
EQUIVARIANT HILBERT SERIES

FRANK HIMSTEDT AND PETER SYMONDS

Abstract. Draft, 17th October 2007. We consider a finite group acting on a graded
module and define an equivariant degree that generalizes the usual non-equivariant degree.
The value of this degree is a module for the group, up to a rational multiple. We investigate
how this behaves when the module is a ring and apply our results to reprove some results
of Kuhn on the cohomology of groups.

1. Introduction

We consider a finitely generated graded module M over a graded ring R that is finitely
generated over some base field k and such that R0 is finite dimensional over k. We suppose
that there is a finite group G that acts on M , preserving the grading and commuting with R.

To this data we associate a formal Laurent series [M ] in t in which the coefficient of tr is
the homogeneous part Mr, considered as a kG-module. The difficulty of the theory depends
on whether we wish to keep track of these modules up to isomorphism (i.e. in the Green
ring) or only up to composition factors (in the representation ring). We develop both cases.

This series [M ] is shown to satisfy a form of the Hilbert-Serre Theorem (in particular it
is a rational function, or at least a sum of them in the Green ring case). We define the
equivariant degree degG M to be the coefficient of the leading term when we expand [M ] as
a Laurent series in 1 − t. This is a kG-module up to rational multiple, although there is
sometimes a problem of whether it is well defined in the Green ring case. The dimension of
this module agrees with the usual definition of the degree in the non-equivariant case.

We investigate various properties of the equivariant degree, in particular Theorem 6.4,
which lists several equivalent characterizations.

In Section 7, we go on to consider the case of the homogeneous coordinate ring on a pro-
jective variety and show that in this case the degree is always defined and it is a permutation
module that can be easily described in terms of the geometry. Finally, in Section 8, this
theory is applied to the variety associated to the cohomology of a group to reprove a result of
Nick Kuhn on the action of the outer automorphism group of a p-group G on the cohomology
H∗(G; Fp).

2. General Setup

Let R =
⊕∞

j=0 Rj be a commutative graded algebra over a field k. We suppose that R is a
finitely generated k-algebra and that R0 is finite dimensional over k, so all the homogeneous
components Rj are also finite dimensional vector spaces over k. Let G be a finite group
and let M =

⊕∞
i=N Mi a finitely generated graded left RG-module, where the action of G

preserves the grading and each Mi is a finite dimensional k-vector space.
We recall some facts about the Hilbert series H(M, t) =

∑∞
i=N dimk(Mi) ti of M . The

graded version of Noether normalization (see Theorem 2.2.7 in [1]) guarantees the existence
1
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of homogeneous elements d1, d2, . . . , dn of positive degrees in R that generate a polynomial
subring k[d1, . . . , dn] of R and such that R is finitely generated as a k[d1, . . . , dn]-module.
We write |di| := deg(di) for the degree of di. The number n is equal to the Krull dimension
of R. By the Hilbert-Serre Theorem (see e.g. 2.1.1 in [1]) the Hilbert series H(M, t) is of the
form

H(M, t) =
f(M, t)∏n

i=1(1− t|di|)
,

where f(M, t) is a Laurent polynomial with integer coefficients. As in [1, Section 2.4], for
example, the rational number deg(M) is defined by the Laurent expansion of H(M, t) about
t = 1:

(1) H(M, t) =
deg(M)

(1− t)n
+ O

(
1

(1− t)n−1

)
.

Obviously the definition of the degree deg(M) ignores the action of G on M . In the next
two sections, we shall define an equivariant analogue degG(M), which also incorporates the
group action.

First, we define the degree of certain Laurent series. Let p(t) be a Laurent series of the
form

p(t) =
∞∑

i=N

ait
i =

g(t)∏n
i=1(1− t|di|)

where the ai are rational numbers and g(t) is a Laurent polynomial with rational coeffi-
cients. We define the rational number deg(p(t)) to be the coefficient of 1

(1−t)n in the Laurent

expansion of p(t) about t = 1 and we call deg(p(t)) the degree of p(t). If we want to empha-
size the dependency on n we write degn(p(t)) instead of deg(p(t)). In particular, we have
deg(H(M, t)) = deg(M) with deg(M) as in (1).

3. Equivariant Degree over the Green Ring

As usual, the Green ring a(kG) is defined to be the ring with generators the isomorphism
classes |V | of kG-modules, and relations |V |+ |W | = |V ⊕W |, |V | · |W | = |V ⊗k W |. We
set a(kG)Q := Q⊗Z a(kG). The representation ring R(kG) is defined to be the quotient of
a(kG) by the ideal generated by the elements |V2|−|V1|−|V3|, where 0→ V1 → V2 → V3 → 0
is a short exact sequence of kG-modules. We set R(kG)Q := Q⊗Z R(kG).

We will consider two versions of the equivariant degree: one is an element of a(kG)Q, but
is not always defined; the other is a weaker one, which is an element of R(kG)Q, but it is
always defined. The main tool used in the definition of the former is the following Weak
Structure Theorem 3.1, so-called because it is a generalization of the Structure Theorem of
[15].

Theorem 3.1. For any finitely generated graded k[d1, . . . , dn]G-module M ,

M ∼=
⊕

U∈Indecomp(M)

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I ,

as a kG-module, where XU,I is a finite dimensional graded kG-module that is a sum of
U ’s (ignoring grading) and k[dI ] = k[di | i ∈ I]. The map from right to left is given by
multiplication.
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Proof. The only difference between this theorem and Proposition 4.4 of [15] is that there
Indecomp(M) is supposed to be finite. But the same proof works, although it is better
to keep the different indecomposables separate by using the double summation, as in the
statement above, rather than combining them as X̄I =

⊕
U∈Indecomp(M) XU,I as in [15]. �

Next we describe the definition of the degree with values in a(kG)Q. For each i, the
kG-module Mi defines an element |Mi| of a(kG).

Definition 3.2. We call the Laurent series

(2) [M ] :=
∞∑

i=N

|Mi| ti

with coefficients in a(kG) the equivariant Hilbert series of M with coefficients in the Green
ring.

Clearly, if G = {1} is the trivial group, we can identify |Mi| with the dimension of Mi as
a k-vector space. So in this situation [M ] coincides with the usual Hilbert series of M . The
equivariant Hilbert series has the following basic properties:

Lemma 3.3. Suppose M ′ =
⊕∞

i=N ′ M ′
i is another finitely generated graded left RG-module,

such that the action of G preserves the grading and every M ′
i is a finite dimensional k-vector

space. Then

[M ⊕M ′] = [M ] + [M ′] and [M ⊗k M ′] = [M ] · [M ′].

Proof. Clear. �

Besides the Hilbert series H(M, t) we can consider a Hilbert series that counts the mul-
tiplicity of some isomorphism class of indecomposable summands. Let Indecomp(M) be a
set of representatives for the isomorphism classes of all indecomposable kG-modules which
occur as a direct summand of some Mi and let mU,i be the multiplicity of U ∈ Indecomp(M)
as a direct summand of Mi. We set HU(M, t) :=

∑∞
i=N mU,i t

i. The Laurent series HU(M, t)
can be written as a rational function too.

Proposition 3.4. For each U ∈ Indecomp(M) the Laurent series HU(M, t) can be written
as

HU(M, t) =
fU(M, t)∏n

i=1(1− t|di|)
,

where fU(M, t) is a Laurent polynomial in t with integer coefficients.

Proof. This is a consequence of the Weak Structure Theorem 3.1. �

Let F be an arbitrary finite subset of Indecomp(M). We consider the Laurent series with
integer coefficients q(t) := H(M, t) −

∑
U∈F dimk(U)HU(M, t). By definition of the Hilbert

series, all the coefficients of q(t) are non-negative integers, and q(t) is of the form

q(t) =
g(t)∏n

i=1(1− t|di|)
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for some Laurent polynomial g(t) with integer coefficients since something similar holds for
H(M, t) and HU(M, t) by Proposition 3.4. So we can take degrees and obtain

(3) deg(M) =

(∑
U∈F

dimk(U) deg(HU(M, t))

)
+ deg(q(t)).

It turns out that all the degrees occurring in (3) are non-negative with bounded denominators
by the following result.

Lemma 3.5. Suppose that

p(t) =
h(t)∏n

i=1(1− t|di|)
=

∞∑
i=N

ai t
i

where h(t) is a Laurent polynomial with rational coefficients and the ai’s are non-negative
integers. Then deg(p(t)) ≥ 0. If all the coefficients of h(t) are integers then deg(p(t)) is of
the form deg(p(t)) = d

n∏
i=1

|di|
for some non-negative integer d.

Proof. We compute:

deg(p(t)) = lim
t→1

(1− t)np(t) = lim
t→1

h(t)
n∏

i=1

(1 + t + · · ·+ t|di|−1)
=

h(1)
n∏

i=1

|di|
.

We still have to show that deg(p(t)) ≥ 0. Since multiplication with
∏n

i=1(1+ t+ · · ·+ t|di|−1)
and a suitable power of t does not affect the sign of the degree or the sign of the ai’s we may
assume that p(t) is a Laurent polynomial in 1− t with rational coefficients, that is that

p(t) =
b−n

(1− t)n
+

b1−n

(1− t)n−1
+ · · ·+ bm−1(1− t)m−1 + bm(1− t)m

for some rational numbers bi and a non-negative integer m. In particular, b−n = deg(p(t)).
Expanding the 1

(1−t)j ’s as power series in t and comparing the coefficients of ti we see that

there exists a polynomial r(i) in i of degree at most n − 2 (or r(i) = 0 if n = 1) with
coefficients depending on n and the bj’s such that ai = 1

(n−1)!
bn in−1 + r(i) for all large

enough i. So the condition ai ≥ 0 implies that deg(p(t)) = bn ≥ 0. �

Corollary 3.6. There are only finitely many U ∈ Indecomp(M) with deg(HU(M, t)) 6= 0
and we have ∑

U

dimk(U) deg(HU(M, t)) ≤ deg(M)

where the sum means the sum over all those U ∈ Indecomp(M) with deg(HU(M, t)) 6= 0.

Proof. This follows from Equation (3) and Lemma 3.5. �

We can now define the equivariant degree with values in the Green ring.

Definition 3.7. We say that degG(M) is defined (over the Green ring) if∑
U

dimk(U) deg(HU(M, t)) = deg(M).
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In this case we call degG(M) :=
∑

U deg(HU(M, t)) |U | ∈ a(kG)Q the equivariant degree
of M (in the Green ring). If we want to emphasize the dependency on n we write degn

G(M)
instead of degG(M).

The existence of the degree in the Green ring can be characterized as follows.

Lemma 3.8. For R, G, M as above the following statements are equivalent.

(1) degG(M) is defined in the Green ring.
(2) There is a finite set F of indecomposable kG-modules such that∑

U∈F

dimk(U) deg(HU(M, t)) = deg(M).

(3) There is a finite set F of indecomposable kG-modules such that

deg

(∑
U 6∈F

dimk(U)HU(M, t)

)
= 0.

Here we have set
∑

U 6∈F

dimk(U)HU(M, t) := H(M, t)−
∑

U∈F

dimk(U)HU(M, t).

Proof. This is clear from the definition of degG(M). �

Certainly the equivariant degree degG(M) is defined if M has only finitely many isomor-
phism types of indecomposable summands. For example, this is the case if k is a finite field,
M a polynomial ring in n variables over k, G a finite group acting on this polynomial ring
by homogeneous linear substitutions and R = MG the ring of invariants (see Theorem 17.1
in [9]). The following example shows that there are situations where degG(M) is not defined:

Example (see Example 4.4 in [10]). Let k be a field of two elements and R = k[x, y] a
polynomial ring in two variables over k. The Klein four group G = 〈α, β〉 ∼= Z2 × Z2 acts
on M = k[x, y]〈1, z〉 by α : z 7→ z + x and β : z 7→ z + y. We can regard M as a subset of
k[x, y, z] or as a free R-module of rank two.

If we attach a grading to R and the module M by assigning x, y and z grading 1, then
M is the direct sum M =

⊕∞
i=0 Mi. It is shown in [10] that Mi

∼= Ωik as kG-modules
where Ωik is the i-th Heller translate of the trivial kG-module k. In particular, the Mi’s are
indecomposable and pairwise non-isomorphic.

We have n = 2, Indecomp(M) = {Ωik | i ∈ N0} and HΩik(M, t) = ti. So we obtain
deg(HΩik(M, t)) = 0 for all i. On the other hand we have

H(M, t) =
∞∑
i=0

dimk(Mi) ti =
∞∑
i=0

(2i + 1)ti =
2

(1− t)2
− 1

1− t

and thus deg(M) = 2. So degG(M) is not defined in this example.

4. Equivariant Degree in the Representation Ring

One way to construct an equivariant degree which is defined for every module M (satisfying
the assumptions in Section 2) is to work over the representation ring. In this section we will
define the equivariant degree with values in the representation ring.

The first steps are very similar to those for the Green ring. Let R, G and M be as in
Section 2. For each i, the kG-module Mi defines an element |Mi| of R(kG).
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Definition 4.1. We call the Laurent series [M ] :=
∑∞

i=N |Mi| ti with coefficients in R(kG)
the equivariant Hilbert series of M with coefficients in the representation ring.

Clearly Lemma 3.3 carries over to equivariant Hilbert series with coefficients in the repre-
sentation ring.

For each irreducible kG-module V let mV,i be the multiplicity of V as a composition factor
of Mi. We set HV (M, t) :=

∑∞
i=N mV,i t

i. We choose a polynomial subring k[d1, . . . , dn] of R
as in Section 2. In fact the Laurent series HV (M, t) can be written as a rational function.

Lemma 4.2. For each irreducible kG-module V the Laurent series HV (M, t) can be written
as

HV (M, t) =
fV (M, t)∏n

i=1(1− t|di|)
,

where fV (M, t) is a Laurent polynomial in t with rational coefficients. If k is a splitting field
for V then all the coefficients of fV (M, t) are integers.

Proof. Let PV be a projective cover of V . The graded k[d1, . . . , dn]-module HomkG(PV , M)
is a direct summand of the graded k[d1, . . . , dn]-module HomkG(kG, M) ∼= M . This implies
that HomkG(PV , M) is finitely generated as k[d1, . . . , dn]-module. So, by the Hilbert-Serre

Theorem 2.1.1 in [1], the Hilbert series H(HomkG(PV , M), t) has the form f̃V (t)∏n
i=1(1−t|di|)

for

some Laurent polynomial f̃V (t) with integer coefficients. Since dimk(HomkG(PV , Mi)) =
dimk(EndkG(V )) ·mV,i we get

HV (M, t) =
1

dimk(EndkG(V ))
H(HomkG(PV , M), t) =

1

dimk(EndkG(V ))
· f̃V (t)∏n

i=1(1− t|di|)
.

If k is a splitting field for V then dimk(EndkG(V )) = 1. �

Corollary 4.3. The equivariant Hilbert series [M ] with coefficients in the representation
ring is of the form

[M ] =
[f ](M, t)∏n

i=1(1− t|di|)

where [f ](M, t) is a Laurent polynomial with coefficients in R(kG)Q. If k is a splitting field
for G then all the coefficients of [f ](M, t) are elements of R(kG).

Proof. This follows from Lemma 4.2. �

Now we can define the equivariant degree with values in the representation ring:

Definition 4.4. We call degG(M) :=
∑

V deg(HV (M, t)) |V | ∈ R(kG)Q the equivariant
degree of M (in the representation ring). Here the sum varies over a set of representatives for
the isomorphism classes of irreducible kG-modules. If we want to emphasize the dependency
on n we also write degn

G(M) instead of degG(M).

We use the same notation for the two degrees, specifying the ring in which the values lie
explicitly when necessary. In any case the two versions are compatible in the following sense.
Let π : a(kG)Q � R(kG)Q denote the canonical map.

Proposition 4.5. The map π takes the equivariant degree of M in the Green ring to the
equivariant degree of M in the representation ring whenever the former is defined.

Proof. This follows from an easy calculation based on Definitions 3.7 and 4.4. �
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5. Basic properties of the equivariant degree

In this section we collect some of the basic properties of the equivariant degree. We
always assume that R, G and M are as in Section 2 and that M ′ and M ′′ are finitely
generated graded left RG-modules, where the action of G preserves the grading and every
homogeneous component is finite dimensional as k-vector space. We choose a polynomial
subring k[d1, . . . , dn] of R as in Section 2.

We begin with a trivial observation showing that the equivariant degree coincides with
the usual degree if there is “no group action”:

Lemma 5.1. If G = {1} is the trivial group then degG M is defined and degG M =
deg(M)|k| where k is the trivial kG-module.

Proof. This is clear from the definition of the degree. �

From now on G is again an arbitrary finite group. The next lemma holds both for the
equivariant degree taking values in the Green ring as well as for the degree taking values in
the representation ring.

Lemma 5.2. If degG M is defined (which is of course always the case over the representation
ring), then there is a positive integer c such that c · degG M is a genuine module, i.e. it is of
the form |V | for some kG-module V .

Proof. By the definition of degG M and Lemma 3.5 we can take c :=
∏n

i=1 |di| if degG M is de-
fined over the Green ring. In the case of the representation ring, c := (

∏
V dimk(EndkG(V )) ·

(
∏n

i=1 |di|) does the job (where V runs through a set of representatives for the isomorphism
classes of irreducible kG-modules). �

Lemma 5.3. If M ′ ↪→ M � M ′′ is a short exact sequence of finitely generated graded
RG-modules that is split over kG, then degG M is defined if and only if both degG M ′ and
degG M ′′ are defined. If this is the case then degG M = degG M ′ + degG M ′′.

This formula holds for any short exact sequence when the degree takes values in the rep-
resentation ring.

Proof. Let U ∈ Indecomp(M). The splitting implies HU(M, t) = HU(M ′, t)+HU(M ′′, t). So∑
U∈F

dimk(U) deg(HU(M, t)) =
∑

U∈F

dimk(U) deg(HU(M ′, t)) +
∑

U∈F

dimk(U) deg(HU(M ′′, t))

with F as in Lemma 3.8. By additivity of the non-equivariant degree we have deg(M) =
deg(M ′) + deg(M ′′). Since all these degrees are non-negative by Lemma 3.5 we get that
degG M is defined if and only if both degG M ′ and degG M ′′ are defined and in this case we
get: degG(M) =

∑
U∈F

deg(HU(M, t))|U | =
∑

U∈F

deg(HU(M ′, t))|U |+
∑

U∈F

deg(HU(M ′′, t))|U | =

degG(M ′)+degG(M ′′). The statement about the degree over the representation ring follows
from HV (M, t) = HV (M ′, t) + HV (M ′′, t) for every irreducible kG-module V . �

For W, W ′ ∈ R(kG)Q we write W ≤ W ′ if W ′−W is a linear combination of isomorphism
classes of kG-modules with non-negative rational coefficients. We write W ≥ W ′ if W ′ ≤ W .

Corollary 5.4. For a finitely generated graded RG-module M , as at the beginning of this
section, the following properties hold for the degree with values in the representation ring.

(1) If M ′ is a graded RG-submodule of M then degG(M ′) ≤ degG(M).
(2) If M ′ is a graded RG-epimorphic image of M then degG(M) ≥ degG(M ′).
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Proof. This follows from Lemmas 5.2 and 5.3. �

For an integer d we write M [d] for M with a degree shift of d, so that M [d]i = Mi+d.
For a positive integer q let R[q] be the graded k-algebra obtained from R by multiplying all
degrees by q, that is (R[q])iq = Ri and (R[q])i = 0 for all i not divisible by q. Analogously, we
can construct a graded R[q]G-module M [q] with G-action from M by multiplying all degrees
by q, that is (M [q])iq = Mi and (M [q])i = 0 for all i not divisible by q.

Lemma 5.5. With the above notation, degG M has the following properties.

(1) If the Krull dimension of M is at most n− 1 then degG M is defined and equal to 0.
(2) degG(M [d]) is defined if and only if degG M is defined. If this is the case then

degG(M [d]) = degG M .
(3) degG(M [q]) is defined if and only if degG M is defined. If this is the case then

degG(M [q]) = q−n degG M .

Proof. (1) follows from the corresponding property of the non-equivariant degree, (Lemma 2.4.1
in [1]). (2) and (3) are clear. �

Sometimes it is convenient to add an element z in degree 1 to R. Then R[z] ⊗k M is
finitely generated over R[z], which has dimension n + 1.

Lemma 5.6. The degree degn+1
G (R[z]⊗R M) is defined if and only if degn

G M is defined, and
if this is the case then they are both equal.

Proof. Clear. �

Sometimes it is convenient to change the field k. We then write degkG M to denote the
degree with value in the Green ring of kG.

Lemma 5.7. Let ` be a field extension of k.

(1) If degkG M is defined then so is deg`G(`⊗k M) and deg`G(`⊗k M) = `⊗k degkG M .
(2) If `/k is finite and L is a finitely generated graded (`⊗kRG)-module such that deg`G L

is defined then degkG(L ↓`k) = (deg`G L) ↓`k.
(3) If `/k is finite and if deg`G(` ⊗k M) is defined then so is degkG M and degkG M =
|` : k|−1(deg`G(`⊗k M)) ↓`k.

Proof. Only (3) needs any comment. Since (` ⊗k M) ↓`k∼= M |`/k|, we obtain (deg`G(` ⊗k

M)) ↓`k= degG(M |`/k|) by (2). But then degG M is defined and the formula holds, by 5.3. �

6. Further Results

In this section R = k[d1, . . . , dn] is a graded polynomial ring with generators in positive
degrees. Unless otherwise stated the degree will always take values in the Green ring.

We say that a map of R-modules dominates when the cokernel has dimension strictly less
than n. This is not consistent with the customary use of dominant in algebraic geometry,
but it is very convenient for us here.

Proposition 6.1. The degree degG M of a finitely generated graded RG-module M is defined
if and only if there is a finite dimensional graded kG-submodule X ⊆ M such that the
multiplication map R ⊗k X → M is injective and dominant and the image is a summand
over kG. If this holds then degG M = deg R · |X|.
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Proof. Suppose that such an X exists; then degG(M/(R⊗k X)) is defined and equal to 0 by
hypothesis (take F = ∅). We claim that degG(R⊗k X) = deg R · |X|.

It is easy to see that H(R⊗X, t) = H(R, t)H(X, t), so

degG(R⊗k X) = lim
t→1

H(R, t)H(X, t) = deg R · |X|.

By additivity (Lemma 5.3), degG M is defined and is equal to deg R · |X|.
Conversely, suppose that degG M is defined using a finite set F ⊆ Indecomp M . Then,

using the notation of the Weak Structure Theorem 3.1, we must have

deg
(⊕

U 6∈F

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I

)
= 0.

Thus we can take X =
⊕

U∈F XU,{1,...,n}. �

A lot of our work is made easier by the next easy, but surprising, result.

Proposition 6.2. If M is a finitely generated graded RG-module and X is a finite dimen-
sional graded kG-submodule such that the multiplication map R⊗k X →M is injective and
dominates then the image is a summand over kG, so in particular degG M is defined and is
equal to deg R · |X|.

Proof. There is a homogeneous element z ∈ R that annihilates the cokernel. Consider the
composition of maps

R⊗k X →M
z→ zM ⊆ R⊗k X.

The image is zR ⊗k X, and since zR is a k-summand of R it follows that the image is a
kG-summand of R⊗k X. Thus the image of R⊗k X in M is also a summand. �

Given a graded commutative ring S, let Q(S) denote the graded ring of fractions, where
we invert all the homogeneous elements. It is a Z-graded ring and Q(S)0 is a field. Q(S) =
Q(S)0[z, z

−1], where z is an element of Q(S) of least positive degree. Q(S) is flat over S.
Notice that if M is a finitely generated graded RG-module then Q(R)⊗R M is a finitely

generated Q(R)-module and in each degree it is a finite dimensional vector space over Q(R)0.
In addition, Q(R)⊗R M = 0 if and only if dim M < dim R.

Proposition 6.3. Let M be a finitely generated graded RG-module. Then degG M is defined
if and only if there is a finite dimensional graded kG-submodule X ⊆ Q(R)⊗R M such that
Q(R)⊗R M = Q(R)⊗k X. If this is the case then degG M = deg R · |X|.

Proof. If degG M is defined then we have a short exact sequence R⊗kX ↪→M � M/(R⊗kX)
with dim(M/(R⊗k X)) < dim R, by Proposition 6.1. If we tensor this with Q(R) we obtain
Q(R)⊗k X ↪→ Q(R)⊗R M � Q(R)⊗R (M/(R⊗k X)). But the last term must be 0.

Conversely, suppose that we have an X satisfying the conditions of the statement of the
proposition. Let {xi} be a k-basis for X and write xi =

∑
j

ai,j

bi,j
mj, where ai,j, bi,j ∈ R and

mj ∈M , all homogeneous. Let b̄ be the product of all the bi,j. Then b̄X ⊆M , and we have
a short exact sequence R ⊗k b̄X ↪→ M � M/(R ⊗k b̄X). But when we tensor with Q(R)
the first arrow becomes an isomorphism, so we must have Q(R)⊗R (M/(R⊗k b̄X)) = 0 and
thus dim(M/(R⊗k b̄X)) < dim R, as required by 6.2. �

We now summarize the equivalent characterizations of the equivariant degree.



EQUIVARIANT HILBERT SERIES 10

Theorem 6.4. Let M be a finitely generated graded RG-module. The following conditions
on M are equivalent.

(1) degG M is defined in the Green ring.
(2) There is a finite dimensional graded kG-submodule X ⊆M such that the multiplica-

tion map R⊗k X →M dominates and is split injective over kG.
(3) There is a finite dimensional graded kG-submodule Y ⊆M such that the multiplica-

tion map R⊗k Y →M dominates and is injective.
(4) There is a finite dimensional graded kG-submodule Z ⊆ Q(R) ⊗R M such that

Q(R)⊗R M = Q(R)⊗k Z.

When these conditions hold we have |X| = |Y | = |Z| = 1
deg R

degG M .

Proof. Just combine 6.1, 6.2 and 6.3. �

Lemma 6.5. Let R and R′ be polynomial rings in n and n′ variables respectively and let M
and M ′ be finitely generated graded RG- and R′G-modules respectively. Let L be a finitely
generated graded RH-module and let H be a subgroup of G. The degree commutes with the
following operations (when the quantity on the right hand side is defined):

(1) tensor product, degn+n′

G (M ⊗k M ′) = degn
G(M) · degn′

G (M ′);
(2) restriction, degH(M ↓GH) = (degG M) ↓GH ;
(3) induction, degG(L ↑GH) = (degH L) ↑GH ;
(4) fixed points, when H is a normal subgroup of G, degG/H MH = (degG M)H .

Proof. These all follow easily from property 6.4 (3). �

In the remaining part of this section we consider how Theorem 6.4 and Lemma 6.5 can
be reformulated for the degree with values in the representation ring. Clearly if one of
the conditions in Theorem 6.4 is satisfied then Proposition 4.5 implies that |X| = |Y | =
|Z| = 1

deg R
degG M also holds for the degree over the representation ring. The analogue of

Lemma 6.5 is the following

Lemma 6.6. With the same hypotheses as in the previous lemma, the degree with values in
the representation ring commutes with the following operations:

(1) tensor product, degn+n′

G (M ⊗k M ′) = degn
G(M) · degn′

G (M ′);
(2) restriction, degH(M ↓GH) = (degG M) ↓GH ,
(3) induction, degG(L ↑GH) = (degH L) ↑GH .

Proof. This is straightforward and left to the reader. �

7. Rings

Throughout this section, S will be a graded ring in non-negative degrees that is finitely
generated over the field k and such that S0 is finite dimensional over k. We suppose that a
finite group G acts on S by graded k-algebra automorphisms.

Geometrically, G acts as a group of automorphisms of the projective variety V = Proj(S),
defined over k. Conversely, S could be the homogeneous coordinate ring of a variety over k
on which G acts.

The invariant subring SG is necessarily noetherian and S is finitely generated over SG ([1]
1.3.1). By Noether normalization, we can find a graded polynomial subring R ≤ SG such
that SG is finitely generated over R ([1] 2.2.7). Thus S is finitely generated over R, and S



EQUIVARIANT HILBERT SERIES 11

and R have the same dimension. We need this ring R to exist in order for the preceding
theory to apply, but it does not matter which ring R we choose.

Proposition 7.1. If S is an integral domain and G acts faithfully, then degG S is defined
and

degG S =
deg S

|G|
· kG.

Proof. In [14], a graded submodule F ≤ M is produced such that F ∼= kG and such that
the multiplication map SG ⊗k F ↪→ S dominates and is split over kG. It follows from the
Additivity Lemma 5.3 that degG S = degG(SG ⊗ F ) = deg SG · kG.

There is an alternative proof that we sketch here. By Lemma 5.6, we may assume that R
contains an element z of degree 1. But S is an integral domain, so it injects into Q(S), thus
G acts faithfully on Q(S). Since Q(S) = Q(S)0[z, z

−1] and G acts trivially on z, G must act
faithfully on Q(S)0. By the Normal Basis Theorem there is a basis {xg}g∈G for Q(S)0 over
Q(S)G

0 that is freely permuted by G.
But Q(S)0 is a finite dimensional vector space over Q(R); let {yi} be a basis. If we let X

be the k-span of the set {yixg}, then this is the module that we require. �

Let P0 denote the (finite) set of prime ideals in S of height 0.

Lemma 7.2. The natural map S →
⊕

p∈P0
S/p dominates and has rad S as kernel.

Proof. The radical is equal to the intersection of all the prime ideals, which is equal to the
intersection of the minimal ones.

The claim of domination we prove by labeling the distinct prime ideals of height 0 as
p1, . . . , pm and showing by induction on r that the map S →

⊕r
i=1 S/pi dominates.

This is clearly true when r = 1, and the induction step follows from considering the
following diagram with exact rows and columns.

S/ ∩r+1
i=1 pi −−−→ S/ ∩r

i=1 pi ⊕ S/pr+1 −−−→ S/(∩r
i=1pi + pr+1)∥∥∥ y y

S/ ∩r+1
i=1 pi −−−→

⊕r+1
i=1 S/pi −−−→ Xy y

Y Y
The induction hypothesis applied to the middle column shows that dim Y < dim S, and

dim S/(∩r
i=1pi + pr+1) < dim S by construction. Thus dim X < dim S and the middle row

yields the next stage in the induction. �

Given a prime p < S, let Gp denote the stabilizer in G of p and let Ḡp be the pointwise
stabilzer of S/p. We can now state a decomposition theorem for the degree of S.

Theorem 7.3. If S contains no nilpotent elements then degG S is defined and

degG S =
∑

p∈P0/G
dim S/p=dim S

deg S/p

|Gp/Ḡp|
· k[G/Ḡp].



EQUIVARIANT HILBERT SERIES 12

Proof. In view of Proposition 7.1, Lemma 7.2 and Theorem 6.5, all we need to do is to show
that degG(

⊕
p∈P0

S/p) is equal to the expression shown.
But ⊕

p∈P0

S/p ∼=
⊕

p∈P0/G

⊕
q∼Gp

S/q ∼=
⊕

p∈P0/G

IndG
Gp

S/p.

So

degG(
⊕
p∈P0

S/p) ∼=
⊕

p∈P0/G

degG IndG
Gp

S/p

∼=
⊕

p∈P0/G

IndG
Gp

degGp
S/p by Lemma 6.5 (3)

∼=
⊕

p∈P0/G

IndG
Gp

deg S/p

|Gp/Ḡp|
· k[Gp/Ḡp] by Proposition 7.1

∼=
⊕

p∈P0/G

deg S/p

|Gp/Ḡp|
· k[G/Ḡp].

We can omit from the sum the primes p for which dim S/p 6= dim S, since for these deg S/p =
0. �

Geometrically, the permutation modules that occur in the statement of the theorem corre-
spond to the way that the group permutes the irreducible components of maximum dimension
of the projective variety Proj(S).

Now suppose that the action of G on S can be written over a finite field Fq. Recall from
Lemma 5.5 that the operation of multiplying all degrees by q gives us a new ring S[q] with
G-action and degG S[q] = q−n degG S. Let Sq < S denote the subring of qth powers. There
is a surjection S[q] → Sq and this is an isomorphism if rad S = 0.

Lemma 7.4. In the representation ring we have degG Sq ≤ q−n degG S and if S contains no
nilpotents then degG Sq = q−n degG S in the Green ring.

Proof. This follows from the the preceding remarks and the Additivity Lemma 5.3. �

8. Group Cohomology

In this section we apply some of the theory that we have developed to a problem in group
cohomology considered by Nick Kuhn [11]. We fix a prime p and a finite group P (we do
not yet require P to be a p-group). Then G = Aut(P ) acts on the graded commutative ring
H∗(P ) = H∗(P ; Fp).

By the Evens-Venkov theorem (e.g. [2] 3.10, 4.2), H∗(P ) is noetherian, hence so is H∗(P )G,
thus H∗(P ) is certainly finitely generated over some commutative polynomial ring R such
that the action of G commutes with that of R; we can assume that dim R = dim H∗(P ).

Given a p-group P and a simple G-module V , Kuhn asked whether the dimension of V
as a composition factor of H∗(P ) is equal to dim H∗(P ). It was already known from [5], [7]
and [13] that V does occur in H∗(P ).

Theorem 8.1. (Kuhn [11]) For p odd the dimension of V as a composition factor of H∗(P )
is equal to the dimension of H∗(P ).



EQUIVARIANT HILBERT SERIES 13

The case of p = 2 is still undecided. Kuhn’s methods used the nilpotent filtration of the
category of unstable modules over the Steenrod algebra. We will show how this theorem
can be proved using the equivariant degree. Clearly what we need to do is to show that V
occurs as a composition factor of degG H∗(P ).

For any finite elementary abelian p-group E, let F ∗(E) = H∗(E)/ rad, which is just the
symmetric algebra Fp[E] = S∗(E∗), where E∗ = Hom(E, Fp) is in degree 2 (or degree 1 if
p = 2).

In general, let

F ∗(P ) = lim←−
E∈Ap(P )

F ∗(E),

where Ap(P ) denotes the category with objects the elementary abelian subgroups of P and
morphisms the inclusions between them. G acts naturally on this.

Quillen in [12] (see [2] 5.6) showed that the natural map induced by restrictions, r :
H∗(P )→ F ∗(P )P is a purely inseparable isogeny (or uniform F-isomorphism): that is that

the kernel is nilpotent and there is an integer N such that (F ∗(P )P )pN ⊆ Im(r). From this
he deduced that dim H∗(P ) is equal to the p-rank of P , which we will denote by n.

Consider what this means for the degree with values in the representation ring. We have
degG H∗(P ) ≥ degG Im(r) ≥ degG((F ∗(P )P )pN

), using Lemma 5.3. By Lemma 7.4 we have

degG((F ∗(P )P )pN
) = 1

pNn degG F ∗(P )P , since F ∗(P ) contains no nilpotent elements.

Now we work in the Green ring to see that degG F ∗(P )P = degG(F ∗(P ))P , by Lemma
6.5 (4).

We conclude that it is sufficient to show that degG F ∗(P ) contains every simple G-module
as a submodule.

But the Decomposition Theorem 7.3 tells us that

degG F ∗(P ) =
∑

E∈Ap(P )/G
rank E=n

deg S/pE

|NG(E)/CG(E)|
· Fp[G/CG(E)],

where pE denotes the ideal corresponding to E. Since each E in the sum has maximal rank,
deg(S/pE) 6= 0.

Suppose that some CG(E) is a p-group. Then

HomG(V, Fp[G/CG(E)]) ∼= HomCG(E)(V, Fp) 6= 0,

so V does occur in degG F ∗(P ) and we are done. That this always happens when p is odd
is the content of the next lemma, which appears as [11] 2.3, although we first learnt it from
Benson [3]. We include the proof for the convenience of the reader.

Lemma 8.2. If p is odd and E is maximal then CG(E) is a p-group.

Proof. Consider the composition of homomorphisms CG(E)
α→ Aut(CP (E))

β→ Aut(E).
The composition is trivial, so it suffices to prove that the kernel of each map is a p-group.

For β we use the result ([6] 5.3.10) that if p is odd and Q is a p-group then the kernel of the
map Aut(Q) → Aut(Ω1(Q)) is a p-group. (This is the only place in this section where the
argument requires p to be odd.)

For α we use Thompson’s A × B Lemma ([6] 5.3.4), which states that for any p-group
P , if A × B ⊆ Aut(P ) with A a p′-group and B a p-group such that A acts trivially on
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CP (B), then A = 1. We apply this with A some p′-subgroup of Ker(α) and B the image of
E in G. �

9. Further results on the degree with values in the representation ring

We assume that k is a splitting field for the group G, but we do not need R to be
polynomial.

Let V be a simple kG-module and let M be a finitely generated graded RG-module. Let
MV denote the part of M that is generated by submodules isomorphic to V .

Lemma 9.1. HomkG(V, M)⊗k V ∼= MV by the map f ⊗ v 7→ f(v).

Proof. Since HomkG(V, M) ∼= HomkG(V, MV ) we may assume that M = MV . But now
the claimed isomorphism is additive in MV , and MV is just a direct sum of submodules
isomorphic to V , so we are reduced to the case where MV = V . But now it holds by the
assumption that k is a splitting field, so EndkG(V ) ∼= k ([4] 7.14). �

The next result is an equivariant analogue of [8] I 7.4.

Proposition 9.2. Let M be a finitely generated graded RG-module. Then M has a finite
filtration 0 = M0 ≤ M1 ≤ · · · ≤ Mm = M by graded RG-submodules such that Mi/Mi−1

∼=
R/pi[`i]⊗k Vi, where pi is a homogeneous prime ideal of R and Vi is a simple kG-module.

(1) The minimal elements among the pi occurring are the minimal primes for M .
(2) For each minimal prime p of M , let k(p) denote the quotient field of R/p. For each

simple kG-module V , the number of times that R/p ⊗k V occurs as a composition
factor of the filtration is equal to the number of times that the simple RpG-module
k(p)⊗k V occurs as a composition factor of the localisation Mp, hence is independent
of the filtration.

Proof. Let p be an associated prime of HomRG(V, M), so it is the annihilator of some φ :
V →M . Thus we have an injection of graded RG-modules R/p ↪→ HomRG(V, M), r 7→ rφ
and hence an injection R/p⊗k V ↪→ HomRG(V, M)⊗ V .

By Lemma 9.1 this leads to an injection R/p⊗k V ↪→M ; denote its image by M1.
Now repeat the process with M/M1, and let M2 be the inverse image in M of the resulting

submodule. In this way we obtain an ascending sequence of graded RG-submodules of M ,
which must terminate since M is noetherian.

Notice that this filtration can be refined to a non-equivariant one by filtering the V . Thus
(1) follows from the non-equivariant case.

For (2), let q be a minimal prime and consider what happens when we localize at q. If
pi 6= q then (R/pi)q = 0, since q is minimal in {p1, . . . , pm}. If pi = q then (R/q)q = k(q)
and (R/q⊗k V )q = k(q)⊗k V . This is a simple SqG-module since k is a splitting field. �

Write m(p, V, M) for the number of times that R/p⊗k V occurs as a factor in a filtration
of M of the type considered in the Theorem above.

Corollary 9.3.

degG M =
∑

dim R/p=dim M

m(p, V, M) deg(R/p) · |V |.

There are some straightforward reduction methods for calculating the degree with values
in the representation ring.
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Lemma 9.4. Let f ∈ R be homogeneous and let M be a finitely generated graded RG-module
of dimension m. Suppose that the dimension of the kernel of the multiplication map φf :
M →M, m 7→ fm, has dimension at most m− 2. Then degm−1

G (M/fM) = |f | degm
G M.

Proof. There is a short exact sequence ker(φf ) → M
φf [|f |]
→ fM [|f |], where [|f |] denotes

the degree shift needed to make all the maps degree preserving). Thus [fM [|f |]] = [M ] +
O( 1

(1−t)m−2 ) as a Laurent series in 1− t and so [fM ] = t|f |[M ] + O( 1
(1−t)m−2 ).

There is also a short exact sequence fM →M →M/fM , so [M/fM ] = [M ]− [fM ].
Combining, we find that [M/fM ] = [M ]− t|f |[M ] + O( 1

(1−t)m−2 ). Thus degm−1
G [M/fM ] =

limt→1(1− t)m−1 · (1− t|f |)[M ] = limt→1
(1−t|f |)

1−t
· (1− t)m[M ] = |f | degm

G M . �

Our last result follows by repeated use of this lemma.

Proposition 9.5. Let M be a finitely generated graded RG-module of dimension m and
suppose that f1, . . . , fr ∈ R is an M-regular sequence of homogeneous elements. Then

degm
G M =

∏
|fi| · degm−r

G (M/(f1, . . . , fr)M).
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