection. Let T := kerψ ≤
X(k). Since X is supersingular, T is a p′-group. Let J := ψ(J) ≤ A. Since G ≤ J ≤ A,

the group J is in the list of possibilities in Example 7.4 for G given p. Checking each case

shows that its Sylow p-subgroup P J := ψ(PJ) is normal in J . The action of Aut(X) on X(k)

restricts to the conjugation action of J on the abelian group T , which factors through J , so

H0(P J , T ) = T PJ = T PJ = 0, since PJ has a unique fixed point on X. Also, H i(P J , T ) = 0

for all i ≥ 1, since |P J | and |T | are coprime. Thus, by the Lyndon–Hochschild–Serre spectral

sequence applied to P J C J , we have H i(J, T ) = 0 for all i ≥ 1. Therefore the short exact

sequence 0 −→ T −→ J −→ J −→ 1 is split, and all splittings are conjugate. Let K be the
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image of a splitting J −→ J . Then K contains a Sylow p-subgroup of J . Equivalently, some

conjugate K ′ of K contains PJ . Since K ′ ' J and P J is normal in J , the group PJ is normal

in K ′. Since x is the unique fixed point of PJ , this implies that K ′ fixes x; i.e., K ′ ≤ Jx. On

the other hand, |K ′| = |J | ≥ |Jx| since Jx ∩ T = {e}. Hence K ′ = Jx and J = T o Jx.

(c) We may assume that k is algebraically closed. By Theorem 1.8, (X, x) is an HKG

Jx-curve. Then (Y, y) is an HKG Jx/C-curve, but not an HKG J/C-curve since J/C does not

fix y. If gY > 1, then Lemma 7.12 applied to Y yields a nontrivial p′-subgroup C1 ≤ Jx/C

that is normal in J/C, and the inverse image of C1 in J is a p′-subgroup C2 ≤ Jx normal in

J with C2  C, contradicting the maximality of C. Thus gY ≤ 1. Since gX > 1, we have

C 6= 1. Let n = |C|. Let ζ be a primitive nth root of unity in k. Let c be a generator of C.

By Lemma 7.2, C is central in Jx, so PxC is a direct product. By Corollary 7.1, X is

an HKG Px-curve. Thus X/Px ' P1, and the Px-action on X is totally ramified at x and

unramified elsewhere. The action of C on X/Px fixes the image of x, so by Example 4.7, the

curves in the covering X/Px −→ X/PxC have function fields k(z) ⊇ k(f), where zn = f and
cz = ζz. Powers of z form a k(X/PxC)-basis of eigenvectors for the action of c on k(X/Px).

We may assume that the (totally ramified) image of x in X/Px is the point z =∞. We

obtain a diagram of curves

X

Cww Px

totally ramified above z = ∞, unramified elsewhere

((

Y ' X/C
Px

''

X/Px ' P1z
C

totally ramified above f = ∞, f = 0ww

X/PxC ' P1f

where the subscript on each P1 indicates the generator of its function field, and the group

labeling each morphism is the Galois group. The field k(X) is the compositum of its subfields

k(Y ) and k(X/Px).

Let S be the preimage of the point f = 0 under Y −→ X/PxC, and let S ′ := S ∪ {y}.
Comparing the p-power and prime-to-p ramification on both sides of the diagram shows

that the point f =∞ totally ramifies in X −→ Y −→ X/PxC, while the point f = 0 splits

completely into a set S of |Px| points of Y , each of which is totally ramified in X −→ Y . Thus

the extension k(X) ⊇ k(Y ) is Kummer and generated by the same z as above, and powers

of z form a k(Y )-basis of eigenvectors for the action of c on k(X). This extension is totally

ramified above S ′ and unramified elsewhere. The divisor of f on Y is S − |S|y = S ′ − |S ′|y,

where S here denotes the divisor
∑

s∈S s, and so on.

Let j ∈ J . Since C C J , the element j acts on Y and preserves the branch locus S ′ of

X −→ Y . Since X −→ Y is totally ramified above S ′, the automorphism j fixes x if and

only if it fixes y. Since Px acts transitively on S, and J does not fix x or y, the set S ′ is the
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J-orbit of y. Thus

(J : Jx) = |Jx| = |Jy| = |S ′| = |Px|+ 1.

Suppose that j ∈ J − Jx, so jy 6= y. Then the divisor of jf/f on Y is(
S ′ − |S ′| jy

)
− (S ′ − |S ′|y) = |S ′|(y − jy),

which is nonzero. Since C is cyclic and normal, j−1cj = cr for some r, and hence c(jz/z) =
jcrz/cz = ζr−1 (jz/z). Thus jz/z is a ζr−1-eigenvector, so jz/z = zr−1g for some g ∈ k(Y )×.

Taking nth powers yields jf/f = f r−1gn. The corresponding equation on divisors is

|S ′|(y − jy) = (r − 1)(S ′ − |S ′|y) + n div(g). (7.14)

Considering the coefficient of a point of S ′ − {y, jy} shows that r − 1 ≡ 0 (mod n). Then,

considering the coefficient of y shows that n divides |S ′|, and dividing equation (7.14) through

by n shows that (|S ′|/n)(y − jy) is div(f (r−1)/ng), a principal divisor. If, moreover, gY > 0,

then a difference of points on Y cannot be a principal divisor, so n 6= |S ′|.
Case 1: gY = 0. Applying (a) to Y shows that p ∈ {2, 3} and any Sylow p-subgroup of

J/C has order p. Since C is a p′-group, |PJ | = p too. By Corollary 7.7(a), Px = PJ , so

|Px| = p, and n divides |S ′| = p + 1. Thus (p, n) is (2, 3), (3, 2), or (3, 4). The Hurwitz

formula for X −→ Y yields

2gX − 2 = n(2 · 0− 2) +
∑
s∈S′

(n− 1) = −2n+ (p+ 1)(n− 1).

Only the case (p, n) = (3, 4) yields gX > 1. By (a), we may choose an isomorphism Y ' P1
t

mapping y to ∞ such that the J/C-action on Y becomes the standard action of PSL2(F3) or

PGL2(F3) on P1t . Then S ′ = Jy = P1(F3). Then f has divisor S ′ − 4y = A1(F3)− 3 · ∞ on

P1, so f = t3 − t up to an irrelevant scalar. Since k(X) = k(Y )( n
√
f), the curve X has affine

equation z4 = t3 − t. This is the same as the q = 3 case of Example 6.2.

Case 2: gY = 1. Applying (b) (i.e., Example 7.4) to Y shows that either p is 2 and |Px|
divides 8, or p = 3 and |Px| = 3; also, Y has j-invariant 0. Also, n divides |S ′| = |Px|+ 1,

but n is not 1 or |S ′|. Thus (p, n, |Px|, |S ′|) is (2, 3, 8, 9) or (3, 2, 3, 4). The Hurwitz formula

as before gives gX = 10 or gX = 3, respectively. Let m = |S ′|/n. Since m(y − jy) is principal

for all j ∈ J , if y is chosen as the identity of the elliptic curve, then the J-orbit S ′ of y is

contained in the group Y [m] of m-torsion points. But in both cases, these sets have the same

size |S ′| = m2. Thus S ′ = Y [m].

If p = 2, the j-invariant 0 curve Y has equation u2 + u = t3, and Y [3]− {y} is the set of

points with t ∈ F4, so f = t4 + t up to an irrelevant scalar, and k(X) = k(Y )( 3
√
t4 + t). Thus

X is the curve of Example 6.3.

If p = 3, the j-invariant 0 curve Y has equation u2 = t3 − t, and Y [2]− {y} is the set of

points with u = 0, so f = u up to an irrelevant scalar, and k(X) = k(Y )(
√
u) = k(t)( 4

√
t3 − t).

Thus X is the curve of Example 6.4.
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Finally, Proposition 6.1 implies that in each of i., ii., and iii., any group satisfying the

displayed upper and lower bounds, viewed as a subgroup of Aut(Y ), can be lifted to a suitable

group J of Aut(X). �

Remark 7.15. Suppose that (X, x) is not an HKG J-curve, gX > 1, and PJ is not cyclic or

generalized quaternion. Then [13, Theorem 3.16] shows that J/C is almost simple with socle

from a certain list of finite simple groups.
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