AUTOMORPHISMS OF HARBATER-KATZ-GABBER CURVES

FRAUKE M. BLEHER*, TED CHINBURG**, BJORN POONEN \dagger, AND PETER SYMONDS

Abstract

Let k be a perfect field of characteristic $p>0$, and let G be a finite group. We consider the pointed G-curves over k associated by Harbater, Katz, and Gabber to faithful actions of G on $k[[t]]$ over k. We use such "HKG G-curves" to classify the automorphisms of $k[[t]]$ of p-power order that can be expressed by particularly explicit formulas, namely those mapping t to a power series lying in a $\mathbb{Z} / p \mathbb{Z}$ Artin-Schreier extension of $k(t)$. In addition, we give necessary and sufficient criteria to decide when an HKG G-curve with an action of a larger finite group J is also an HKG J-curve.

1. Introduction

Throughout this article, k denotes a perfect field of characteristic $p>0$, and \bar{k} denotes an algebraic closure of k, while \wp denotes the Artin-Schreier operator defined by $\wp(x):=x^{p}-x$.
1.A. Finite-order automorphisms of $k[t t]$. Let $\operatorname{Aut}(k[t t])$ be the automorphism group of $k[t t]$ as a k-algebra. Then every order p element of $\operatorname{Aut}(k[t t])$ is conjugate to $t \mapsto$ $t\left(1+c t^{m}\right)^{-1 / m}$ for some $c \in k^{\times}$and some positive integer m prime to p (see [20, Proposition 1.2], [21, §4], and Theorem [2.2).

The natural question arises whether there is an equally explicit description of automorphisms of order p^{n} for $n>1$. Each such automorphism is conjugate to $t \mapsto \sigma(t)$ for some $\sigma(t) \in k[[t]$ that is algebraic over $k(t)$ (see Corollary 4.11). In this case, the field $L:=k\left(t, \sigma(t), \ldots, \sigma^{p^{n}-1}(t)\right) \subseteq k((t))$ is algebraic over $k(t)$. When $n>1$, we cannot have $L=k(t)$, because the group $\operatorname{Aut}_{k}(k(t)) \simeq \mathrm{PGL}_{2}(k)$ has no element of order p^{2}. The next simplest case from the point of view of explicit power series is the following:

Definition 1.1. Call $\sigma \in \operatorname{Aut}(k[[t]])$ almost rational if the field $L:=k(\{\sigma(t): \sigma \in G\})$ is a $\mathbb{Z} / p \mathbb{Z}$ Artin-Schreier extension of $k(t)$; i.e., $L=k(t, \beta)$ where $\beta \in k((t))$ satisfies $\wp(\beta)=\beta^{p}-\beta=\alpha$ for some $\alpha \in k(t)$.

[^0]By subtracting an element of $k\left[t^{-1}\right]$ from β, we may assume that $\beta \in t k[[t]]$ and hence $\alpha \in k(t) \cap t k[[t]]$. Then we have an explicit formula for β, namely

$$
\beta=-\sum_{i=0}^{\infty} \alpha^{p^{i}},
$$

and $\sigma(t)$ is a rational function in t and β. This is the sense in which almost rational automorphisms have explicit power series.

Prior to the present article, two of us found one explicit example of an almost rational σ of order $p^{n}>p$ (and its inverse); see [5]. Our first main theorem describes all such σ up to conjugacy.

Theorem 1.2. Suppose that σ is an almost rational automorphism of $k[t t]]$ of order p^{n} for some $n>1$. Then $p=2, n=2$, and there exists $b \in k$ (unique modulo $\wp(k)$) such that σ is conjugate to the order 4 almost rational automorphism

$$
\begin{equation*}
\sigma_{b}(t):=\frac{b^{2} t+(b+1) t^{2}+\beta}{b^{2}+t^{2}} \tag{1.3}
\end{equation*}
$$

where β is the unique solution to $\beta^{2}-\beta=t^{3}+\left(b^{2}+b+1\right) t^{2}$ in $t k[[t]]$.
Remark 1.4. If k is algebraically closed, then $\wp(k)=k$, so Theorem 1.2 implies that all almost rational automorphisms of order 4 lie in one conjugacy class in $\operatorname{Aut}(k[[t]])$.

Remark 1.5. The example in [5] was

$$
\begin{aligned}
\sigma_{0}(t) & =t+t^{2}+\sum_{j=0}^{\infty} \sum_{\ell=0}^{2^{j}-1} t^{6 \cdot 2^{j}+2 \ell} \\
& =t+t^{2}+\left(t^{6}\right)+\left(t^{12}+t^{14}\right)+\left(t^{24}+t^{26}+t^{28}+t^{30}\right)+\cdots \\
& =\frac{t}{1+t}+\frac{\gamma}{(1+t)^{2}}
\end{aligned}
$$

over \mathbb{F}_{2}, where the series $\gamma:=\sum_{i=0}^{\infty}\left(t^{3}+t^{4}\right)^{2^{i}}$ satisfies $\gamma^{2}-\gamma=t^{3}+t^{4}$. (If β is as in Theorem 1.2, then $\gamma=\beta+t^{2}$.) Zieve and Scherr communicated to us that the inverse of σ_{0} has a simpler series, namely

$$
\sigma_{1}(t)=t^{-2} \sum_{i=0}^{\infty}\left(t^{3}+t^{4}\right)^{2^{i}}=\sum_{i=0}^{\infty} t^{3 \cdot 2^{i}-2}+\sum_{j=2}^{\infty} t^{2^{j}-2}
$$

In general, the inverse of σ_{b} is σ_{b+1} (Remark 5.14).
Remark 1.6. Let σ be any element of finite order in $\operatorname{Aut}(k[[t]])$. Even if σ is not almost rational, we can assume after conjugation that the power series $\sigma(t)=\sum_{i \geq 1} a_{i} t^{i}$ is algebraic over $k(t)$, as mentioned above. When k is finite, this implies that the sequence $\left(a_{i}\right)$ is Turing computable, and even p-automatic; i.e., there is a finite automaton that calculates a_{i} when supplied with the base p expansion of i [6, 7].
1.B. Harbater-Katz-Gabber G-curves. An order p^{n} element of $\operatorname{Aut}(k[[t]])$ induces an injective homomorphism $\mathbb{Z} / p^{n} \mathbb{Z} \longrightarrow \operatorname{Aut}(k[[t]])$. Suppose that we now replace $\mathbb{Z} / p^{n} \mathbb{Z}$ with any finite group G. Results of Harbater [14, §2] when G is a p-group, and of Katz and Gabber [19] in general, show that any injective $\alpha: G \longrightarrow \operatorname{Aut}(k[[t]])$ arises from a G-action on a curve. More precisely, α arises from a triple (X, x, ϕ) consisting of a smooth projective curve X, a point $x \in X(k)$, and an injective homomorphism $\phi: G \longrightarrow \operatorname{Aut}(X)$ such that G fixes x : here α expresses the induced action of G on the completed local ring $\widehat{\mathscr{O}}_{X, x}$ with respect to some uniformizer t. In $\$ 4 . \mathrm{B}$ we will define a Harbater-Katz-Gabber G-curve (HKG G-curve) to be a triple (X, x, ϕ) as above satisfying some extra conditions. (We will sometimes omit ϕ from the notation.)

HKG G-curves play a key role in our proof of Theorem 1.2. Our overall strategy is to reduce Theorem 1.2 to the classification of certain HKG G-curves, and then to use geometric tools such as the Hurwitz formula to complete the classification.
1.C. Harbater-Katz-Gabber G-curves with extra automorphisms. In this section, (X, x) is an HKG G-curve and J is a finite group such that $G \leq J \leq \operatorname{Aut}(X)$. We do not assume a priori that J fixes x. Let g_{X} be the genus of X.

Question 1.7. Must (X, x) be an $H K G J$-curve?
The answer is sometimes yes, sometimes no. Here we state our three main theorems in this direction; we prove them in $\$ 7$.

Theorem 1.8. We have that (X, x) is an $H K G J$-curve if and only if J fixes x.
When $g_{X}>1$, Theorem 1.10 below gives a weaker hypothesis that still is sufficient to imply that (X, x) is an HKG J-curve. Let J_{x} be the decomposition group $\operatorname{Stab}_{J}(x)$.

Definition 1.9. We call the action of J mixed if there exists $\sigma \in J$ such that $\sigma(x) \neq x$ and $\sigma(x)$ is nontrivially but tamely ramified with respect to the action of J_{x}, and unmixed otherwise.

Theorem 1.10. If $g_{X}>1$ and the action of J is unmixed, then (X, x) is an HKG J-curve.
We will also answer Question 1.7 in an explicit way when $g_{X} \leq 1$, whether or not the action of J is mixed.

Finally, if J is solvable, the answer to Question 1.7 is almost always yes:
Theorem 1.11. If J is solvable and (X, x) is not an HKG J-curve, then one of the following holds:

- $X \simeq \mathbb{P}^{1}$;
- p is 2 or 3 , and X is an elliptic curve of j-invariant 0 ;
- $p=3$, and X is isomorphic over \bar{k} to the genus 3 curve $z^{4}=t^{3} u-t u^{3}$ in \mathbb{P}^{2}; or
- $p=2$, and X is isomorphic over \bar{k} to the smooth projective model of the genus 10 affine curve $z^{9}=\left(u^{2}+u\right)\left(u^{2}+u+1\right)^{3}$.

Each case in Theorem 1.11 actually arises. For more details, see Theorem 7.13.

2. Automorphisms of $k[[t]]$

The purpose of this section is to recall some basic results about Aut $(k[[t]])$.
2.A. Groups that are cyclic $\bmod p$. A p^{\prime}-group is a finite group of order prime to p. A finite group G is called cyclic mod p if it has a normal Sylow p-subgroup such that the quotient is cyclic. Equivalently, G is cyclic $\bmod p$ if G is a semidirect product $P \rtimes C$ with P a p-group and C a cyclic p^{\prime}-group. In this case, P is the unique Sylow p-subgroup of G, and the Schur-Zassenhaus theorem [18, Theorem 3.12] implies that every subgroup of G isomorphic to C is conjugate to C.
2.B. The Nottingham group. Any k-algebra automorphism σ of $k[[t]]$ preserves the maximal ideal and its powers, and hence is t-adically continuous, so σ is uniquely determined by specifying the power series $\sigma(t)=\sum_{n \geq 1} a_{n} t^{n}\left(\right.$ with $\left.a_{1} \in k^{\times}\right)$. The map $\operatorname{Aut}(k[[t]]) \longrightarrow k^{\times}$ sending σ to a_{1} is a surjective homomorphism. The Nottingham group $\mathcal{N}(k)$ is the kernel of this homomorphism; it consists of the power series $t+\sum_{n \geq 2} a_{n} t^{n}$ under composition. Then $\operatorname{Aut}(k[[t]])$ is a semidirect product $\mathcal{N}(k) \rtimes k^{\times}$. For background on $\mathcal{N}(k)$, see, e.g., [3].

If k is finite, then $\mathcal{N}(k)$ is a pro- p group. In general, $\mathcal{N}(k)$ is pro-solvable with a filtration whose quotients are isomorphic to k under addition; thus every finite subgroup of $\mathcal{N}(k)$ is a p-group. Conversely, Leedham-Green and Weiss, using techniques of Witt, showed that any finite p-group can be embedded in $\mathcal{N}\left(\mathbb{F}_{p}\right)$; indeed, so can any countably based pro- p group [2]. The embeddability of finite p-groups follows alternatively from the fact that the maximal pro- p quotient of the absolute Galois group of $k\left(\left(t^{-1}\right)\right)$ is a free pro- p group of infinite rank [19, (1.4.4)].

On the other hand, any finite subgroup of k^{\times}is a cyclic p^{\prime}-group. Thus any finite subgroup of $\operatorname{Aut}(k[[t]])$ is cyclic $\bmod p$, and any finite p-group in $\operatorname{Aut}(k[[t]])$ is contained in $\mathcal{N}(k)$.
2.C. Algebraic automorphisms of $k[[t]]$. Call $\sigma \in \operatorname{Aut}(k[[t]])$ algebraic if $\sigma(t)$ is algebraic over $k(t)$.

Proposition 2.1. The set $\operatorname{Aut}_{\text {alg }}(k[[t]])$ of all algebraic automorphisms of $k[[t]]$ over k is a subgroup of $\operatorname{Aut}(k[[t]])$.

Proof. Suppose that $\sigma \in \operatorname{Aut}_{\text {alg }}(k[[t]])$, so $\sigma(t)$ is algebraic over $k(t)$. Applying another automorphism $\tau \in \operatorname{Aut}(k[[t]])$ to the algebraic relation shows that $\sigma(\tau(t))$ is algebraic over $k(\tau(t))$. So if τ is algebraic, so is $\sigma \circ \tau$. On the other hand, taking $\tau=\sigma^{-1}$ shows that t is algebraic over $k\left(\sigma^{-1}(t)\right)$. Since t is not algebraic over k, this implies that $\sigma^{-1}(t)$ is algebraic over $k(t)$.
2.D. Automorphisms of order p. The following theorem was proved by Klopsch [20, Proposition 1.2] and reproved by Lubin [21, §4] (they assumed that k was finite, but this is not crucial). Over algebraically closed fields it was shown in [1, p. 211] by Bertin and Mézard, who mention related work of Oort, Sekiguchi and Suwa in [22]. For completeness, we give here a short proof, similar to the proofs in [20, Appendix] and [1, p. 211]; it works over any perfect field k of characteristic $p>0$.

Theorem 2.2. Every $\sigma \in \mathcal{N}(k)$ of order p is conjugate in $\mathcal{N}(k)$ to $t \mapsto t\left(1+c t^{m}\right)^{-1 / m}$ for a unique positive integer m prime to p and a unique $c \in k^{\times}$. The automorphisms given by (m, c) and $\left(m^{\prime}, c^{\prime}\right)$ are conjugate in $\operatorname{Aut}(k[[t]])$ if and only if $m=m^{\prime}$ and $c / c^{\prime} \in k^{\times m}$.

Proof. Extend σ to the fraction field $k((t))$. By Artin-Schreier theory, there exists $y \in k((t))$ such that $\sigma(y)=y+1$. This y is unique modulo $k((t))^{\sigma}$. Since σ acts trivially on the residue field of $k[[t]]$, we have $y \notin k[[t]]$. Thus $y=c t^{-m}+\cdots$ for some $m \in \mathbb{Z}_{>0}$ and $c \in k^{\times}$. Choose y so that m is minimal. If the ramification index p divided m, then we could subtract from y an element of $k((t))^{\sigma}$ with the same leading term, contradicting the minimality of m. Thus $p \nmid m$. By Hensel's lemma, $y=c\left(t^{\prime}\right)^{-m}$ for some $t^{\prime}=t+\cdots$. Conjugating by the automorphism $t \mapsto t^{\prime}$ lets us assume instead that $y=c t^{-m}$. Substituting this into $\sigma(y)=y+1$ yields $c \sigma(t)^{-m}=c t^{-m}+1$. Equivalently, $\sigma(t)=t\left(1+c^{-1} t^{m}\right)^{-1 / m}$. Rename c^{-1} as c.

Although y is determined only modulo $\wp(k((t)))$, the leading term of a minimal y is determined. Conjugating σ in $\operatorname{Aut}(k[[t]])$ amounts to expressing σ with respect to a new uniformizer $u=u_{1} t+u_{2} t^{2}+\cdots$. This does not change m, but it multiplies c by u_{1}^{m}. Conjugating σ in $\mathcal{N}(k)$ has the same effect, except that $u_{1}=1$, so c is unchanged too.

Remark 2.3. For each positive integer m prime to p, let $\operatorname{Disp}_{m}: \mathcal{N}(k) \longrightarrow \mathcal{N}(k)$ be the map sending $t \mapsto f(t)$ to $t \mapsto f\left(t^{m}\right)^{1 / m}$ (we take the m th root of the form $t+\cdots$). This is an injective endomorphism of the group $\mathcal{N}(k)$, called m-dispersal in [21]. It would be conjugation by $t \mapsto t^{m}$, except that $t \mapsto t^{m}$ is not in $\operatorname{Aut}(k[[t]])$ (for $m>1$). The automorphisms in Theorem 2.2 may be obtained from $t \mapsto t(1+t)^{-1}$ by conjugating by $t \mapsto c t$ and then dispersing.

3. Ramification and the Hurwitz Formula

Here we review the Hurwitz formula and related facts we need later.
3.A. Notation. By a curve over k we mean a 1-dimensional smooth projective geometrically integral scheme X of finite type over k. For a curve X, let $k(X)$ denote its function field, and let g_{X} or $g_{k(X)}$ denote its genus. If G is a finite group acting on a curve X, then X / G denotes the curve whose function field is the invariant subfield $k(X)^{G}$.
3.B. The local different. Let G be a finite subgroup of $\operatorname{Aut}(k[[t]])$. For $i \geq 0$, define the ramification subgroup $G_{i}:=\left\{g \in G \mid g\right.$ acts trivially on $\left.k[[t]] /\left(t^{i+1}\right)\right\}$ as usual. Let $\mathfrak{d}(G):=\sum_{i=0}^{\infty}\left(\left|G_{i}\right|-1\right) \in \mathbb{Z}_{\geq 0}$; this is the exponent of the local different [24, IV, Proposition 4].
3.C. The Hurwitz formula. In this paragraph we assume that k is an algebraically closed field of characteristic $p>0$. Let H be a finite group acting faithfully on a curve X over k. For each $s \in X(k)$, let $H_{s} \leq H$ be the inertia group. We may identify $\widehat{\mathscr{O}}_{X, s}$ with $k[[t]]$ and H_{s} with a finite subgroup $G \leq \operatorname{Aut}(k[[t]])$; then define $\mathfrak{d}_{s}=\mathfrak{d}_{s}(H):=\mathfrak{d}\left(H_{s}\right)$. We have $\mathfrak{d}_{s}>0$ if and only if s is ramified. If s is tamely ramified, meaning that H_{s} is a p^{\prime}-group, then $\mathfrak{d}_{s}=\left|H_{s}\right|-1$. The Hurwitz formula [15, IV, 2.4] is

$$
2 g_{X}-2=|H|\left(2 g_{X / H}-2\right)+\sum_{s \in X(k)} \mathfrak{d}_{s} .
$$

Remark 3.1. When we apply the Hurwitz formula to a curve over a perfect field that is not algebraically closed, it is understood that we first extend scalars to an algebraic closure.
3.D. Lower bound on the different. We continue to assume that k is an algebraically closed field of characteristic $p>0$. The following material is taken from [24, IV], as interpreted by Lubin in 21. Let G and the G_{i} be as in Section 3.B. An integer $i \geq 0$ is a break in the lower numbering of the ramification groups of G if $G_{i} \neq G_{i+1}$. Let b_{0}, b_{1}, \ldots be the breaks in increasing order; they are all congruent modulo p. The group G_{0} / G_{1} embeds into k^{\times}, while G_{i} / G_{i+1} embeds in the additive group of k if $i \geq 1$.

From now on, assume that G is a cyclic group of order p^{n} with generator σ. Then $G_{0}=G_{1}$ and each quotient G_{i} / G_{i+1} is killed by p. Thus there must be exactly n breaks b_{0}, \ldots, b_{n-1}. If $0 \leq i \leq b_{0}$, then $G_{i}=G$; if $1 \leq j \leq n-1$ and $b_{j-1}<i \leq b_{j}$, then $\left|G_{i}\right|=p^{n-j}$; and if $b_{n-1}<i$, then $G_{i}=\{e\}$. According to the Hasse-Arf theorem, there exist positive integers i_{0}, \ldots, i_{n-1} such that $b_{j}=i_{0}+p i_{1}+\cdots+p^{j} i_{j}$ for $0 \leq j \leq n-1$. Then

$$
\begin{equation*}
\mathfrak{d}(G)=\left(i_{0}+1\right)\left(p^{n}-1\right)+i_{1}\left(p^{n}-p\right)+\cdots+i_{n-1}\left(p^{n}-p^{n-1}\right) \tag{3.2}
\end{equation*}
$$

The upper breaks $b^{(j)}$ we do not need to define here, but they have the property that in the cyclic case, $b^{(j)}=i_{0}+\cdots+i_{j}$ for $0 \leq j \leq n-1$.

Local class field theory shows that $p \nmid b^{(0)}$, that $b^{(j)} \geq p b^{(j-1)}$ for $1 \leq j \leq n-1$, and that if this inequality is strict then $p \nmid b^{(j)}$; this is proved in [24, XV, $\S 2$ Thm. 2] for quasi-finite residue fields, and extended to algebraically closed residue fields in [4, Prop. 13.2]. Conversely, any sequence of positive numbers $b^{(0)}, \ldots, b^{(n-1)}$ that satisfies these three conditions is realized by some element of order p^{n} in $\operatorname{Aut}(k[[t]])$ [21, Observation 5].

Thus $i_{0} \geq 1$, and $i_{j} \geq(p-1) p^{j-1}$ for $1 \leq j \leq n-1$. Substituting into (3.2) yields the following result.

Lemma 3.3. If G is cyclic of order p^{n}, then

$$
\mathfrak{d}(G) \geq \frac{p^{2 n}+p^{n+1}+p^{n}-p-2}{p+1}
$$

and this bound is sharp.

Remark 3.4. Lemma 3.3 is valid over any perfect field k of characteristic p, because extending scalars to \bar{k} does not change $\mathfrak{d}(G)$.

4. Harbater-Katz-Gabber G-Curves

Let k be a perfect field of characteristic $p>0$.

4.A. Pointed G-curves.

Definition 4.1. A pointed G-curve over k is a triple (X, x, ϕ) consisting of a curve X, a point $x \in X(k)$, and an injective homomorphism $\phi: G \longrightarrow \operatorname{Aut}(X)$ such that G fixes x. (We will sometimes omit ϕ from the notation.)

Suppose that (X, x, ϕ) is a pointed G-curve. The faithful action of G on X induces a faithful action on $k(X)$. Since G fixes x, the latter action induces a G-action on the k-algebras $\mathscr{O}_{X, x}$ and $\widehat{\mathscr{O}}_{X, x}$. Since $\operatorname{Frac}\left(\mathscr{O}_{X, x}\right)=k(X)$ and $\mathscr{O}_{X, x} \subseteq \widehat{\mathscr{O}}_{X, x}$, the G-action on $\widehat{\mathscr{O}}_{X, x}$ is faithful too. Since $x \in X(k)$, a choice of uniformizer t at x gives a k-isomorphism $\widehat{\mathscr{O}}_{X, x} \simeq k[[t]]$. Thus we obtain an embedding $\rho_{X, x, \phi}: G \hookrightarrow \operatorname{Aut}(k[[t]])$. Changing the isomorphism $\widehat{\mathscr{O}}_{X, x} \simeq k[[t]]$ conjugates $\rho_{X, x, \phi}$ by an element of $\operatorname{Aut}(k[[t]])$, so we obtain a map

$$
\begin{equation*}
\{\text { pointed } G \text {-curves }\} \longrightarrow\{\text { conjugacy classes of embeddings } G \hookrightarrow \operatorname{Aut}(k[[t]])\} \tag{4.2}
\end{equation*}
$$

$$
(X, x, \phi) \longmapsto\left[\rho_{X, x, \phi}\right] .
$$

Also, G is the inertia group of $X \longrightarrow X / G$ at x.
Lemma 4.3. If (X, x, ϕ) is a pointed G-curve, then G is cyclic mod p.
Proof. The group G is embedded as a finite subgroup of $\operatorname{Aut}(k[[t]])$.

4.B. Harbater-Katz-Gabber G-curves.

Definition 4.4. A pointed G-curve (X, x, ϕ) over k is called a Harbater-Katz-Gabber G-curve (HKG G-curve) if both of the following conditions hold:
(i) The quotient X / G is of genus 0 . (This is equivalent to $X / G \simeq \mathbb{P}_{k}^{1}$, since x maps to a k-point of X / G.)
(ii) The action of G on $X-\{x\}$ is either unramified everywhere, or tamely and nontrivially ramified at one G-orbit in $X(\bar{k})-\{x\}$ and unramified everywhere else.

Remark 4.5. Katz in [19] focused on the base curve X / G as starting curve. He fixed an isomorphism of X / G with \mathbb{P}_{k}^{1} identifying the image of x with ∞ and the image of a tamely and nontrivially ramified point of $X(\bar{k})-\{x\}$ (if such exists) with 0 . He then considered Galois covers $X \longrightarrow X / G=\mathbb{P}_{k}^{1}$ satisfying properties as above; these were called Katz-Gabber covers in [4]. For our applications, however, it is more natural to focus on the upper curve X.

HKG curves have some good functoriality properties that follow directly from the definition:

- Base change: Let X be a curve over k, let $x \in X(k)$, and let $\phi: G \longrightarrow \operatorname{Aut}(X)$ be a homomorphism. Let $k^{\prime} \supseteq k$ be a field extension. Then (X, x, ϕ) is an HKG G-curve over k if and only if its base change to k^{\prime} is an HKG G-curve over k^{\prime}.
- Quotient: If (X, x, ϕ) is an HKG G-curve, and H is a normal subgroup of G, then X / H equipped with the image of x and the induced G / H-action is an HKG G / H-curve.

Example 4.6. Let P be a finite subgroup of the additive group of k, so P is an elementary abelian p-group. Then the addition action of P on \mathbb{A}_{k}^{1} extends to an action $\phi: P \longrightarrow \operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right)$ totally ramified at ∞ and unramified elsewhere, so $\left(\mathbb{P}_{k}^{1}, \infty, \phi\right)$ is an HKG P-curve.

Example 4.7. Suppose that C is a p^{\prime}-group and that (X, x, ϕ) is an HKG C-curve. By Lemma 4.3, C is cyclic. By the Hurwitz formula, X must have genus 0 since there are at most two C-orbits of ramified points and all the ramification is tame. Moreover, X has a k-point (namely, x), so $X \simeq \mathbb{P}_{k}^{1}$, and C is a p^{\prime}-subgroup of the stabilizer of x inside $\operatorname{Aut}(X) \simeq \operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right) \simeq \operatorname{PGL}_{2}(k)$. It follows that after applying an automorphism of $X=\mathbb{P}_{k}^{1}$, we can assume that C fixes the points 0 and ∞ and corresponds to the multiplication action of a finite subgroup of k^{\times}on \mathbb{A}_{k}^{1}. Conversely, such an action gives rise to an HKG C-curve $\left(\mathbb{P}_{k}^{1}, \infty, \phi\right)$.

The following gives alternative criteria for testing whether a pointed G-curve is an HKG G-curve.

Proposition 4.8. Let (X, x, ϕ) be a pointed G-curve. Let P be the Sylow p-subgroup of G. Then the following are equivalent:
(i) (X, x, ϕ) is an $H K G G$-curve.
(ii) $\left(X, x,\left.\phi\right|_{P}\right)$ is an $H K G P$-curve.
(iii) The quotient X / P is of genus 0 , and the action of P on $X-\{x\}$ is unramified.
(iv) Equality holds in the inequality $g_{X} \geq 1-|P|+\mathfrak{d}_{x}(P) / 2$.

Proof. Let $C=G / P$.
(iii) \Rightarrow (iii): Trivial.
(i) \Rightarrow (iii): By the quotient property of HKG curves, X / P is an HKG C-curve, so $X / P \simeq \mathbb{P}_{k}^{1}$ by Example 4.7. At each $y \in X(\bar{k})-\{x\}$, the ramification index e_{y} for the P-action divides $|P|$ but is prime to p, so $e_{y}=1$. Thus the action of P on $X-\{x\}$ is unramified.
(iii) \Rightarrow (i): Applying the result (i) \Rightarrow (iii) to P shows that $X \longrightarrow X / P$ is unramified outside x. There is a covering $\mathbb{P}_{k}^{1} \simeq X / P \longrightarrow X / G$, so $X / G \simeq \mathbb{P}_{k}^{1}$. We may assume that $C \neq\{1\}$. By Example 4.7, the cover $X / P \longrightarrow X / G$ is totally tamely ramified above two k-points, and unramified elsewhere. One of the two points must be the image of x; the other is the image of the unique tamely ramified G-orbit in $X(\bar{k})$, since $X \longrightarrow X / P$ is unramified outside x.
(iii) \Leftrightarrow (iv): The Hurwitz formula (see Remark 3.1) for the action of P simplifies to the inequality in (iv) if we use $g_{X / P} \geq 0$ and discard ramification in $X-\{x\}$. Thus equality holds in (iv) if and only if $g_{X / P}=0$ and the action of P on $X-\{x\}$ is unramified.
4.C. The Harbater-Katz-Gabber theorem. The following is a consequence of work of Harbater [14, §2] when G is a p-group and of Katz and Gabber [19] when G is arbitrary.

Theorem 4.9 (Harbater, Katz-Gabber). The assignment $(X, x, \phi) \mapsto \rho_{X, x, \phi}$ induces a surjection from the set of HKG G-curves over k up to equivariant isomorphism to the set of conjugacy classes of embeddings of G into $\operatorname{Aut}(k[[t]])$.

Corollary 4.10. Any finite subgroup of $\operatorname{Aut}_{\bar{k}}(\bar{k}[[t]])$ can be conjugated into Aut ${ }_{k^{\prime}}\left(k^{\prime}[[t]]\right)$ for some finite extension k^{\prime} of k in \bar{k}.
Proof. The subgroup is realized by some HKG curve over \bar{k}. Any such curve is defined over some finite extension k^{\prime} of k.

Corollary 4.11. Any finite subgroup of $\operatorname{Aut}(k[[t]])$ can be conjugated into $\operatorname{Aut}_{\text {alg }}(k[[t]])$.
Proof. The subgroup is realized by some HKG curve X. By conjugating, we may assume that the uniformizer t is a rational function on X. Then each power series $\sigma(t)$ represents another rational function on X, so $\sigma(t)$ is algebraic over $k(t)$.

5. Almost rational automorphisms

5.A. The field generated by a group of algebraic automorphisms. Let G be a finite subgroup of $\operatorname{Aut}_{\text {alg }}(k[[t]])$. Let $L:=k(\{\sigma(t): \sigma \in G\}) \subseteq k((t))$. Then L is a finite extension of $k(t)$, so $L \simeq k(X)$ for some curve X. The t-adic valuation on $k((t))$ restricts to a valuation on L associated to a point $x \in X(k)$. The G-action on $k((t))$ preserves L. This induces an embedding $\phi: G \longrightarrow \operatorname{Aut}(X)$ such that G fixes x, so (X, x, ϕ) is a pointed G-curve over k.

Theorem 5.1. Let G be a finite subgroup of $\operatorname{Aut}_{\mathrm{alg}}(k[[t]])$. Let L and (X, x, ϕ) be as above. Let $d:=[L: k(t)]$.
(a) We have $g_{X} \leq(d-1)^{2}$.
(b) If G is cyclic of order p^{n}, then $g_{X} \geq \frac{p\left(p^{n}-1\right)\left(p^{n-1}-1\right)}{2(p+1)}$. Moreover, if equality holds, then (X, x, ϕ) is an $H K G G$-curve.
(c) Suppose that G is cyclic of order p^{n}. Then

$$
\begin{equation*}
d \geq 1+\sqrt{\frac{p\left(p^{n}-1\right)\left(p^{n-1}-1\right)}{2(p+1)}} . \tag{5.2}
\end{equation*}
$$

In particular, if $d \leq p$ and $n \geq 2$, then $d=p=n=2$ and (X, x, ϕ) is an $H K G$ $\mathbb{Z} / 4 \mathbb{Z}$-curve of genus 1.
Proof.
(a) In [23, §2], a subfield $F \subseteq L$ is called d-controlled if there exists $e \in \mathbb{Z}_{>0}$ such that $[L: F] \leq d / e$ and $g_{F} \leq(e-1)^{2}$. In our setting, the G-action on $k((t))$ preserves L, so $[L: k(\sigma(t))]=d$ for every $\sigma \in G$. By [23, Corollary 2.2], $L \subseteq L$ is d-controlled. Here $d / e=1$, so $g_{L} \leq(e-1)^{2}=(d-1)^{2}$.
(b) In the inequality $g_{X} \geq 1-|G|+\mathfrak{o}_{x}(G) / 2$ of Proposition 4.8(iv), substitute $|G|=p^{n}$ and the bound of Lemma 3.3. If equality holds, then Proposition 4.8) iv \Rightarrow (i) shows that (X, x, ϕ) is an HKG G-curve.
(c) Combine the upper and lower bounds on g_{X} in (a) and (b). If $d \leq p$ and $n \geq 2$, then

$$
p \geq d \geq 1+\sqrt{\frac{p\left(p^{2}-1\right)(p-1)}{2(p+1)}}=1+(p-1) \sqrt{\frac{p}{2}} \geq 1+(p-1)=p
$$

so equality holds everywhere. In particular, $p=d, n=2$, and $p / 2=1$, so $d=p=n=2$. Also, (b) shows that (X, x, ϕ) is an HKG G-curve, and $g_{X}=(d-1)^{2}=1$.

Remark 5.3. Part (c) of Theorem 5.1 implies the first statement in Theorem 1.2, namely that if σ is an almost rational automorphism of order $p^{n}>p$, then $p=n=2$. To complete the proof of Theorem 1.2 we will classify in $\$ 5 . \mathrm{B}$ the σ when $p=n=2$.
5.B. Almost rational automorphisms of order 4. In this section, k is a perfect field of characteristic 2 , and $G=\mathbb{Z} / 4 \mathbb{Z}$.

Definition 5.4. For $a, b \in k$, let $E_{a, b}$ be the projective closure of

$$
z^{2}-z=w^{3}+\left(b^{2}+b+1\right) w^{2}+a .
$$

Let $O \in E_{a, b}(k)$ be the point at infinity, and let $\phi: \mathbb{Z} / 4 \mathbb{Z} \longrightarrow \operatorname{Aut}\left(E_{a, b}\right)$ send 1 to the order 4 automorphism

$$
\sigma:(w, z) \longmapsto(w+1, z+w+b) .
$$

Proposition 5.5. Each $\left(E_{a, b}, O, \phi\right)$ in Definition 5.4 is an $H K G \mathbb{Z} / 4 \mathbb{Z}$-curve over k.
Proof. The automorphism σ fixes O. Also, σ^{2} maps (w, z) to $(w, z+1)$, so σ^{2} fixes only O; hence the G-action on $E_{a, b}-\{O\}$ is unramified. Since $E_{a, b} \longrightarrow E_{a, b} / G$ is ramified, the genus of $E_{a, b} / G$ is 0 .

Proposition 5.6. Let k be a perfect field of characteristic 2 . Let $G=\mathbb{Z} / 4 \mathbb{Z}$. For an $H K G$ G-curve $\left(X, x, \phi^{\prime}\right)$ over k, the following are equivalent:
(i) The genus of X is 1 .
(ii) The lower ramification groups for $X \longrightarrow X / G$ at x satisfy $\left|G_{0}\right|=\left|G_{1}\right|=4,\left|G_{2}\right|=$ $\left|G_{3}\right|=2$, and $\left|G_{i}\right|=1$ for $i \geq 4$.
(iii) The ramification group G_{4} equals $\{1\}$.
(iv) There exist $a, b \in k$ such that $\left(X, x, \phi^{\prime}\right)$ is isomorphic to the $\operatorname{HKG} G$-curve $\left(E_{a, b}, O, \phi\right)$ of Definition 5.4.

Proof. Let g be the genus of X. Since G is a 2-group, $\left|G_{0}\right|=\left|G_{1}\right|=4$.
(iii) \Rightarrow (il): This follows from the Hurwitz formula (see Remark 3.1)

$$
2 g-2=4(-2)+\sum_{i \geq 0}\left(\left|G_{i}\right|-1\right)
$$

(i) \Rightarrow (iii): If $g=1$, then the Hurwitz formula yields $0=-8+3+3+\sum_{i \geq 2}\left(\left|G_{i}\right|-1\right)$. Since the $\left|G_{i}\right|$ form a decreasing sequence of powers of 2 and include all the numbers 4,2 , and 1 (see Section 3.D), the only possibility is as in (iii).
(iii) \Rightarrow (iii): Trivial.
(iii) \Rightarrow (ii): The lower breaks (see Section 3.D) satisfy $1 \leq b_{0}<b_{1}<4$. Since $b_{0} \equiv b_{1}$ $(\bmod 2)$, (ii) follows.
(iv) \Rightarrow (i): The formulas in [25, III.§1] show that $E_{a, b}$ is an elliptic curve, hence of genus 1.
(i) $\Rightarrow(\mathrm{iv})$: By [25, A.1.2(c)], an elliptic curve with an order 4 automorphism has j-invariant $1728=0 \in k$. By [25, A.1.1(c)], it has an equation $y^{2}+a_{3} y=x^{3}+a_{4} x+a_{6}$. Substituting $y \mapsto y+a_{3}^{-1} a_{4} x$ leads to an alternative form $y^{2}+a_{3} y=x^{3}+a_{2} x^{2}+a$. Let $u \in k^{\times}$be such that σ^{*} acts on $H^{0}\left(X, \Omega^{1}\right)$ by multiplication by u^{-1}. Then $u^{4}=1$, so $u=1$. By [25, p. 49], σ has the form $(x, y) \mapsto(x+r, y+s x+t)$ for some $r, s, t \in k$. Since $\sigma^{2} \neq 1$, we have $s \neq 0$. Conjugating by a change of variable $(x, y) \mapsto\left(\epsilon^{2} x, \epsilon^{3} y\right)$ lets us assume that $s=1$. The condition that $(x, y) \mapsto(x+r, y+x+t)$ preserves $y^{2}+a_{3} y=x^{3}+a_{2} x^{2}+a$ implies that $a_{3}=r=1$ and $a_{2}=t^{2}+t+1$. Rename t, x, y as b, w, z.

Corollary 5.7. The $H K G \mathbb{Z} / 4 \mathbb{Z}$-curves that are minimally ramified in the sense of having the smallest value of $\inf \left\{i: G_{i}=\{1\}\right\}$ are those satisfying the equivalent conditions in Proposition 5.6 .

Let $\wp(x):=x^{2}-x$ be the Artin-Schreier operator in characteristic 2. The following lemma is clear.

Lemma 5.8. Let L / K be a $\mathbb{Z} / 2 \mathbb{Z}$ Artin-Schreier extension, so there exist $a \in K$ and $b \in L-K$ such that $\wp(b)=a$. If $x \in L-K$ satisfies $\wp(x) \in K$, then $x \in b+K$.

Theorem 5.9. Let k be a perfect field of characteristic 2 . Let $G=\mathbb{Z} / 4 \mathbb{Z}$. Let \mathscr{X} be the set of HKG G-curves satisfying the equivalent conditions in Proposition 5.6. Then
(a) The map (4.2) restricts to a surjection from \mathscr{X} to the set of conjugacy classes in $\operatorname{Aut}(k[t t]])$ containing an almost rational automorphism of order 4.
(b) Explicitly, $E_{a, b}$ (made into an HKG G-curve as in Proposition 5.5) maps to the conjugacy class of

$$
\begin{equation*}
\sigma_{b}(t):=\frac{b^{2} t+(b+1) t^{2}+\beta}{b^{2}+t^{2}} \tag{5.10}
\end{equation*}
$$

where $\beta:=\sum_{i=0}^{\infty}\left(t^{3}+\left(b^{2}+b+1\right) t^{2}\right)^{2^{i}}$ is the unique solution to $\beta^{2}-\beta=t^{3}+\left(b^{2}+b+1\right) t^{2}$ in $t k[[t]]$.
(c) For $b, b^{\prime} \in k$, the automorphisms $\sigma_{b}, \sigma_{b^{\prime}} \in \operatorname{Aut}(k[[t]])$ are conjugate if and only if $b \equiv b^{\prime}$ $(\bmod \wp(k))$.

Proof.
(a) First we show that each $E_{0, b}$ maps to a conjugacy class containing an almost rational automorphism; the same will follow for $E_{a, b}$ for $a \neq 0$ once we show in the proof of (c) that
$E_{a, b}$ gives rise to the same conjugacy class as $E_{0, b}$. Let $P:=(0,0) \in E_{0, b}(k)$. Composing w with translation-by- P yields a new rational function $w_{P}=z / w^{2}$ on $E_{0, b}$; define z_{P} similarly, so $z_{P}=1-z^{2} / w^{3}$. Since w has a simple zero at P, the function $t:=w_{P}$ has a simple zero at O. Also, $\sigma^{j}(t) \in k\left(E_{0, b}\right)=k\left(t, z_{P}\right)$, which shows that σ is almost rational since $z_{P}^{2}-z_{P}=w_{P}^{3}+\left(b^{2}+b+1\right) w_{P}^{2}$.

Now suppose that σ is any almost rational automorphism of order 4. Theorem 5.1 (C) shows that σ arises from an HKG $\mathbb{Z} / 4 \mathbb{Z}$-curve of genus 1, i.e., a curve as in Proposition 5.6(i).
(b) Again by referring to the proof of (c), we may assume $a=0$. Follow the first half of the proof of (a) for $E_{0, b}$. In terms of the translated coordinates $\left(w_{P}, z_{P}\right)$ on $E_{0, b}$, the order 4 automorphism of the elliptic curve is

$$
(t, \beta) \longmapsto \sigma((t, \beta)-P)+P .
$$

It is a straightforward but lengthy exercise to show that the first coordinate equals the expression $\sigma_{b}(t)$ in 5.10. One uses $t=w_{P}=z / w^{2}, \beta=z_{P}=1-z^{2} / w^{3}$, and the formulas $\sigma(w)=w+1$ and $\sigma(z)=z+w+b$. In verifying equalities in the field $k(t, \beta)$, one can use the fact that $k(t, \beta)$ is the quadratic Artin-Schreier extension of $k(t)$ defined by $\beta^{2}-\beta=t^{3}+\left(b^{2}+b+1\right) t^{2}$.
(C) Let $v:=w^{2}-w$. Let $\widehat{\mathscr{O}}$ be the completion of the local ring of $E_{a, b}$ at the point O at infinity, and let $\widehat{K}:=\operatorname{Frac}(\widehat{\mathscr{O}})=k\left(\left(w^{-1}\right)\right)\left(z^{-1}\right)$. Thus $\widehat{K}^{G}=k\left(\left(v^{-1}\right)\right)$. Define $w^{\prime}, z^{\prime}, v^{\prime}$, $\sigma^{\prime}, \widehat{\mathscr{O}}^{\prime}$, and $\widehat{K}^{\prime}=k\left(\left(w^{\prime-1}\right)\right)\left(z^{\prime-1}\right)$ similarly for $E_{a^{\prime}, b^{\prime}}$. By definition of the map (4.2), $E_{a, b}$ and $E_{a^{\prime}, b^{\prime}}$ give rise to the same conjugacy class if and only if there exists a G-equivariant continuous isomorphism $\widehat{\mathscr{O}} \xrightarrow{\sim} \widehat{\mathscr{O}}^{\prime}$ or equivalently $\alpha: \widehat{K} \xrightarrow{\sim} \widehat{K}^{\prime}$. It remains to prove that α exists if and only if $b \equiv b^{\prime}(\bmod \wp(k))$.
\Longrightarrow : Suppose that α exists. Lemma 5.8 shows that $\alpha(w)=w^{\prime}+f$ for some $f \in k\left(\left(v^{\prime-1}\right)\right)$. Since α preserves valuations, $f \in k\left[\left[v^{\prime-1}\right]\right]$. Since v^{\prime} has valuation -2 , we may write $f=c+\sum_{i \geq 2} f_{i} w^{\prime-i}$. Similarly, $\alpha(z)=z^{\prime}+h$ for some $h=\sum_{i \geq-1} h_{i} w^{\prime-i} \in w^{\prime} k\left[\left[w^{\prime-1}\right]\right]$. Subtracting the equations

$$
\begin{aligned}
\alpha(z)^{2}-\alpha(z) & =\alpha(w)^{3}+\left(b^{2}+b+1\right) \alpha(w)^{2}+a \\
z^{\prime 2}-z^{\prime} & =w^{\prime 3}+\left(b^{\prime 2}+b^{\prime}+1\right) w^{\prime 2}+a^{\prime}
\end{aligned}
$$

yields

$$
\begin{align*}
h^{2}-h & =\left(w^{\prime}+f\right)^{3}-w^{\prime 3}+\left(b^{2}+b+1\right)\left(w^{\prime}+f\right)^{2}-\left(b^{\prime 2}+b^{\prime}+1\right) w^{\prime 2}+a-a^{\prime} \tag{5.11}\\
& =w^{\prime 2} f+w^{\prime} f^{2}+f^{3}+\wp\left(b-b^{\prime}\right) w^{\prime 2}+\left(b^{2}+b+1\right) f^{2}+a-a^{\prime} \\
h^{2}-h & \equiv\left(c+\wp\left(b-b^{\prime}\right)\right) w^{\prime 2}+c^{2} w^{\prime}+\left(f_{2}+c^{3}+\left(b^{2}+b+1\right) c^{2}+a-a^{\prime}\right) \quad\left(\bmod w^{\prime-1} k\left[\left[w^{\prime-1}\right]\right]\right) \tag{5.12}
\end{align*}
$$

Equating coefficients of w^{\prime} yields $h_{-1}=c^{2}$. The G-equivariance of α implies

$$
\begin{align*}
\alpha(\sigma(z)) & =\sigma^{\prime}(\alpha(z)) \\
\left(z^{\prime}+h\right)+\left(w^{\prime}+f\right)+b & =\left(z^{\prime}+w^{\prime}+b^{\prime}\right)+\sigma^{\prime}(h) \\
h+f+b & =b^{\prime}+\sigma^{\prime}(h) \\
h_{-1} w^{\prime}+h_{0}+c+b & \equiv b^{\prime}+h_{-1}\left(w^{\prime}+1\right)+h_{0} \quad\left(\bmod w^{\prime-1} k\left[\left[w^{\prime-1}\right]\right]\right) \tag{5.13}\\
b-b^{\prime} & =h_{-1}-c=c^{2}-c=\wp(c) .
\end{align*}
$$

\Longleftarrow : Conversely, suppose that $b-b^{\prime}=\wp(c)$ for some $c \in k$. We must build a G-equivariant continuous isomorphism $\alpha: \widehat{K} \xrightarrow{\sim} \widehat{K}^{\prime}$. Choose $f:=c+\sum_{i>2} f_{i} w^{\prime-i}$ in $k\left[\left[v^{\prime-1}\right]\right]$ so that the value of f_{2} makes the coefficient of $w^{\prime 0}$ in 5.12, namely the constant term, equal to 0 . The coefficient of $w^{\prime 2}$ in (5.12) is $c+\wp(\wp(c))=c^{4}$. So (5.12) simplifies to

$$
h^{2}-h \equiv c^{4} w^{\prime 2}+c^{2} w^{\prime} \quad\left(\bmod w^{\prime-1} k\left[\left[w^{\prime-1}\right]\right]\right) .
$$

Thus we may choose $h:=c^{2} w^{\prime}+\sum_{i \geq 1} h_{i} w^{\prime-i}$ so that 5.11) holds. Define $\alpha: k\left(\left(w^{-1}\right)\right) \longrightarrow$ $k\left(\left(w^{\prime-1}\right)\right)$ by $\alpha(w):=w^{\prime}+f$. Equation (5.11) implies that α extends to $\alpha: \widehat{K} \longrightarrow \widehat{K}^{\prime}$ by setting $\alpha(z):=z^{\prime}+h$. Then $\left.\alpha\right|_{k\left(\left(w^{-1}\right)\right)}$ is G-equivariant since $\left(w^{\prime}+1\right)+f=\left(w^{\prime}+f\right)+1$. In other words, $\sigma^{-1} \alpha^{-1} \sigma^{\prime} \alpha \in \operatorname{Gal}\left(\widehat{K} / k\left(\left(w^{-1}\right)\right)\right)=\left\{1, \sigma^{2}\right\}$. If $\sigma^{-1} \alpha^{-1} \sigma^{\prime} \alpha=\sigma^{2}$, then

$$
\begin{aligned}
\alpha \sigma^{3} & =\sigma^{\prime} \alpha \\
\alpha\left(\sigma^{3}(z)\right) & =\sigma^{\prime}(\alpha(z)) \\
\alpha(z+w+b+1) & =\sigma^{\prime}\left(z^{\prime}+h\right) \\
\left(z^{\prime}+h\right)+\left(w^{\prime}+f\right)+b+1 & =\left(z^{\prime}+w^{\prime}+b^{\prime}\right)+\sigma^{\prime}(h) ;
\end{aligned}
$$

by the calculation leading to (5.13), this is off by 1 modulo $w^{\prime-1} k\left[\left[w^{\prime-1}\right]\right]$. Thus $\sigma^{-1} \alpha^{-1} \sigma^{\prime} \alpha=1$ instead. In other words, α is G-equivariant.

Remark 5.14. Changing b to $b+1$ does not change the curve $E_{a, b}$, but it changes σ to σ^{-1}. Thus σ and σ^{-1} are conjugate in $\operatorname{Aut}(k[[t]])$ if and only if $1 \in \wp(k)$, i.e., if and only if k contains a primitive cube root of unity.

Combining Theorems 5.1 (C) and 5.9 proves Theorem 1.2 (and a little more).

6. Constructions of Harbater-Katz-Gabber curves

Let k be an algebraically closed field of characteristic $p>0$. Let (Y, y) be an HKG H-curve over k. If the H-action on $Y-\{y\}$ has a tamely ramified orbit, let S be that orbit; otherwise let S be any H-orbit in $Y-\{y\}$. Let $S^{\prime}=S \cup\{y\}$. Let $m, n \in \mathbb{Z}_{\geq 1}$. Suppose that $p \nmid n$, that $m n$ divides $\left|S^{\prime}\right|$, that the divisor $\sum_{s \in S^{\prime}}(s-y)$ is principal, and that for all $s \in S^{\prime}$, the divisor $m(s-y)$ is principal.

Choose $f \in k(Y)^{\times}$with divisor $\sum_{s \in S^{\prime}}(s-y)$. Let $\pi: X \longrightarrow Y$ be the cover with $k(X)=k(Y)(z)$, where z satisfies $z^{n}=f$. Let $C:=\operatorname{Aut}(X / Y)$, so C is cyclic of order n. Let x be the point of $X(k)$ such that $\pi(x)=y$. Let $G:=\left\{\gamma \in \operatorname{Aut}(X):\left.\gamma\right|_{k(Y)} \in H\right\}$.

Proposition 6.1. Let $k, Y, H, S^{\prime}, n, X, C, G$ be as above.
(a) Every automorphism of Y preserving S^{\prime} lifts to an automorphism of X (in n ways).
(b) The sequence $1 \longrightarrow C \longrightarrow G \longrightarrow H \longrightarrow 1$ is exact.
(c) We have that (X, x) is an HKG G-curve.

Proof.
(a) Suppose that $\alpha \in \operatorname{Aut}(Y)$ preserves S^{\prime}. Then $\operatorname{div}\left({ }^{\alpha} f / f\right)=(|S|+1)\left({ }^{\alpha} y-y\right)$, which is n times an integer multiple of the principal divisor $m\left({ }^{\alpha} y-y\right)$, so ${ }^{\alpha} f / f=g^{n}$ for some $g \in k(Y)^{\times}$. Extend α to an automorphism of $k(X)$ by defining ${ }^{\alpha} z:=g z$; this is well-defined since the relation $z^{n}=f$ is preserved. Given one lift, all others are obtained by composing with elements of C.
(b) Only the surjectivity of $G \longrightarrow H$ is nontrivial, and that follows from (a).
(c) The quotient X / G is isomorphic to $(X / C) /(G / C)=Y / H$, which is of genus 0 . In the covers $X \longrightarrow X / C \simeq Y \longrightarrow X / G \simeq Y / H$, all the ramification occurs above and below S^{\prime}. The valuation of f at each point of S^{\prime} is $1 \bmod n$, so $X \longrightarrow Y$ is totally ramified above S^{\prime}. Hence each ramified G-orbit in X maps bijectively to an H-orbit in Y, and each nontrivial inertia group in G is an extension of a nontrivial inertia group of H by C. Thus, outside the totally ramified G-orbit $\{x\}$, there is at most one ramified G-orbit and it is tamely ramified.

Example 6.2. Let $(Y, y)=\left(\mathbb{P}^{1}, \infty\right)$, with coordinate function $t \in k\left(\mathbb{P}^{1}\right)$. Let $H \leq \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ be a group fixing ∞ and acting transitively on $\mathbb{A}^{1}\left(\mathbb{F}_{q}\right)$. (One example is $H:=\left(\begin{array}{cc}1 & \mathbb{F}_{q} \\ 0 & 1\end{array}\right)$.) Let n be a positive divisor of $q+1$. Then the curve $z^{n}=t^{q}-t$ equipped with the point above ∞ is an HKG G-curve, where G is the set of automorphisms lifting those in H. (Here $S^{\prime}=\mathbb{P}^{1}\left(\mathbb{F}_{q}\right), m=1$, and $f=t^{q}-t \in k\left(\mathbb{P}^{1}\right)$. Degree 0 divisors on \mathbb{P}^{1} are automatically principal.)

Example 6.3. Let $p=2$. Let (Y, y) be the j-invariant 0 elliptic curve $u^{2}+u=t^{3}$ with its identity, so $\# \operatorname{Aut}(Y, y)=24$ [16, Chapter $3, \S 6]$. Let H be $\operatorname{Aut}(Y, y)$ or its Sylow 2-subgroup. Then $k(Y)\left(\sqrt[3]{t^{4}+t}\right)$ is the function field of an HKG G-curve X, for an extension G of H by a cyclic group of order 3. (Here $S^{\prime}=Y\left(\mathbb{F}_{4}\right)$, which is also the set of 3-torsion points on Y, and $m=n=3$, and $f=t^{4}+t$.) Eliminating t by cubing $z^{3}=t^{4}+t$ and substituting $t^{3}=u^{2}+u$ leads to the equation $z^{9}=\left(u^{2}+u\right)\left(u^{2}+u+1\right)^{3}$ for X.

Example 6.4. Let $p=3$. Let (Y, y) be the j-invariant 0 elliptic curve $u^{2}=t^{3}-t$ with its identity, so \# $\operatorname{Aut}(Y, y)=12$ [16, Chapter 3, $\S 5]$. Let H be a group between $\operatorname{Aut}(Y, y)$ and
its Sylow 3-subgroup. Then $k(Y)(\sqrt{u})$ is the function field of an HKG G-curve X, for an extension G of H by a cyclic group of order 2 . (Here S^{\prime} is the set of 2 -torsion points on Y, and $m=n=2$, and $f=u$.) Thus X has affine equation $z^{4}=t^{3}-t$. (This curve is isomorphic to the curve in Example 6.2 for $q=3$, but $|C|$ here is 2 instead of 4.)

7. Harbater-Katz-Gabber curves with extra automorphisms

We return to assuming only that k is perfect of characteristic p. Throughout this section, (X, x) is an HKG G-curve over k, and J is a finite group such that $G \leq J \leq \operatorname{Aut}(X)$. Let J_{x} be the decomposition group of x in J. Choose Sylow p-subgroups $P \leq P_{x} \leq P_{J}$ of $G \leq J_{x} \leq J$, respectively. In fact, $P \leq G$ is uniquely determined since G is cyclic $\bmod p$ by Lemma 4.3: similarly $P_{x} \leq J_{x}$ is uniquely determined.

7.A. General results.

Proof of Theorem 1.8. If (X, x) is an HKG J-curve, then J fixes x, by definition.
Now suppose that J fixes x. By Lemma 4.3, J is cyclic mod p. By Proposition 4.8(i) \Rightarrow (iii), (X, x) is an HKG P-curve. Identify X / P with \mathbb{P}_{k}^{1} so that x maps to $\infty \in X / P \simeq \mathbb{P}_{k}^{1}$.

Case 1: J normalizes G. Then J normalizes also the unique Sylow p-subgroup P of G. In particular, P is normal in P_{J}. If a p-group acts on \mathbb{P}_{k}^{1} fixing ∞, it must act by translations on \mathbb{A}_{k}^{1}; applying this to the action of P_{J} / P on X / P shows that $X / P \longrightarrow X / P_{J}$ is unramified outside ∞. Also, $X \longrightarrow X / P$ is unramified outside x. Thus the composition $X \longrightarrow X / P \longrightarrow X / P_{J}$ is unramified outside x. On the other hand, X / P_{J} is dominated by X / P, so $g_{X / P_{J}}=0$. By Proposition 4.8(iii) \Rightarrow (i),(X, x) is an HKG J-curve.

Case 2: J is arbitrary. There exists a chain of subgroups beginning at P and ending at P_{J}, each normal in the next. Ascending the chain, applying Case 1 at each step, shows that (X, x) is an HKG curve for each group in this chain, and in particular for P_{J}. By Proposition 4.8(iii) \Rightarrow (i),(X, x) is also an HKG J-curve.

Corollary 7.1. We have that (X, x) is an $H K G J_{x}$-curve and an $H K G P_{x}$-curve.
Proof. Apply Theorem 1.8 with J_{x} in place of J. Then apply Proposition 4.8(i) \Rightarrow (iii).
Lemma 7.2. Among p^{\prime}-subgroups of J_{x} that are normal in J, there is a unique maximal one; call it C. Then C is cyclic, and central in J_{x}.

Proof. Let C be the group generated by all p^{\prime}-subgroups of J_{x} that are normal in J. Then C is another group of the same type, so it is the unique maximal one. By Lemma 4.3, J_{x} is cyclic $\bmod p$, so J_{x} / P_{x} is cyclic. Since C is a p^{\prime}-group, $C \longrightarrow J_{x} / P_{x}$ is injective. Thus C is cyclic. The injective homomorphism $C \longrightarrow J_{x} / P_{x}$ respects the conjugation action of J_{x} on each group. Since J_{x} / P_{x} is abelian, the action on J_{x} / P_{x} is trivial. Thus the action on C is trivial too; i.e., C is central in J_{x}.
7.B. Low genus cases. Define $A:=\operatorname{Aut}(X, x)$, so $G \leq A$. By Theorem 1.8, (X, x) is an HKG J-curve if and only if $J \leq A$. When $g_{X} \leq 1$, we can describe A very explicitly.

Example 7.3. Suppose that $g_{X}=0$. Then $(X, x) \simeq\left(\mathbb{P}_{k}^{1}, \infty\right)$. Thus $\operatorname{Aut}(X) \simeq \operatorname{PGL}_{2}(k)$, and A is identified with the image in $\mathrm{PGL}_{2}(k)$ of the group of upper triangular matrices in $\mathrm{GL}_{2}(k)$.

Example 7.4. Suppose that $g_{X}=1$. Then (X, x) is an elliptic curve, and $\operatorname{Aut}(X) \simeq X(k) \rtimes A$. Let $\mathcal{A}:=\operatorname{Aut}\left(X_{\bar{k}}, x\right)$ be the automorphism group of the elliptic curve over \bar{k}. Now p divides $|G|$, since otherwise it follows from Example 4.7 that $g_{X}=0$. Thus G contains an order p element, which by the HKG property has a unique fixed point. Since $G \leq A \leq \mathcal{A}$, the group \mathcal{A} also contains such an element. By the computation of \mathcal{A} (in [16, Chapter 3], for instance), p is 2 or 3 , and X is supersingular, so X has j-invariant 0 . Explicitly:

- If $p=2$, then $\mathcal{A} \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right) \simeq Q_{8} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ (order 24), and G is $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}, Q_{8}$, or $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$.
- If $p=3$, then $\mathcal{A} \simeq \mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$ (order 12), and G is $\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z}$, or $\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$. Because of Corollary 7.1, the statement about G is valid also for J_{x}.
7.C. Cases in which p divides $|G|$. If p divides $|G|$, then we can strengthen Theorem 1.8 ; see Theorem 7.6 and Corollary 7.7 below.

Lemma 7.5. If p divides $|G|$ and G is normal in J, then J fixes x.
Proof. Ramification outside x is tame, so if p divides $|G|$, then x is the unique point fixed by G. If, in addition, J normalizes G, then J must fix this point.

Theorem 7.6. If p divides $|G|$, then the following are equivalent:
(i) (X, x) is an $H K G J$-curve.
(ii) J fixes x.
(iii) J is cyclic $\bmod p$.

Proof.
(ii) \Leftrightarrow (iii): This is Theorem 1.8 .
(iii) \Rightarrow (iii): This is Lemma 4.3 .
(iiii) \Rightarrow (i): By Proposition 4.8(i) \Rightarrow (iii),(X, x) is an HKG P-curve. Again choose a chain of subgroups beginning at P and ending at P_{J}, each normal in the next. Since J is cyclic $\bmod p$, we may append J to the end of this chain. Applying Lemma 7.5 and Theorem 1.8 to each step of this chain shows that for each group K in this chain, K fixes x and (X, x) is an HKG K-curve.

Corollary 7.7. If p divides $|G|$, then
(a) $P_{x}=P_{J}$.
(b) The prime p does not divide the index $\left(J: J_{x}\right)$.
(c) If $j \in J_{x}$, then ${ }^{j} P_{x}=P_{x}$.
(d) If $j \notin J_{x}$, then ${ }^{j} P_{x} \cap P_{x}=1$.
(e) If J contains a nontrivial normal p-subgroup A, then (X, x) is an HKG J-curve.

Proof.
(a) Since p divides $\left|P_{x}\right|$ and P_{J} is cyclic $\bmod p$, Corollary 7.1 and Theorem 7.6(iii) \Rightarrow (iii) imply that P_{J} fixes x. Thus $P_{J} \leq P_{x}$, so $P_{x}=P_{J}$.
(b) The exponent of p in each of $\left|J_{x}\right|,\left|P_{x}\right|,\left|P_{J}\right|,|J|$ is the same.
(c) By Lemma 4.3, J_{x} is cyclic $\bmod p$, so P_{x} is normal in J_{x}.
(d) A nontrivial element of $P_{x} \cap{ }^{j} P_{x}$ would be an element of p-power order fixing both x and $j x$, contradicting the definition of HKG J_{x}-curve.
(e) The group A is contained in every Sylow p-subgroup of J; in particular, $A \leq P_{J}=P_{x}$. This contradicts (d) unless $J_{x}=J$. By Theorem 7.6 (ii) \Rightarrow (ii), (X, x) is an HKG J-curve.

Lemma 7.8. Suppose that $g_{X}>1$. Let $A \leq J$ be an elementary abelian ℓ-subgroup for some prime ℓ. Suppose that P_{x} normalizes A. Then $A \leq J_{x}$.

Proof. It follows from Example 4.7 that p divides $|G|$. If $\ell=p$, then $P_{x} A$ is a p-subgroup of J, but P_{x} is a Sylow p-subgroup of J by Corollary 7.7(a), so $A \leq P_{x} \leq J_{x}$.

Now suppose that $\ell \neq p$. The conjugation action of P_{x} on A leaves the group $A_{x}=J_{x} \cap A$ invariant. By Maschke's theorem, $A=A_{x} \times C$ for some other subgroup C normalized by P_{x}. Then $C_{x}=1$. By Corollary 7.1, (X, x) is an HKG P_{x}-curve. Since P_{x} normalizes C, the quotient X / C equipped with the image y of x and the induced P_{x}-action is another HKG P_{x}-curve. Since $C_{x}=1$, we have $\mathfrak{d}_{x}\left(P_{x}\right)=\mathfrak{d}_{y}\left(P_{x}\right)$; thus Proposition 4.8(i) \Rightarrow ive implies that $g_{X}=g_{X / C}$. Since $g_{X}>1$, this implies that $C=1$. So $A=A_{x} \leq J_{x}$.

7.D. Unmixed actions.

Proof of Theorem 1.10. By the base change property mentioned after Remark 4.5, we may assume that k is algebraically closed. By Corollary 7.1, we may enlarge G to assume that $G=J_{x}$.

First suppose that the action of G has a nontrivially and tamely ramified orbit, say $G y$, where $y \in X(k)$. The Hurwitz formula applied to (X, G) gives

$$
\begin{equation*}
2 g_{X}-2=-2|G|+\mathfrak{d}_{x}(G)+\left|G / G_{y}\right|\left(\left|G_{y}\right|-1\right) \tag{7.9}
\end{equation*}
$$

Since the action of J is unmixed, $J x$ and $J y$ are disjoint. The Hurwitz formula for (X, J) therefore gives

$$
\begin{equation*}
2 g_{X}-2 \geq-2|J|+|J / G| \mathfrak{o}_{x}(G)+\left|J / J_{y}\right|\left(\left|J_{y}\right|-1\right) \tag{7.10}
\end{equation*}
$$

Calculating $|J / G|$ times the equation (7.9) minus the inequality (7.10) yields

$$
(|J / G|-1)\left(2 g_{X}-2\right) \underset{17}{\leq}\left|J / J_{y}\right|-\left|J / G_{y}\right| \leq 0
$$

because $G_{y} \leq J_{y}$. Since $g_{X}>1$, this forces $J=G$.
If a nontrivially and tamely ramified orbit does not exist, we repeat the proof while omitting the terms involving y.
7.E. Mixed actions. Here is an example, mentioned to us by Rachel Pries, that shows that Theorem 1.10 need not hold if the action of J is mixed.

Example 7.11. Let n be a power of p; assume that $n>2$. Let $k=\mathbb{F}_{n^{6}}$. Let \mathcal{X} be the curve over k constructed by Giulietti and Korchmáros in [11]; it is denoted \mathcal{C}_{3} in [13]. Let $J=\operatorname{Aut}(\mathcal{X})$. Let G be a Sylow p-subgroup of J; by [11, Theorem 7], $|G|=n^{3}$. Then \mathcal{X} is an HKG G-curve by [13, Lemma 2.5 and proof of Proposition 3.12], and $g_{\mathcal{X}}>1$ by [11, Thm. 2]. Taking σ in Definition 1.9 to be the automorphism denoted \tilde{W} on [11, p. 238] shows that the action of J on \mathcal{X} is mixed. In fact, [11, Theorem 7] shows that J fixes no k-point of \mathcal{X}, so the conclusion of Theorem 1.10 does not hold.
7.F. Solvable groups. Here we prove Theorem 1.11. If p does not divide $|G|$, then Example 4.7 shows that $X \simeq \mathbb{P}_{k}^{1}$, so the conclusion of Theorem 1.11 holds. For the remainder of this section, we assume that p divides $|G|$. In this case we prove Theorem 1.11 in the stronger form of Theorem 7.13, which assumes a hypothesis weaker than solvability of J. We retain the notation set at the beginning of Section 7, and let C denote the maximal p^{\prime}-subgroup of J_{x} that is normal in J, as in Lemma 7.2 .

Lemma 7.12. Suppose that $g_{X}>1$ and that (X, x) is not an HKG J-curve. If J contains a nontrivial normal abelian subgroup, then $C \neq 1$.

Proof. The last hypothesis implies that J contains a nontrivial normal elementary abelian ℓ-subgroup A for some prime ℓ. By Corollary 7.7 e,$\ell \neq p$. By Lemma 7.8, $A \leq J_{x}$. Thus $1 \neq A \leq C$.

Theorem 7.13. Suppose that p divides $|G|$ and (X, x) is not an HKG J-curve.
(a) Suppose that $g_{X}=0$, so $\operatorname{Aut}(X) \simeq \operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right) \simeq \mathrm{PGL}_{2}(k)$. Then J is conjugate in $\mathrm{PGL}_{2}(k)$ to precisely one of the following groups:

- $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ for some finite subfield $\mathbb{F}_{q} \leq k$ (these groups are the same if $p=2)$; note that $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ is simple when $q>3$.
- If $p=2$ and m is an odd integer at least 5 such that a primitive moth root of unity $\zeta \in \bar{k}$ satisfies $\zeta+\zeta^{-1} \in k$, the dihedral group of order $2 m$ generated by $\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ if $\zeta \in k$, and generated by $\left(\begin{array}{cc}\zeta+\zeta^{-1}+1 & 1 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ if $\zeta \notin k$. (The case $m=3$ is listed already, as $\mathrm{PSL}_{2}\left(\mathbb{F}_{2}\right)$.)
- If $p=3$ and $\mathbb{F}_{9} \leq k$, a particular copy of the alternating group A_{5} in $\mathrm{PSL}_{2}\left(\mathbb{F}_{9}\right)$ (all such copies are conjugate in $\left.\mathrm{PGL}_{2}\left(\mathbb{F}_{9}\right)\right)$; the group A_{5} is simple.

If, in addition, J contains a nontrivial normal abelian subgroup, then $p=q \in\{2,3\}$ and $\left|P_{J}\right|=p$.
(b) Suppose that $g_{X}=1$. Then p is 2 or 3 , and the limited possibilities for X and J_{x} are described in Example 7.4. The group J is a semidirect product of J_{x} with a finite abelian subgroup $T \leq X(k)$.
(c) Suppose that $g_{X}>1$. Let $C \leq J$ be as in Lemma 7.2. Let $Y=X / C$, let y be the image of x under $X \longrightarrow Y$, and let $U=\operatorname{Stab}_{J / C}(y)$. If J / C contains a nontrivial normal abelian subgroup (automatic if J is solvable), then one of the following holds:
i. $p=3, g_{X}=3, g_{Y}=0, C \simeq \mathbb{Z} / 4 \mathbb{Z}, P_{x} \simeq \mathbb{Z} / 3 \mathbb{Z},\left(J: J_{x}\right)=4$, and (X, x) is isomorphic over \bar{k} to the curve $z^{4}=t^{3} u-t u^{3}$ in \mathbb{P}^{2} equipped with $(t: u: z)=(1: 0: 0)$, which is the curve in Example 6.2 with $q=3$. Moreover,

$$
\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right) \leq J / C \leq \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)
$$

ii. $p=2, g_{X}=10, g_{Y}=1, C \simeq \mathbb{Z} / 3 \mathbb{Z}, P_{x} \simeq Q_{8},\left(J: J_{x}\right)=9$, and (X, x) is isomorphic over \bar{k} to the curve in Example 6.3. The homomorphism $J \longrightarrow J / C$ sends the subgroups $J_{x} \supset P_{x}$ to subgroups $J_{x} / C \supset P_{x} C / C$ of U. Also, $P_{x} C / C \simeq P_{x} \simeq Q_{8}$ and $U \simeq \mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$, and U acts faithfully on the 3 -torsion subgroup $Y[3] \simeq(\mathbb{Z} / 3 \mathbb{Z})^{2}$ of the elliptic curve (Y, y). The group J / C satisfies

$$
Y[3] \rtimes Q_{8} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{2} \rtimes Q_{8} \leq J / C \leq(\mathbb{Z} / 3 \mathbb{Z})^{2} \rtimes \mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z}) \simeq Y[3] \rtimes U
$$

iii. $p=3, g_{X}=3, g_{Y}=1, C \simeq \mathbb{Z} / 2 \mathbb{Z}, P_{x} \simeq \mathbb{Z} / 3 \mathbb{Z},\left(J: J_{x}\right)=4$, and (X, x) is isomorphic over \bar{k} to the curve $z^{4}=t^{3} u-t u^{3}$ in \mathbb{P}^{2} equipped with $(t: u: z)=(1: 0: 0)$ as in Example 6.4. The homomorphism $J \longrightarrow J / C$ sends the subgroups $J_{x} \supset P_{x}$ to subgroups $J_{x} / C \supset P_{x} C / C$ of U. Also $P_{x} C / C \simeq P_{x} \simeq \mathbb{Z} / 3 \mathbb{Z}$ and $U \simeq \mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$, and $U / Z(U)$ acts faithfully on the group $Y[2] \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$. The group J / C satisfies
$Y[2] \rtimes \mathbb{Z} / 3 \mathbb{Z}=(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z} \leq J / C \leq(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes(\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z})=Y[2] \rtimes U$.
In each of i., ii., and iii., if (X, x) is the curve over \bar{k} specified, from Examples 6.2 6.4. then any group satisfying the displayed upper and lower bounds for J / C is actually realized as J / C for some subgroup $J \leq \operatorname{Aut}(X)$ satisfying all the hypotheses.

Proof.
(a) The groups listed in the statement of (a) are pairwise non-isomorphic, hence not conjugate. Thus it remains to prove that J is conjugate to one of them. By Corollary 7.7(e), J has no normal Sylow p-subgroup. We will show that every finite subgroup $J \leq \mathrm{PGL}_{2}(k)$ with no normal Sylow p-subgroup is conjugate to a group listed in (a). This would follow immediately from [9, Theorem B], but [9] has not yet been published, so we now give a proof not relying on it. We will use the exact sequence

$$
1 \longrightarrow \mathrm{PSL}_{2}(k) \longrightarrow \mathrm{PGL}_{2}(k) \xrightarrow{\text { det }} k^{\times} / k^{\times 2} \longrightarrow 1
$$

Case 1: k is finite and $J \leq \mathrm{PSL}_{2}(k)$. For finite k, the subgroups of $\mathrm{PSL}_{2}(k)$ up to conjugacy were calculated by Dickson [8, §260]; see also [17, Ch. 2 §8], [26, Ch. $3 \S 6$]. The ones with no normal Sylow p-subgroup are among those listed in (a). (Dickson sometimes lists two $\mathrm{PSL}_{2}(k)$-conjugacy classes of subgroups of certain types, but his proof shows that they map to a single $\mathrm{PGL}_{2}(k)$-conjugacy class.)

Case 2: k is infinite and $J \leq \operatorname{PSL}_{2}(k)$. Let \widetilde{J} be the inverse image of J under the finite extension $\mathrm{SL}_{2}(k) \rightarrow \mathrm{PSL}_{2}(k)$. So \widetilde{J} is finite. The representation of \widetilde{J} on k^{2} is absolutely irreducible, since otherwise \widetilde{J} would inject into the group $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ of 2×2 upper triangular invertible matrices over \bar{k}, and \widetilde{J} would have a normal Sylow p-subgroup $\widetilde{J} \cap\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$, and J would have one too, contrary to assumption. By [10, Theorem 19.3], this representation is definable over the field k_{0} generated by the traces of the elements of \widetilde{J}. Each trace is a sum of roots of unity, so k_{0} is finite. Thus J is conjugate in $\mathrm{PGL}_{2}(k)$ to a subgroup $J_{0} \leq \mathrm{PGL}_{2}\left(k_{0}\right)$. Conjugation does not change the determinant, so $J_{0} \leq \mathrm{PSL}_{2}\left(k_{0}\right)$. By Case $1, J_{0}$ is conjugate to a group in our list, so J is too.

Case 3: k is finite or infinite, and $J \leq \mathrm{PGL}_{2}(k)$, but $J \not \leq \mathrm{PSL}_{2}(k)$. If $p=2$, then, since k is perfect, $k^{\times}=k^{\times 2}$, so $\mathrm{PGL}_{2}(k)=\mathrm{PSL}_{2}(k)$. Thus $p>2$. Let $J^{\prime}:=J \cap \mathrm{PSL}_{2}(k)$. Then J / J^{\prime} injects into $k^{\times} / k^{\times 2}$, so $p \nmid\left(J: J^{\prime}\right)$. The Sylow p-subgroups of J^{\prime} are the same as those of J, so J^{\prime} has exactly one if and only if J has exactly one; i.e., J^{\prime} has a normal Sylow p-subgroup if and only if J has one. Since J does not have one, neither does J^{\prime}. By Case 1, we may assume that J^{\prime} appears in our list.

The group J is contained in the normalizer $N_{\mathrm{PGL}_{2}(k)}\left(J^{\prime}\right)$. We now break into cases according to J^{\prime}. If J^{\prime} is $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ for some subfield $\mathbb{F}_{q} \leq k$, then $N_{\mathrm{PGL}_{2}(k)}\left(J^{\prime}\right)=\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ by [8, §255] (the proof there works even if k is infinite), so $J=\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$, which is in our list. Recall that $p>2$, so J^{\prime} is not dihedral. Thus the only remaining possibility is that $J^{\prime} \simeq A_{5} \leq \mathrm{PSL}_{2}\left(\mathbb{F}_{9}\right) \leq \mathrm{PGL}_{2}(k)$. Let $\{1, a\}$ be a subgroup of order 2 in the image of J in $k^{\times} / k^{\times 2}$ and let $J^{\prime \prime}$ be its inverse image in J. Then $J^{\prime \prime}<\mathrm{PSL}_{2}(k(\sqrt{a}))$, so $J^{\prime \prime}$ should appear in our list, but $\left|J^{\prime \prime}\right|=120$ and there is no group of order 120 there for $p=3$.
(b) In the notation of Example 7.4, let $\psi: J \longrightarrow A$ be the projection. Let $T:=\operatorname{ker} \psi \leq$ $X(k)$. Since X is supersingular, T is a p^{\prime}-group. Let $\bar{J}:=\psi(J) \leq A$. Since $G \leq \bar{J} \leq \mathcal{A}$, the group \bar{J} is in the list of possibilities in Example 7.4 for G given p. Checking each case shows that its Sylow p-subgroup $\bar{P}_{J}:=\psi\left(P_{J}\right)$ is normal in \bar{J}. The action of $\operatorname{Aut}(X)$ on $X(k)$ restricts to the conjugation action of J on the abelian group T, which factors through \bar{J}, so $H^{0}\left(\bar{P}_{J}, T\right)=T^{\bar{P}_{J}}=T^{P_{J}}=0$, since P_{J} has a unique fixed point on X. Also, $H^{i}\left(\bar{P}_{J}, T\right)=0$ for all $i \geq 1$, since $\left|\bar{P}_{J}\right|$ and $|T|$ are coprime. Thus, by the Lyndon-Hochschild-Serre spectral sequence applied to $\bar{P}_{J} \triangleleft \bar{J}$, we have $H^{i}(\bar{J}, T)=0$ for all $i \geq 1$. Therefore the short exact sequence $0 \longrightarrow T \longrightarrow J \longrightarrow \bar{J} \longrightarrow 1$ is split, and all splittings are conjugate. Let K be the
image of a splitting $\bar{J} \longrightarrow J$. Then K contains a Sylow p-subgroup of J. Equivalently, some conjugate K^{\prime} of K contains P_{J}. Since $K^{\prime} \simeq \bar{J}$ and \bar{P}_{J} is normal in \bar{J}, the group P_{J} is normal in K^{\prime}. Since x is the unique fixed point of P_{J}, this implies that K^{\prime} fixes x; i.e., $K^{\prime} \leq J_{x}$. On the other hand, $\left|K^{\prime}\right|=|\bar{J}| \geq\left|J_{x}\right|$ since $J_{x} \cap T=\{e\}$. Hence $K^{\prime}=J_{x}$ and $J=T \rtimes J_{x}$.
(c) We may assume that k is algebraically closed. By Theorem 1.8, (X, x) is an HKG J_{x}-curve. Then (Y, y) is an HKG J_{x} / C-curve, but not an HKG J / C-curve since J / C does not fix y. If $g_{Y}>1$, then Lemma 7.12 applied to Y yields a nontrivial p^{\prime}-subgroup $C_{1} \leq J_{x} / C$ that is normal in J / C, and the inverse image of C_{1} in J is a p^{\prime}-subgroup $C_{2} \leq J_{x}$ normal in J with $C_{2} \not \geq C$, contradicting the maximality of C. Thus $g_{Y} \leq 1$. Since $g_{X}>1$, we have $C \neq 1$. Let $n=|C|$. Let ζ be a primitive nth root of unity in k. Let c be a generator of C.

By Lemma 7.2, C is central in J_{x}, so $P_{x} C$ is a direct product. By Corollary 7.1, X is an HKG P_{x}-curve. Thus $X / P_{x} \simeq \mathbb{P}^{1}$, and the P_{x}-action on X is totally ramified at x and unramified elsewhere. The action of C on X / P_{x} fixes the image of x, so by Example 4.7, the curves in the covering $X / P_{x} \longrightarrow X / P_{x} C$ have function fields $k(z) \supseteq k(f)$, where $z^{n}=f$ and $c_{z}=\zeta z$. Powers of z form a $k\left(X / P_{x} C\right)$-basis of eigenvectors for the action of c on $k\left(X / P_{x}\right)$.

We may assume that the (totally ramified) image of x in X / P_{x} is the point $z=\infty$. We obtain a diagram of curves

where the subscript on each \mathbb{P}^{1} indicates the generator of its function field, and the group labeling each morphism is the Galois group. The field $k(X)$ is the compositum of its subfields $k(Y)$ and $k\left(X / P_{x}\right)$.

Let S be the preimage of the point $f=0$ under $Y \longrightarrow X / P_{x} C$, and let $S^{\prime}:=S \cup\{y\}$. Comparing the p-power and prime-to- p ramification on both sides of the diagram shows that the point $f=\infty$ totally ramifies in $X \longrightarrow Y \longrightarrow X / P_{x} C$, while the point $f=0$ splits completely into a set S of $\left|P_{x}\right|$ points of Y, each of which is totally ramified in $X \longrightarrow Y$. Thus the extension $k(X) \supseteq k(Y)$ is Kummer and generated by the same z as above, and powers of z form a $k(Y)$-basis of eigenvectors for the action of c on $k(X)$. This extension is totally ramified above S^{\prime} and unramified elsewhere. The divisor of f on Y is $S-|S| y=S^{\prime}-\left|S^{\prime}\right| y$, where S here denotes the divisor $\sum_{s \in S} s$, and so on.

Let $j \in J$. Since $C \triangleleft J$, the element j acts on Y and preserves the branch locus S^{\prime} of $X \longrightarrow Y$. Since $X \longrightarrow Y$ is totally ramified above S^{\prime}, the automorphism j fixes x if and only if it fixes y. Since P_{x} acts transitively on S, and J does not fix x or y, the set S^{\prime} is the
J-orbit of y. Thus

$$
\left(J: J_{x}\right)=|J x|=|J y|=\left|S^{\prime}\right|=\left|P_{x}\right|+1 .
$$

Suppose that $j \in J-J_{x}$, so ${ }^{j} y \neq y$. Then the divisor of ${ }^{j} f / f$ on Y is

$$
\left(S^{\prime}-\left|S^{\prime}\right|^{j} y\right)-\left(S^{\prime}-\left|S^{\prime}\right| y\right)=\left|S^{\prime}\right|\left(y-{ }^{j} y\right)
$$

which is nonzero. Since C is cyclic and normal, $j^{-1} c j=c^{r}$ for some r, and hence ${ }^{c}\left({ }^{j} z / z\right)=$ ${ }^{j c^{r}} z /{ }^{c} z=\zeta^{r-1}\left({ }^{j} z / z\right)$. Thus ${ }^{j} z / z$ is a ζ^{r-1}-eigenvector, so ${ }^{j} z / z=z^{r-1} g$ for some $g \in k(Y)^{\times}$. Taking nth powers yields ${ }^{j} f / f=f^{r-1} g^{n}$. The corresponding equation on divisors is

$$
\begin{equation*}
\left|S^{\prime}\right|\left(y-{ }^{j} y\right)=(r-1)\left(S^{\prime}-\left|S^{\prime}\right| y\right)+n \operatorname{div}(g) . \tag{7.14}
\end{equation*}
$$

Considering the coefficient of a point of $S^{\prime}-\left\{y,{ }^{j} y\right\}$ shows that $r-1 \equiv 0(\bmod n)$. Then, considering the coefficient of y shows that n divides $\left|S^{\prime}\right|$, and dividing equation (7.14) through by n shows that $\left(\left|S^{\prime}\right| / n\right)\left(y-{ }^{j} y\right)$ is $\operatorname{div}\left(f^{(r-1) / n} g\right)$, a principal divisor. If, moreover, $g_{Y}>0$, then a difference of points on Y cannot be a principal divisor, so $n \neq\left|S^{\prime}\right|$.

Case 1: $g_{Y}=0$. Applying (a) to Y shows that $p \in\{2,3\}$ and any Sylow p-subgroup of J / C has order p. Since C is a p^{\prime}-group, $\left|P_{J}\right|=p$ too. By Corollary 7.7a), $P_{x}=P_{J}$, so $\left|P_{x}\right|=p$, and n divides $\left|S^{\prime}\right|=p+1$. Thus (p, n) is $(2,3),(3,2)$, or $(3,4)$. The Hurwitz formula for $X \longrightarrow Y$ yields

$$
2 g_{X}-2=n(2 \cdot 0-2)+\sum_{s \in S^{\prime}}(n-1)=-2 n+(p+1)(n-1) .
$$

Only the case $(p, n)=(3,4)$ yields $g_{X}>1$. By (a), we may choose an isomorphism $Y \simeq \mathbb{P}_{t}^{1}$ mapping y to ∞ such that the J / C-action on Y becomes the standard action of $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ on \mathbb{P}_{t}^{1}. Then $S^{\prime}=J y=\mathbb{P}^{1}\left(\mathbb{F}_{3}\right)$. Then f has divisor $S^{\prime}-4 y=\mathbb{A}^{1}\left(\mathbb{F}_{3}\right)-3 \cdot \infty$ on \mathbb{P}^{1}, so $f=t^{3}-t$ up to an irrelevant scalar. Since $k(X)=k(Y)(\sqrt[n]{f})$, the curve X has affine equation $z^{4}=t^{3}-t$. This is the same as the $q=3$ case of Example 6.2.

Case 2: $g_{Y}=1$. Applying (b) (i.e., Example 7.4) to Y shows that either p is 2 and $\left|P_{x}\right|$ divides 8 , or $p=3$ and $\left|P_{x}\right|=3$; also, Y has j-invariant 0 . Also, n divides $\left|S^{\prime}\right|=\left|P_{x}\right|+1$, but n is not 1 or $\left|S^{\prime}\right|$. Thus $\left(p, n,\left|P_{x}\right|,\left|S^{\prime}\right|\right)$ is $(2,3,8,9)$ or $(3,2,3,4)$. The Hurwitz formula as before gives $g_{X}=10$ or $g_{X}=3$, respectively. Let $m=\left|S^{\prime}\right| / n$. Since $m\left(y-{ }^{j} y\right)$ is principal for all $j \in J$, if y is chosen as the identity of the elliptic curve, then the J-orbit S^{\prime} of y is contained in the group $Y[m]$ of m-torsion points. But in both cases, these sets have the same size $\left|S^{\prime}\right|=m^{2}$. Thus $S^{\prime}=Y[m]$.

If $p=2$, the j-invariant 0 curve Y has equation $u^{2}+u=t^{3}$, and $Y[3]-\{y\}$ is the set of points with $t \in \mathbb{F}_{4}$, so $f=t^{4}+t$ up to an irrelevant scalar, and $k(X)=k(Y)\left(\sqrt[3]{t^{4}+t}\right)$. Thus X is the curve of Example 6.3.

If $p=3$, the j-invariant 0 curve Y has equation $u^{2}=t^{3}-t$, and $Y[2]-\{y\}$ is the set of points with $u=0$, so $f=u$ up to an irrelevant scalar, and $k(X)=k(Y)(\sqrt{u})=k(t)\left(\sqrt[4]{t^{3}-t}\right)$. Thus X is the curve of Example 6.4 .

Finally, Proposition 6.1 implies that in each of i., ii., and iii., any group satisfying the displayed upper and lower bounds, viewed as a subgroup of $\operatorname{Aut}(Y)$, can be lifted to a suitable group J of $\operatorname{Aut}(X)$.

Remark 7.15. Suppose that (X, x) is not an HKG J-curve, $g_{X}>1$, and P_{J} is not cyclic or generalized quaternion. Then [13, Theorem 3.16] shows that J / C is almost simple with socle from a certain list of finite simple groups.

References

[1] J. Bertin and A. Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques. Invent. Math. 141 (2000), no. 1, 195 - 238.
[2] R. Camina. Subgroups of the Nottingham group, J. Algebra 196, (1997), 101-113.
[3] R. Camina. The Nottingham group. In: New horizons in pro-p groups, pp. 205-221, Progr. Math., 184, Birkhäuser Verlag, Boston, MA, 2000.
[4] T. Chinburg, R. Guralnick, D. Harbater. The local lifting problem for actions of finite groups on curves. Annales scientifiques de l'ENS, 44, (2011), 537-605.
[5] T. Chinburg, P. Symonds. An element of order 4 in the Nottingham group at the prime 2. arXiv:1009.5135v1
[6] G. Christol. Ensembles presque périodiques k-reconnaisables. Theoret. Comput. Sci. 9 (1979), 141-145.
[7] G. Christol, T. Kamae, M. Mendès-France, G. Rauzy. Suites algébriques, automates et substitutions. Bull. Math. Soc. France 108 (1980), 401-419.
[8] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory. Teubner, Leipzig, 1901.
[9] X. Faber. Finite p-irregular subgroups of $\mathrm{PGL}_{2}(k)$. arXiv:1112.1999v2.
[10] W. Feit. The Representation Theory of Finite Groups. North Holland, Amsterdam, 1982.
[11] M. Giulietti, G. Korchmáros. A new family of maximal curves over a finite field. Math. Ann. 343 (2009), 229-245.
[12] B. Green. Realizing deformations of curves using Lubin-Tate formal groups. Israel J. Math. 139 (2004), 139-148.
[13] R. Guralnick, B. Malmskog, R. Pries. The automorphism groups of a family of maximal curves. J. Algebra 361 (2012), 92-106.
[14] D. Harbater. Moduli of p-covers of curves. Comm. Algebra 8 (1980), 1095-1122.
[15] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[16] D. Husemöller. Elliptic curves. Graduate Texts in Mathematics, No. 111. Springer-Verlag, New YorkHeidelberg, 1987.
[17] B. Huppert. Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften 134, Springer-Verlag, New York-Heidelberg, 1967.
[18] I. M. Isaacs. Finite group theory. Graduate Studies in Mathematics, Vol. 92. American Mathematical Society, Providence, 2008.
[19] N. M. Katz. Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier (Grenoble) 36 (1986), 69-106
[20] B. Klopsch. Automorphisms of the Nottingham group. J. Algebra 223 (2000), 37-56.
[21] J. Lubin. Torsion in the Nottingham group. Bull. London Math. Soc. 43 (2011), 547-560.
[22] F. Oort, T. Sekiguchi, and N. Suwa. On the deformation of Artin-Schreier to Kummer. Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, 345-375.
[23] B. Poonen. Gonality of modular curves in characteristic p. Math. Res. Letters 15 (2008), no. 2, 265-271.
[24] J.-P. Serre. Corps locaux. Publications de l'Institut de Mathématique de l'Université de Nancago, VIII Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962.
[25] J.H. Silverman. The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986.
[26] M. Suzuki. Group Theory. Grundlehren der mathematischen Wissenschaften 247, Springer-Verlag, New York-Heidelberg, 1982.

Frauke M. Bleher, Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.

E-mail address: frauke-bleher@uiowa.edu
Ted Chinburg, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

E-mail address: ted@math.upenn.edu

Bjorn Poonen, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

E-mail address: poonen@math.mit.edu
Peter Symonds, School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, Manchester M13 9PL United Kingdom

E-mail address: Peter.Symonds@manchester.ac.uk

[^0]: Date: September 5, 2015.
 2010 Mathematics Subject Classification. Primary 14H37; Secondary 14G17, 20 F29.
 *Supported by NSA Grant \# H98230-11-1-0131 and NSF Grant \# DMS-1360621.
 **Supported by NSF Grants \# DMS-1265290 and DMS-1360767.
 \dagger Supported by NSF Grant \# DMS-1069236 and a Simons Fellowship.
 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

