
ON THE CASTELNUOVO-MUMFORD REGULARITY OF RINGS OF
POLYNOMIAL INVARIANTS

PETER SYMONDS

Abstract. We show that when a group acts on a polynomial ring over a field the ring of
invariants has Castelnuovo-Mumford regularity at most zero. As a consequence, we prove a
well-known conjecture that the invariants are always generated in degrees at most n(|G|−1),
where n > 1 is the number of polynomial generators and |G| > 1 is the order of the group.
We also prove some other related conjectures in invariant theory.

The main result of this paper is the following theorem.

Theorem 0.1. Let k be any field and S = k[x1, . . . , xn] a graded polynomial ring. Let the
group G act on S by homogeneous linear substitutions. Then the invariant subring SG has
Castelnuovo-Mumford regularity at most zero.

As a consequence, we can prove a conjecture of Gregor Kemper [19] on the degrees of the
generators of SG.

Corollary 0.2. The invariant subring SG is generated in degrees at most n(|G|−1) (provided
that n > 1, |G| > 1). The relations between the the generators are generated in degrees at
most 2n(|G| − 1).

That just |G| is a bound on the degrees of the generators when k has characteristic 0 is a
result of Noether (for this reason such a bound is called a Noether bound in the literature).
This was generalized to the case of coprime characteristic by Fleischmann [13] and Fogarty
[14], with a much simplified proof by Benson. However, in general, no bound depending only
on |G| is possible, as was shown by Richman [21, 22]. The bound above was shown to hold
when S1 is a trivial source module by Göbel [15]. Some very much weaker bounds have been
shown to hold by Derksen and Kemper [8] and by Karagueuzian and the author [18].

This corollary follows from the next corollary, which in turn follows easily from the Main
Theorem 0.1 and elementary properties of regularity.

Corollary 0.3. Let k[d1, . . . , dn] < SG be a subring of primary invariants. Then:

(1) the secondary invariants are bounded in degree by
∑

i(deg(di)− 1),
(2) the relations as a ring are generated in degrees at most 2

∑
i(deg(di)− 1).

The first part was conjectured by Kemper [19]. It is well known when k has characteristic
zero [23] and was proved in the case when the ring of invariants is Gorenstein by Campbell,
Geramita, Hughes, Shank and Wehlau [7], then in the Cohen-Macauley case by Broer [5].

The Hilbert series of SG is the formal power series H(SG, t) =
∑

i dimk(S
G
i )t

i. It is known
to be a rational function, by the Hilbert-Serre Theorem. The next result (strictly speaking
only a corollary of the proof of 0.1) was also conjectured by Kemper [19].
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Corollary 0.4. The degree of H(SG, t) as a rational function is at most −n.

This corollary is easily seen to be equivalent to the previous one in the Cohen-Macaulay
case. It was proved for a reductive algebraic group over an algebraically closed field of
characteristic zero by Knop [20].

There is an excellent survey of results and conjectures on degree bounds by Wehlau [26].
The proof of the Main Theorem 0.1 is quite short, but it depends heavily on the details

of the Structure Theorem that we proved with Karagueuzian in [18] and on the relatively
projective resolutions of [24]. We also need to develop some of the properties of Castelnuovo-
Mumford regularity.

I wish to thank Dikran Karagueuzian, without whom this project would have been impos-
sible, and Gregor Kemper for making these conjectures and for his hospitality. Burt Totaro
showed me how to extend these results to infinite fields and David Wehlau provided some
calculations which revealed an error in a preliminary version of this paper. I also thank
Ergün Yalçin for introducing me to the concept of regularity and Luchezar Avramov for
patiently explaining it to me.

1. Castelnuovo-Mumford Regularity

We will work in categories of Z-graded rings and modules throughout, so M = ⊕i∈ZMi.
We will write M≥d = ⊕i≥dMi and similarly for other inequalities. We also use M(d) to
denote a shift down in grading by d, so that M(d)i = Mi+d.

Let k be a field and let R be a finitely generated commutative graded k-algebra in non-
negative degrees with dimk R0 < ∞. Let I be a (homogeneous) ideal in R and let M be
an R-module (graded, by assumption). The I-torsion in M is ΓI(M) = {m ∈ M | ∃n ∈
N Inm = 0}. The local cohomology, H i

I(R,M), is then defined to be the ith right derived
functor of ΓI(M) (in the category of graded R-modules); frequently the ring R is suppressed
from the notation and just H i

I(M) is written. It follows easily from the definitions that
H i

I(R,M) = H i√
I
(R,M).

For more information on local cohomology see [6], [4], [11] or [17].
Let m = R>0 be the ideal of positively graded elements of R; usually we will have R0 = k,

so m is the unique maximal homogeneous ideal. We will be interested in H i
m(M).

Let ai(R,M) denote the maximum degree of a non-zero element of H i
m(R,M) (possibly

∞ if unbounded or −∞ if H i
m(R,M) = 0). The Castelnuovo-Mumford regularity (or just

regularity) of M over R is, by definition,

reg(R,M) = sup
i
{ai(R,M) + i}.

The number reg(R,R) is important and we denote it by just reg(R).
The Independence Theorem for local cohomology ([16] 5.7, [4] 13.1.6) states that if R′ is

another ring satisfying the same conditions as R, I ′ < R′ is an ideal and f : R′ → R is a
ring homomorphism (all graded) then f induces an isomorphism H i

I′(R
′,M) → H i

I′R(R,M),
(where we regard M as an R′-module via f and I ′R is the ideal in R generated by f(I ′)).

Let m′ = R′
>0; if R is finite over R′ then it is easy to see that

√
m′R =

√
m. Combining these

facts we obtain H i
m′(R′,M) ∼= H i

m(R,M), so reg(R′,M) = reg(R,M).
We will use this theory when R′ is a Noether normalization of R, that is a polynomial

subring over which R is finitely generated. These always exist and their generators are often
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referred to as a homogeneous system of parameters, or as primary invariants in the case of
invariant theory (for more information on this see the references mentioned above or [1]).
Restricting to any normalization will yield the same value for the regularity and we will
usually write just reg(M).

Now suppose that R = k[x1, . . . , xn] is a polynomial ring in which the generators have
arbitrary positive degree |xi| = deg(xi). We set σ(R) =

∑n
i=1(|xi|−1) although traditionally

one considers the a-invariant, a(R) = −σ(R)− n = −
∑n

i=1 |xi|.
Let M be an R-module and consider the minimal (graded) projective resolution of M

(projective is equivalent to free in this case)

· · · → P1 → P0 → M → 0.

Let ρi(R,M) be the maximum degree of a non-zero element of R/m ⊗R Pi (possibly ∞
or −∞), which is equal to the maximum degree of a generator of Pi (Benson [2, 3] uses βi

instead of ρi, but this can be confused with the Betti numbers). Define

Preg(R,M) = sup
i
{ρi(R,M)− i} − σ(R).

This form of the definition first appeared in a paper of Benson [2]. The usual definition does
not contain a σ-term, because all the di are supposed to be in degree 1 and so σ(R) = 0;
but the necessity of using this form will become apparent.

We consider Hom-groups between graded modules to be graded modules as well. The
homogeneous part in degree i consists of the homomorphisms that increase the grading by
i. In this way the Ext groups are also graded modules.

Now define ϵi(R,M) to be the minimum degree of a non-zero element of ExtiR(M,R)
(possibly ∞ or −∞). Define

Extreg(R,M) = sup
i
{−ϵi(R,M)− i} − σ(R).

Lemma 1.1. Assume that M is finitely generated over R (which is still a polynomial ring).
Then Preg(R,M) = Extreg(R,M).

Proof. A proof is given in [10] 20.16 (it is assumed there that σ(R) = 0, but the argument
still holds). For the convenience of the reader we sketch the proof.

That Preg(R,M) ≥ Extreg(R,M) follows easily from the definitions. For the reverse
inequality, we will show that ρi(R,M) ≤ Extreg(R,M) + σ(R) + i by downward induction
on i. Since R is a polynomial ring, the minimal resolution has finite length, so the induction
certainly starts.

Let · · · → Pr
dr→ Pr−1 → · · · → M → 0 denote the minimal projective resolution of M . We

claim that there is no map f : Pr → R(−u), for any r or u, such that fdr+1 is onto. For then
fdr+1 would split, and Pr+1 would contain a summand R(−u) that mapped isomorphically
to its image in Pr. We could then factor out the two copies of R(−u) in P• and obtain a
smaller resolution of M , a contradiction.

Suppose that the inequality is established for i > r, but that Pr contains a summand
R(−u) with u > Extreg(R,M) + σ(R) + r. In particular, u > −ϵr(R,M). Let f be
the corresponding projection of Pr onto R(−u) and consider the map (fdr+1)u : (Pr)u →
R(−u)u ∼= k. If it is onto then fdr+1 is onto, which is impossible by the discussion above.
Thus (fdr+1)u = 0 and since, by the induction hypothesis, Pr+1 contains no summands
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R(−v) with v > u, the map fdr+1 = 0. Thus f determines an element of ExtrR(M,R(−u))0 ∼=
ExtrR(M,R)−u.

But this Ext-group is zero by the condition on u, so f factors through dr, again contra-
dicting the minimality of the resolution. �

Note that we might well have that ρi(R,M) ̸= ϵi(R,M).
The Local Duality Theorem ([16] 6.3, [6] 3.6.19/3.6.11) states that for R a polynomial

ring in n variables as above and M a finitely generated R-module we have

Homk(H
i
m(M), k) ∼= Extn−i

R (M,R(a(R))).

Recall that k is in degree 0 and that R(a(R)) denotes a copy of R that has been shifted
down in degree by a(R) or, equivalently, up in degree by σ(R) + n.

Proposition 1.2. If R is a polynomial ring over a field and M is a finitely generated R-
module, then Preg(R,M) = reg(R,M).

Proof. Combine the Local Duality Theorem with Lemma 1.1. �
This result is well known when σ(R) = 0 (see e.g. [10] A4.2). It is stated in this generality

in [3] 2.3.
We are really only concerned with Preg in this paper, but we need the connection with

local cohomology in order to see that if R is a noetherian ring and R′ and R′′ are two
different Noether normalisations of R, then for any finitely generated R-module M we have
Preg(R′,M) = Preg(R′′,M).

For example, if R is a ring of polynomial invariants, then Preg(R′, R) does not depend on
the choice of primary invariants R′ and it is equal to reg(R).

Remark. If R is a polynomial ring then reg(R) = Preg(R;R) = −σ(R), so the regularity
of a ring of invariants can certainly be negative. However, in characteristic zero the ring
of invariants has regularity zero if and only if the representation in degree one has trivial
determinant (see [23] 3.9).

This is in contrast to the case of the cohomology of a finite group, where Benson shows in
[3] that reg(H∗(G,Fp)) ≥ 0 and conjectures that equality holds. This has now been proved
[25].

2. Generators and Relations

Given a finitely generated graded k-algebra S in non-negative degrees and an integer N ,
let τ kNS be the k-algebra determined by the generators and relations of S that occur in
degrees at most N . We will normally write just τNS. There is a canonical map τNS → S,
which is an isomorphism in degrees up to and including N .

For a more abstract setting, consider the functor S 7→ S/S>N on graded k-algebras in
non-negative degrees; τN is its left adjoint.

It is not hard to see that if ℓ is an extension field of k then τ ℓN(ℓ⊗k S) ∼= ℓ⊗k τ
k
NS.

Proposition 2.1. Let R = k[d1, . . . , dm] and suppose that there is a map f : R → S such
that S is finitely generated over R (e.g. if R is a Noether normalisation of S). Then:

(1) if N ≥ max{reg(S) + σ(R), deg(di)}, then τNS → S is a surjection;
(2) if N ≥ max{2(reg(S) + σ(R)), reg(S) + σ(R) + 1, deg(di)}, then τNS → S is an

isomorphism;
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(3) if N ≥ max{reg(S) + σ(R) + 1, deg(di)} and if τNS, considered an R-module, is
generated in degrees at most N , then τNS → S is an isomorphism.

Proof. Let · · · → P1 → P0 → S → 0 be the minimal projective resolution of S as an
R-module.

It is clear from the definitions that S, considered as an R-module, is generated in degrees
at most ρ0(R,S) and is presented in degrees at most max{ρ0(R, S), ρ1(R,S)}.

If N ≥ max{deg(di)}, then f can be lifted uniquely to τNS, making τNS into a finitely
generated R-module.

Let {vi} be a set of homogeneous generators of S as an R-module with minimum degrees.
These have degrees not exceeding ρ0(R,M), which is bounded by reg(S) + σ(R) according
to the definition of Preg. This proves part (1).

The R-module relations between the vi are generated in degrees at most reg(S)+σ(R)+1.
The only information still needed in order to determine the structure of S as a ring is an
expression for each of the products vjvk as an R-linear combination of the vi. Such a formula
will lie in degree at most 2(reg(S) + σ(R)). This proves part (2).

For part (3), consider the following commutative diagram of R-modules with exact rows,
where the vertical arrows can be filled in since the Pi are projective.

−−−→ P1 −−−→ P0 −−−→ S −−−→ 0y y ∥∥∥
0 −−−→ K −−−→ τNS −−−→ S −−−→ 0

We know that K≤N = 0 and that P1 is generated in degrees at most ρ1(R,S) ≤ N . Thus
the composite map P1 → τNS is zero. It follows that the bottom row is split as a sequence
of R-modules. Since τNS is generated as an R-module in degrees at most N , by hypothesis,
so is K, which implies that K = 0. �

Remark. There is a similar result when both S and τNS are taken to be graded commutative
rings (although R remains strictly commutative).

Proofs of 0.2 and 0.3. Corollary 0.3 now follows directly from the Main Theorem 0.1 and
Proposition 2.1. It is easy to check that the maximum in the formulas of Proposition 2.1 is
achieved by the first term, except in the trivial case when all the di have degree 1.

The remark about τN commuting with field extensions shows that, in order to prove
Corollary 0.2, we may extend the field. But then a result of Dade in [23] shows that for some
finite field extension we can find a set of primary invariants of degree at most the order of
the group, so from Corollary 0.3 we obtain the bound max{n(|G| − 1), |G|} for the degrees
of the generators. But the |G| term is only larger than the other in the trivial cases that are
excluded in the statement of the Corollary. Similarly, the bound obtained on the degrees of
the relations is always 2n(|G|− 1), except in the case when G = 1 and there are no relations
anyway.

Remark. In the case when G is a p-group, one of the primary invariants can be taken to be
in degree 1 and we obtain the bound (n− 1)(|G| − 1).

Remark. Benson [2] §10 defines τNS and proves a version of 2.1 in the case when S is the
cohomology of a group.
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3. Relatively Projective Resolutions

Let M be an RG-module for some finite group G. A relatively projective resolution P• of
M relative to kG is a complex of RG-modules

· · · → P2 → P1 → P0 → M → 0

that is split exact over kG and in which each Pi is a sum of terms R ⊗k V (−d), where
V (−d) is a kG-module considered to be in degree d. For brevity we will call this just an
RG/kG-resolution. Here R acts on the first term of R⊗k V (−d) and G acts on the second.
We could also write R⊗k V (−d) as RG⊗kG V (−d), with RG acting on the left in the usual
way.

If N is another RG-module then we obtain R-modules ExtiRG/kG(M,N) by applying
HomRG(−, N) to the resolution of M and taking homology.

For more information on general relative homological algebra see [9, 12, 27]. We will
closely follow our treatment in [24]. In particular, the next result is taken from [24] 4.2.

Theorem 3.1. If M is a finitely generated RG-module, then M has a unique minimal
RG/kG-resolution P•. For any indecomposable kG-module V and any integer d, the number
of summands of the form R ⊗k V (−d) in any given term Pi is finite and is zero if V is not
a summand of M as a kG-module. If R is polynomial then this resolution has finite length.

The question of minimality and uniqueness is not explicitly addressed in [24], but the
construction used there proceeds by changing the problem to one about projective resolutions
in another category, in which modules bounded below have projective covers, so the existence
of a unique minimal projective resolution is guaranteed. For a theoretical framework in the
context of relative homological algebra see [12] chapter 8.

From now on, assume that R is polynomial and that M is finitely generated over R.
For any indecomposable kG-module V , define ρi(R,G;M,V ) to be the largest d for which
R⊗k V (−d) appears in the Pi term of the minimal RG/kG-resolution of M . Define

ρi(R,G;M) = sup
V

{ρi(R,G;M,V )},

Preg(R,G;M) = sup
i
{ρi(R,G;M)− i} − σ(R).

It is clear that if H is a subgroup of G, then an RG/kG-resolution of M restricts to an
RH/kH-resolution of M ↓H . This fact together with the next lemma is key to our strategy.

Lemma 3.2. If · · · → P1 → P0 → M → 0 is an RG/kG-resolution of M , then · · · → PG
1 →

PG
0 → MG → 0 is a projective resolution of the invariants MG over R. As a consequence,

ρi(R,MG) ≤ ρi(R,G;M),

Preg(R,MG) ≤ Preg(R,G;M).

Proof. Since the resolution is split over kG, taking fixed points preserves exactness. Each Pi

is a sum of terms of the form R⊗kV (−d); thus PG
i is a sum of terms of the form R⊗kV

G(−d),
so is free over R. �

The next lemma is a sort of generalization of 1.1, but notice that the bound is horizontal
instead of diagonal.

Lemma 3.3. For any integer N , the following are equivalent:
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(1) ρi(R,G;M) ≤ N for all i;
(2) ExtiRG/kG(M,R⊗k V (−d))0 = 0 for all kG-modules V , all i and all d > N ;

(3) ExtiRG/kG(M,R ⊗k V (−d))0 = 0 for all indecomposable kG modules V that occur as
a summand of M , all i and all d > N ;

(4) for each indecomposable kG-module V , either ρi(R,G;M,V ) ≤ N for all i or ExtiRG/kG(M,R⊗k

V (−d))0 = 0 for all i and all d > N .

Proof. This is essentially what is proved in [24] §5, where it is shown that condition (3’)
there is equivalent to the other conditions, although the given proof does not explicitly keep
track of N , so we do so here.

Condition (4) is implied by each of the other conditions and, using the definition of
Ext∗RG/kG, we see that condition (1) implies all the others, so we concentrate on (4)⇒(1).
We assume (4) and prove (1) by downward induction on i. Since the minimal projective
resolution is of finite length, the induction starts.

We suppose that ρi(R,G;M) ≤ N for all i > r. Consider an indecomposable kG-module
V ; if ρr(R,G;M,V ) ≤ N then there is nothing to prove, so we assume that there is a
summand R⊗k V (−u) of Pr for some u > N . Let f be a projection of Pr onto R⊗k V (−u).
Since Pr+1 is generated as an R-module in degrees at most N , the map fdr+1 is zero. Thus
f determines an element of ExtrRG/kG(M,R⊗k V (−u))0.

But this Ext-group is zero, by hypothesis, so f factors through dr. It follows that R ⊗k

V (−u)
dr→ dr(R ⊗k V (−u)) is a summand of the minimal resolution as a complex of RG-

modules, a contradiction. We must have ρr(R,G;M,V ) ≤ N , as required. �
Lemma 3.4. If H < G and W is a kH-module, then

ExtiRG/kG(M,R⊗k (W (−d)↑GH)) ∼= ExtiRH/kH(M,R⊗k W (−d)).

As usual, ↑ denotes induction and ↓ denotes restriction.

Proof. This is an easy adaptation of the usual Eckmann-Shapiro Lemma. �
Lemma 3.5. If R′ < R and both are polynomial rings, R is finitely generated over R′ and
V is an indecomposable kG-module then

ρi(R
′, G;M,V )− σ(R′) ≤ ρi(R,G;M,V )− σ(R).

As a consequence,
Preg(R′, G;M) ≤ Preg(R,G;M).

Proof. Take a minimal RG/kG-resolution of M and restrict it to R′. By the basic theory
of Cohen-Macauley rings (see e.g. [1] or [6]), R is free of finite rank over R′ with a basis
of homogeneous elements {zj} bounded in degree by σ(R′) − σ(R). For each summand
R ⊗k V (−d) in Pi in the original resolution, we now have ⊕jR

′zj ⊗k V (−d) and the result
follows. �
Lemma 3.6. If R′ < R, M is a finitely generated R′G-module and V is an indecomposable
kG-module, then

ρi(R,G;R⊗R′ M,V ) ≤ ρi(R
′, G;M,V ).

Proof. Tensoring an R′G/kG-resolution of M with R yields an RG/kG-resolution of R ⊗R′

M . �
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Lemma 3.7. If H < G then ρi(R,H;M ↓GH) ≤ ρi(R,G;M) and so Preg(R,H;M ↓GH) ≤
Preg(R,G;M).

Proof. Take an RG/kG-resolution of M and restrict it to H. �
Lemma 3.8. If P is a Sylow p-subgroup of G (where p is the characteristic of k), then
ρi(R,P ;M ↓GP ) = ρi(R,G;M) and so Preg(R,P ;M ↓GP ) = Preg(R,G;M).

Proof. The inequality ≤ follows from 3.7.
For ≥, note that M is a summand of M ↓P↑Gas an RG-module; thus ρi(R,G;M ↓P↑G) ≥

ρi(R,G;M). But an RP/kP -resolution of M ↓P induces to an RG/kG-resolution of M ↓P↑G
and so ρi(R,P ;M ↓P ) ≥ ρi(R,G;M ↓P↑G). �
Lemma 3.9. Let 0 → A → B → C → 0 be a short exact sequence of RG-modules that is
split over kG and let V be an indecomposable kG-module. Then

ρi(R,G;B, V ) ≤ max{ρi(R,G;A, V ), ρi(R,G;C, V )}.
As a consequence,

Preg(R,G;B) ≤ max{Preg(R,G;A),Preg(R,G;C)}.

Proof. A relatively projective resolution for B can be constructed from ones for A and C
(see [12] 8.2.1) just as in the Horseshoe Lemma for ordinary projective resolutions (cf. [27]
2.2.8). �
Lemma 3.10. If M is a finitely generated RG-module and d is an integer such that M>d = 0,
then Preg(R,G;M) ≤ d.

Proof. Filter M by its submodules M≥r; since M is finitely generated and M>d = 0,
this is a finite filtration and the composition factors are just the homogeneous pieces Mr.
Clearly M is the sum of its composition factors over kG. By repeated use of 3.9, we
see that Preg(R,G;M) ≤ maxr{Preg(R,G;Mr)}; hence it will be sufficient to show that
Preg(R,G;Mr) ≤ r.

Let R = k[d1, . . . , dn], where |d1| ≥ |d2| ≥ · · · ≥ |dn| ≥ 1. Since the di annihilate Mr,
we can resolve Mr by tensoring it with the Koszul resolution on the di; this is an RG/kG-
resolution.

It is now easy to calculate that ρi(R,G;Mr) ≤ r+
∑i

j=1 |dj|. But
∑i

j=1 |dj| ≤
∑i

j=1 |dj|+∑n
j=i+1(|dj|−1) = σ(R)+i. Hence ρi(R,G;Mr)−i−σ(R) ≤ r and so Preg(R,G;Mr) ≤ r. �

4. The Structure Theorem

Here we summarize the material that we will require from our paper with Karagueuzian
[18].

From now until Section 6, k will always be a finite field. Let S = k[x1, . . . , xn] be a
polynomial ring with all the generators in degree 1. For any subset I ⊆ {1, 2, . . . , n − 1},
let UI denote the group of upper-triangular matrices over k with 1’s on the diagonal and
non-zero off-diagonal entries only in rows corresponding to the elements of I. The group UI

acts on S in the natural way, i.e. so that S1 is the canonical module. The invariants form a
polynomial ring generated by the orbit powers of the xi; we denote the latter by di(I) (here
our notation differs slightly from that of [18]).

The Main Theorem of [18] is as follows.
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Theorem 4.1. As a graded kUI-module,

S ∼=
⊕
J⊆I

k[di(I); i ̸∈ J ]⊗k X̄J(I),

where X̄J(I) is a finite dimensional graded kUI-submodule of S and the map from right to
left is induced by multiplication in S.

We also have some information about the modules X̄J(I). Let us write k[d(I)] for
k[di(I); i = 1, . . . , n] and σ(I) for σ(k[d(I)]).

Proposition 4.2. (1) X̄J(I) is induced from UJ .
(2) X̄∅(I) is homogeneous of degree σ(I).
(3) X̄I(I) lies in degrees at most σ(I)−

∑
i∈I |di(I)|.

Proof. We refer by numbers in parenthesis to statements in [18].
Part (1) is by construction (10.1(2)).
For part (2), notice that X̄∅(I)

UI is 1-dimensional in a degree that is denoted by degI(p⃗)
(10.1(3) and 5.14). The fact that degI(p⃗) = σ(I) can be verified by direct calculation
from the definitions or, more conceptually, by observing that deg X̄∅(I) = deg(G(I, ∅)) by
construction (10.1(2)), where G(I, ∅) is a polynomial that clearly has degree σ(I) from its
definition (9.1).

Part (3) follows from part (2) and (5.22). �

We also record one other fact.

Proposition 4.3. The ring S contains a k[di(I); i ∈ I]UI-submodule T (I) such that

S ∼= k[di(I); i ̸∈ I]⊗k T (I) ∼= k[d(I)]⊗k[di(I);i∈I] T (I)

as k[d(I)]UI-modules.

This is (6.4) in [18]; although there the map is only stated to be a k[di(I); i ∈ I]UI-module
isomorphism, it is clearly a k[d(I)]UI-isomorphism, by construction.

5. Proof of the Main Theorem

What we would like to do is to construct an explicit k[d(I)]UI/kUI-resolution of S. There
is an obvious candidate for a description of what the modules in this resolution ought to
be. For each XJ(I) = k[di(I); i ̸∈ J ] ⊗k X̄J(I) in the Structure Theorem, there should be
a contribution that looks like XJ(I) tensored with the Koszul complex on the di(I), i ∈ J .
If we knew that there existed a filtration of S by k[d(I)]UI-modules with the XJ(I) as
composition factors, then this could be verified. However, the existence of such a filtration
is not clear.

We will content ourselves with proving some of the bounds that would be implied by the
existence of such a resolution.

Our key result is the following proposition. Notice that the bound is not the diagonal one
that might be expected.

Proposition 5.1. In the context of the Structure Theorem,

ρi(k[d(I)], UI ;S) ≤ σ(I)
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for all i ≥ 0. As a consequence,

Preg(k[d(I)], UI ;S) ≤ 0.

Proof. Use induction on |I|; the case I = ∅ is clear since k[d(∅)] = S and σ(∅) = 0.
Let V be an indecomposable kUI-module; by Lemma 3.3, it is sufficient to verify condition

3.3(4) with N = σ(I). First consider the case when V is projective relative to some proper
subgroup UJ , J $ I; say V is a summand of W ↑UI

UJ
for some indecomposable kUJ -module

W . Then

Extik[d(I)]UI/kUI
(S, k[d(I)]⊗k V ) is a summand of Extik[d(I)]UJ/kUJ

(S, k[d(I)]⊗k W ),

by 3.4.
By the induction hypothesis, ρi(k[d(J)], UJ ;S,W ) ≤ σ(J), so, by 3.5, ρi(k[d(I)], UJ ;S,W ) ≤

σ(I).
This implies that the Ext group on the right above vanishes in degrees less than −σ(I)

for all i, so the same is true for the one on the left. Since

Extik[d(I)]UI/kUI
(S, k[d(I)]⊗k V (−d))0 ∼= Extik[d(I)]UI/kUI

(S, k[d(I)]⊗k V )−d,

this Ext-group vanishes for d > σ(I), as required.
In the case that V is not projective relative to any proper subgroup UJ , we use 4.3 to

write

S ∼= k[d(I)]⊗k[d(I)′] T (I),

where k[d(I)′] = k[di(I); i ∈ I]. Thus

ρi(k[d(I)], UI ;S, V ) ≤ ρi(k[d(I)
′], UI ;T (I), V ),

by 3.6. We need to show that the right-hand side is bounded by σ(I).
Since V is not projective relative to any proper subgroup UJ , 4.2(1) shows that the only

X̄J(I) in which it can appear is X̄I(I). As a consequence, V does not appear in T (I)>b,
where b is the maximum degree of an element of X̄I(I) (finite, by 4.2(3)).

From the short exact sequence, split over kUI ,

0 → T (I)>b → T (I) → T (I)/T (I)>b → 0,

it follows, by 3.9, that

ρi(k[d(I)
′], UI ;T (I), V ) ≤ ρi(k[d(I)

′], UI ;T (I)/T (I)>b, V ).

But, since T (I)/T (I)>b is bounded in degree by b, we know, from 3.10, that

Preg(k[d(I)′], UI ;T (I)/T (I)>b) ≤ b.

Thus we have

ρi(k[d(I)
′], UI ;T (I)/T (I)>b, V )− i ≤ b+

∑
i∈I

(|di(I)| − 1).

But, by 4.2(3), b ≤ σ(I)−
∑

i∈I |di(I)|. Thus ρi(k[d(I)′], UI ;T (I), V ) ≤ σ(I), as required.
�

We can now finish the proof of the Main Theorem 0.1 in the case of a finite field.
Since the field k is finite, the largest possible group that can act on S is Gℓn = Gℓn(k),

which is finite. Its Sylow p-subgroup is Un = U{1,2,...,n−1}, in the notation of Section 4. Let
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k[c] denote the ring of Dickson invariants in S for the action of Gℓn and let k[d] be the
invariants for Un.

For our given group G < Gℓn we may compute reg(SG) by treating SG as a k[c]-module.

reg(SG) = Preg(k[c], SG) by 1.2

≤ Preg(k[c], G;S) by 3.2

≤ Preg(k[c], Gℓn;S) by 3.7

= Preg(k[c], Un;S) by 3.8

≤ Preg(k[d], Un;S) by 3.5

≤ 0 by 5.1.

This completes the proof.
The last result that remains to be proved is Corollary 0.4. Let · · · → P1 → P0 → SG → 0

be the minimal k[c]-resolution of SG. Then

H(SG, t) =
∑
i

(−1)iH(Pi, t).

Now

H(Pi, t) =
fi(t)∏

j(1− t|cj |)
,

where fi(t) is a polynomial in which the coefficient of tu is the multiplicity of k[c](−u) in Pi.
Thus the degree of fi(t) is equal to ρi(k[c], S

G).
Because

H(SG, t) =

∑
i(−1)ifi(t)∏
j(1− t|cj |)

,

we see that it suffices to show that deg(fi) ≤ σ(k[c]). But we have just seen that deg(fi) =
ρi(k[c], S

G), and ρi(k[c], S
G) ≤ ρi(k[c], G;S), by 3.2. The proof concludes with the next

lemma.

Lemma 5.2. ρi(k[c], G;S) ≤ σ(k[c]).

Proof.

ρi(k[c], G;S) ≤ ρi(k[c], Gℓn;S) by 3.7

= ρi(k[c], Un;S) by 3.8

≤ ρi(k[d], Un;S)− σ(k[d]) + σ(k[c]) by 3.5

≤ σ(k[c]) by 5.1.

�

6. Infinite Fields

We now explain how the case of Theorem 0.1 for finite fields implies the result for all fields.
This argument was shown to us by Burt Totaro and we are grateful to him for permission
to include it here.

Of course, if the representation of G on S1 can be written in the algebraic closure of the
prime field, then it can be written in a finite field, so our results for finite fields still hold. It
is not so clear what might happen if the field contains transcendental elements.
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We have a finite group G that acts on SK = K[x1, . . . , xn] for some infinite field K. The
representation of G on (SK)1, the part in degree 1, can be written over a finitely generated
subring A of K (the Z-subalgebra generated by the coefficients of the matrices with respect
to some basis); hence the same is true in all degrees and G acts on SA = A[x1, . . . , xn].

Let S
(G)
A denote

∏
g∈G SA and let ∆

(G)
A : SA → S

(G)
A be the map that is multiplication

by g − 1 on the g-coordinate. Then SG
A = ker(∆

(G)
A ) and we have an exact sequence of

SG
A -modules

0 → SG
A → SA

∆
(G)
A→ S

(G)
A → C → 0.

We know, by the Hilbert-Noether Theorem (see e.g. [1] 1.3.1, [8] 3.0.6), that SG
A is noetherian

and that SA is finite over it. By Grothendieck’s Generic Freeness (or Flatness) Lemma (see
e.g. [10] 14.4), there is a non-zero element f ∈ A such that C⊗AA[f−1] is free as an A[f−1]-
module. Let M be a maximal ideal of A[f−1] with residue field k and let B denote the
localization of A[f−1] at M .

Lemma 6.1. As a B-module, SG
B is free and SG

B ⊗B k ∼= SG
k .

Proof. As an A-module, B is flat, so if we apply − ⊗A B to the exact sequence above, it
remains exact and becomes

0 → SG
A ⊗A B → SB

∆
(G)
B→ S

(G)
B → C ⊗A B → 0.

All the terms but the first are certainly free over B, so the sequence splits over B and the

first term must also be free over B. This first term is ker(∆
(G)
B ); thus it is isomorphic to SG

B .
If we now apply −⊗B k, we obtain

0 → SG
B ⊗B k → Sk

∆
(G)
k→ S

(G)
k → C ⊗A B ⊗B k → 0.

But ker(∆
(G)
k ) = SG

k , by the discussion above. �
By the Hilbert-Noether Theorem again, SG

B is finitely generated by homogeneous elements
as a B-algebra, and thus it is finite over some polynomial ring B[d1, . . . , dm]. Consequently,
SG
k is finite over k[d1, . . . , dm].
The next lemma is standard.

Lemma 6.2. Any projective resolution P• of S
G
k over k[d1, . . . , dm] can be lifted to a projective

resolution Q• of SG
B over B[d1, . . . , dm] such that P• ∼= Q• ⊗B k.

Proof. We lift the resolution step by step, starting at the 0-term. Clearly P0 can be lifted
to a projective module Q0, and the map P0 → SG

k can be lifted to a map Q0 → SG
B , by 6.1.

Furthermore, this map is surjective, by Nakayama’s Lemma in each degree; hence it is split
over B, since SG

B is free over B, by 6.1 again.
Let Z0 denote the kernel of the lifted map. It is free of finite rank over B and, because of

the splitting, Z0⊗B k ∼= ker(P0 → SG
k ). We can now repeat the procedure at the 1-term and

continue. �
The field k is finite, since any field that is finitely generated as a ring is finite (cf. [10]

4.19). Thus our previous results give us bounds on the degrees of the generators of the terms
of the minimal projective resolution P• of S

G
k over k[d1, . . . , dm]. These bounds are inherited

by Q•, and even by of Q• ⊗B K, which is a projective resolution of SG
K over K[d1, . . . , dm].
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It follows that the results 0.1, 0.2, 0.3, 0.4 are all valid for arbitrary fields. The same will
be true for 7.2 and 8.2.

Remark. Experts will recognize that the argument can be summarized by saying that regu-
larity is upper semicontinuous on flat families.

7. Horizontal Bounds

The proofs yield more precise information than can be stated in terms of regularity, al-
though this is not useful for bounding the degrees of the generators of the invariants, which
is why we only mention it here.

Instead of using the usual diagonal bound in the definition of regularity we can use a
horizontal one: we set

hreg(R,M) = sup
i
{ai(R,M)},

Phreg(R,M) = sup
i
{ρi(R,M)} −

∑
i

|di|,

Exthreg(R,M) = sup
i
{ϵi(R,M)} −

∑
i

|di|.

It is still true that these numbers coincide. The same proof still works, the key point being
that the proof of Lemma 1.1 is still valid; in fact, what we need is Lemma 3.3 in the case of
the trivial group (see too [2] 5.7(i)). Also hreg is still clearly invariant under change of ring.

It follows from the definitions that hreg(R,M) ≤ reg(R,M).
Similarly we can define

Phreg(R,G;M) = sup
i
{ρi(R,G;M)} −

∑
i

|di|.

Lemma 5.2 now becomes:

Proposition 7.1. In the context of the Structure Theorem,

Phreg(k[c], G;S) ≤ −n.

From which we deduce, as before:

Theorem 7.2. We have

hreg(SG) ≤ −n.

Our bound on ρi is thus improved by i. The statement of Proposition 2.1 now has both
the reg(S) + σ(R) and the reg(S) + σ(R) + 1 terms replaced by hreg(S) +

∑
|di|.

Remark. All that we need for a version of Lemma 1.1 to hold is that the bound on ρi+1

should not exceed the desired bound on ρi by more than 1 or, at any rate, not by more than
min{i > 0 | Ri ̸= 0}. This allows the definition of many different well-behaved regularities
between reg and hreg, cf. [2] §5.
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8. Polynomial Tensor Exterior Algebras

One sometimes encounters invariants of algebras of the form k[V ] ⊗k Λ(V
∗), where V is

a kG-module for some group G; V ∗ is its contragredient (the dual module considered as a
left kG-module); k[V ] is the symmetric algebra on V ∗, but graded so that the elements of
V ∗ are in degree 2, and Λ(V ∗) is the exterior algebra on V ∗, graded with V ∗ in degree 1.

More generally, let S be our usual polynomial ring with an action of G; for any positive

integer r, let S⟨r⟩ denote the dilated ring with S
⟨r⟩
ri = Si (0 in degrees not divisible by r). If S

is a module over k[d1, . . . , dm], then S⟨r⟩ is a module over k[d
⟨r⟩
1 , . . . , d

⟨r⟩
m ], where |d⟨r⟩i | = r|di|.

Let X be a finite dimensional graded kG-module; we will write reg(X) for the top non-
zero degree (this is consistent with the definition of reg(k,X), and we could just as well use
hreg(X)).

Proposition 8.1. In the context of the Structure Theorem,

reg((S⟨r⟩ ⊗X)G) ≤ reg(X)− (r − 1)n,

hreg((S⟨r⟩ ⊗X)G) ≤ hreg(X)− rn.

Proof. We work over a finite field k and consider S as a module over the ring of Dickson
invariants k[c]. It is easily verified that σ(k[c⟨r⟩]) = rσ(k[c]) + (r − 1)n.

From Lemma 5.2, we know that ρi(k[c], G;S) ≤ σ(k[c]). By dilating the minimal relatively
projective resolution of S we find that ρi(k[c

⟨r⟩], G;S⟨r⟩) ≤ rσ(k[c]); by tensoring this dilated
resolution with X we see that ρi(k[c

⟨r⟩], G;S⟨r⟩ ⊗X) ≤ rσ(k[c]) + reg(X).
The proposition now follows in the usual way from the definition of regularity. �

Corollary 8.2. For a polynomial tensor exterior algebra of the type discussed above,

reg((k[V ]⊗ Λ(V ∗))G) ≤ 0,

hreg((k[V ]⊗ Λ(V ∗))G) ≤ − dimV.
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