
ON THE CONSTRUCTION OF PERMUTATION COMPLEXES FOR
PROFINITE GROUPS

PETER SYMONDS

Abstract. Goerss, Henn, Mahowald and Rezk construct a complex of permutation
modules for the Morava stabilizer group G2 at the prime 3. We describe how this can
be done using techniques from homological algebra.

1. Introduction

In [5], Goerss, Henn, Mahowald and Rezk consider the special extended Morava sta-
bilizer group G1

2 = S1
2 o Gal at the prime 3 and construct an exact sequence of compact

modules

0→ Ind
G1

2
G24

Ẑ3 → Ind
G1

2
SD16

Ẑ3(χ)→ Ind
G1

2
SD16

Ẑ3(χ)→ Ind
G1

2
G24

Ẑ3 → Ẑ3 → 0,

where G24 is a subgroup of order 24 etc. and Ẑ3(χ) is a copy of Ẑ3 on which SD16 acts via
a character χ : SD16 → {±1}. They then use this to construct a certain tower of spectra.

The aim of this note is to show how methods from the homological algebra and repre-
sentation theory of these groups can help in the algebraic part of this construction.

2. Background

Let G be a profinite group and let R be a complete noetherian local ring with finite
residue class field k of characteristic p. For example, R could be the p-adic integers.

We work in the category of compact R[[G]]-modules, CR(G), (see [10] for definitions,
properties and more references).

The next result is basic, but does not seem to have appeared in the literature.

Proposition 2.1. If G is a virtual pro-p-group then the Krull-Schmidt property holds
for (topologically) finitely generated modules in CR(G), i.e. every such module can be
expressed as a finite sum of indecomposable modules and this decomposition is essentially
unique in the sense that the multiplicity of each isomorphism type is the same in any such
decomposition.

Proof. The proof is just an adaptation of the one for finite groups (see [1]), but a little
care is needed.

Let H Eo G be an open normal pro-p subgroup. If M is a finitely generated R[[G]]-
module then k ⊗R[[H]] M is finite dimensional and we can decompose M as a finite sum
of indecomposable modules using induction on dimk k ⊗R[[H]] M .

For this to work we need to know that our induction starts, that is that if M 6= 0 then
k ⊗R[[H]] M 6= 0. Let M ′ be a finite quotient of M as an H-module; there is a surjection
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k⊗R[[H]] M → k⊗R[[H]] M
′. The action of H on M ′ factors through that of a finite p-group

P , and in this case it is well known that k ⊗R[P ] M
′ 6= 0.

All we need to do now is to show that the endomorphism ring of a finitely generated
indecomposable module is local, because then the uniqueness of decomposition follows
formally (see e.g. [1] 1.4.3).

The proof is just a variant of the one for finite groups (see [1] 1.9). Let J be the Jacobson
radical of R[[G]]. For any open normal subgroup N of G let IN denote the augmentation
ideal of R[[N ]]. Given an endomorphism f of M ∈ CR(G) we set Im(f∞) = ∩∞n=1 Im(fn)
and Ker(f∞) = {x ∈M |∀N Eo G ∀n ≥ 0∃m ≥ 0 such that fm(x) ∈ JnM + INM}.

For each open normal subgroup N Eo G define MN = R ⊗R[[N ]] M ∼= M/INM ∈
CR(G/N). Then M ∼= lim←−MN . Since M is finitely generated, MN is too. Now f induces
an endomorphism fN of MN . Define Im(f∞N ) = ∩∞n=1 Im(fn

N) and Ker(f∞N ) = {x ∈
MN |∀n ≥ 0∃m ≥ 0 such that fm(x) ∈ JnMN}. From the finite group case of Fitting’s
Lemma we know that MN = Im(f∞N )⊕Ker(f∞N ).

But Im(f∞) ∼= lim←− Im(f∞N ) and Ker(f∞) ∼= lim←−Ker(f∞N ). Hence M = Im(f∞) ⊕
Ker(f∞).

Now suppose that M is indecomposable and let I be a maximal left ideal in EndCR(G)(M)
and let a be an endomorphism not in I. Then 1 = ba + f for some b ∈ EndCR(G)(M) and
f ∈ I. But f is not an isomorphism, so M = Ker(f∞) and Im(f∞) = 0.

Now (1 + f + · · · + fn−1)ba = 1 − fn. Let N Eo G be some arbitrary open normal
pro-p subgroup. Since M is finitely generated, for sufficiently large n we have fn(M) ⊆
JM + INM ⊆ JM . Thus 1− fn is onto, by the profinite version of Nakayama’s Lemma
([4] 1.4). Also if (1− fn)(x) = 0 then x ∈ Im(f∞) = 0, so 1− fn is injective. Thus 1− fn

is an isomorphism and a has a left inverse, c say.
But cN must also be a right inverse to aN on each MN , so c is also a right inverse and

a is an isomorphism, as required. �

Projective covers exist in CR(G) ([9]), thus so do minimal projective resolutions.
If S is a simple module, let PS denote the projective cover of S. The PS are precisely

the indecomposable projective modules, and any other projective is a product of them.
If there is an open normal pro-p subgroup H Eo G, then any simple module for R[[G]]

is the inflation of one for k[G/H] so, in particular, there are only finitely many simple
modules up to isomorphism.

The next result is well known for finite groups.

Proposition 2.2. Suppose that M ∈ CR(G) is projective over R and let · · · → Pr → · · · →
P1 → P0 →M be the minimal projective resolution of M . If S is a simple module then the
multiplicity of PS in Pr is dimEnd(S) Extr

R[[G]](M, S) = dimEnd(S) Hr(G, (k ⊗R M)∗ ⊗R S).

Here S∗ denotes the dual over k, or rather the contragredient.
(If k is a splitting field for G/H, where H < G is open, normal and pro-p, then

End(S) ∼= k.)

Proof. (cf. [11]) The multiplicity of PS in Pr is dimEnd(S) HomR[[G]](Pr, S). The fact
that the projective resolution is minimal implies that the differentials in the complex
HomR[[G]](P•, S) are zero.
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Combining these facts, we find that the multiplicity that we are calculating is equal
to dimEnd(S) Extr

R[[G]](M, S). But Extr
R[[G]](M, S) ∼= Extr

R[[G]](R, HomR(M, S)) (see e.g. [1]
3.1.8) and HomR(M, S) ∼= (k ⊗R M)∗ ⊗R S. �

From now on we assume that G is of finite virtual cohomological dimension over R.
The definition of Tate-Farrell cohomology appears in [8] for discrete coefficients and in
[10] for compact ones, as does the next result. (See [3] for its basic properties in the case
of an abstract group.)

Proposition 2.3. For M in CR(G) or DR(G), the Tate-Farrell cohomology Ĥ∗(G, M) is
isomorphic to the equivariant Tate-Farrell cohomology of the Quillen complex of G with
coefficients in M .

Corollary 2.4. If G has p-rank 1 (i.e. no subgroups isomorphic to Z/p × Z/p) and
only finitely many conjugacy classes of subgroups isomorphic to Z/p with representatives

C1, . . . , Cn then Ĥ∗(G, M) ∼= ⊕n
i=1Ĥ

∗(NG(Ci), M) for any M in CR(G) or DR(G).

A similar result for M = k also appears in [7].

For M, N ∈ CR(G) we can also define Tate-Farrell Ext groups Êxt
∗
G(M, N). This allows

us to define the stable category StR(G) to have the same objects as CR(G) but morphism

groups Êxt
0

G(M, N). We write ' for isomorphism in the stable category.
There is another description. We define the Heller translate Ω on CR(G) by the

short exact sequence ΩM → PM → M , where PM denotes the projective cover of M .
We also define HomG(M, N) to be the quotient of HomCR(G)(M, N) by the submodule

of all homomorphisms that factor through a projective module. Then Êxt
r

G(M, N) ∼=
lim−→i

HomG(Ωr+iM, ΩiN). In fact we only need to take i ≥ vcd G.

For the basic properties of the stable category see [1] for finite groups and [2] for
infinite abstract groups. In particular, it is a triangulated category with the inverse of Ω
as translation and the exact triangles coming from short exact sequences in CR(G).

The next statement is basic to our approach, although it is just a corollary of Yoneda’s
Lemma.

Lemma 2.5. If f : A→ B induces an isomorphism f ∗ : Êxt
0

G(B, M)→ Êxt
0

G(A, M) for
all M ∈ CR(G) then f is an isomorphism in the stable category.

Definition 2.6. A module M ∈ CR(G) is cofibrant if it is projective on restriction to
some open subgroup of G.

In fact, if M is cofibrant then it is projective on restriction to any p-torsion free sub-
group.

Notice that ΩiM is always cofibrant if i ≥ vcd G. If M and N are cofibrant then

Êxt
0

G(M, N) ∼= HomG(M, N).
The definition is taken from [2], as is the next lemma. As the terminology suggests,

this is part of a the structure of a closed model category, but we do not need that here.

Lemma 2.7. If M ' N in StR(G) and M and N are cofibrant then there exist projective
modules P and Q such that M ⊕P ∼= N ⊕Q in CR(G). If M and N are finitely generated
then P and Q can be chosen to be finitely generated.
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Proof. Let H Eo G be open normal of finite cohomological dimension. The inclusion of
the fixed points induces a map R→ R[G/H], which is split over H. This induces a map
M → R[G/H] ⊗M ∼= IndG

H M , which is also split over H and where Q = IndG
H M is

projective, and finitely generated if M is.
Consider the map M → Q ⊕ N , where the first component is the map constructed

above and the second is a stable isomorphism. This map is split over H, so the cokernel,
call it P , is cofibrant, and finitely generated if M and N are.

The long exact sequence for Êxt
∗
G(P,−) yields that 0 = Êxt

0

G(P, P ) ∼= HomG(P, P ), so
P is projective and the short exact sequence splits. �

3. The Calculation

We set R = Ẑ3, k = F3. The Morava stabilizer group S2 at the prime 3 can be split as
a product S1

2 × Ẑ3, where S1
2 is the kernel of the reduced norm. There is a natural action

of the Galois group Gal = Gal(F9/F3), and we will consider the special extended Morava
stabilizer group G1

2 = S1
2 o Gal.

Let S1
2 be the Sylow 3-subgroup of S1

2. It is normal in G1
2 and G1

2 = S1
2 o SD16, where

SD16 is a subgroup isomorphic to the special dihedral group of order 16. In fact, if φ
denotes the generator of Gal (of order 2) there is an element ω ∈ S1

2 of order 8 such that
SD16 is generated by φ and ω. There is just one finite 3-subgroup, up to conjugation. It is
cyclic of order 3 and we denote it by C3. It is contained in a subgroup G24 of order 24, but
there is no subgroup of order 48. We can, however, choose conjugacy class representatives
so that SD16∩G24 = Q8, a quaternion group of order 8 generated by ωφ, which commutes
with C3, and ω2, which does not. We refer to [5] for the details.

As a consequence, the simple modules in CẐ3
(G) correspond to the simple modules for

SD16 over F3. In particular there is a character χ corresponding to the map SD16 →
SD16/Q8

∼= {±1}, so χ(φ) = χ(ω) = −1. Define a module N1 by

0→ N1 → Ind
G1

2
G24

Ẑ3 → Ẑ3 → 0,

where the right hand arrow is the natural augmentation.
Let S be a simple module and apply Ext∗G1

2
(−, S). We obtain the long exact sequence

· · · → Ext∗G1
2
(Ẑ3, S)→ Ext∗G1

2
(Ind

G1
2

G24
Ẑ3, S)→ Ext∗G1

2
(N1, S)→ · · · .

The arrow on the left is just H∗(G1
2, S)

res→ H∗(G24, S), which is equivalent to H∗(S1
2 , S)SD16

res→
H∗(C3, S)C8 or (H∗(S1

2)⊗S)SD16
res→ (H∗(C3)⊗S)C8 or, more naturally, (H∗(S1

2)⊗S)SD16
res→

((H∗(C3)⊕H∗(C ′
3))⊗S)SD16 , where C ′

3 is the conjugate of C3 by ω. (Where no coefficients
for the cohomology are indicated they are just F3.)

Now, for any finite F3SD16-module A, dimEnd(S)(A⊗S)SD16 ∼= dimEnd(S∗) HomSD16(S
∗, A)

is just the multiplicity of the dual S∗ as a summand of A (A is completely reducible).

So we are just decomposing the F3SD16-modules and identifying the map ρ : H∗(S1
2)

res→
H∗(C3)⊕H∗(C ′

3). But this factors as

H∗(S1
2)

res→ H∗(CS1
2
(C3))⊕H∗(CS1

2
(C ′

3))
res→ H∗(C3)⊕H∗(C ′

3).
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A standard calculation ([5, 7, 9]) shows that CS1
2
(C3) ∼= Ẑ3 × C3. Its cohomology is just

H∗(CS1
2
(C3)) ∼= H∗(Z3)⊗H∗(C3) ∼= E(a1)⊗ (F3[y1]⊗E(x1)) ∼= F3[y1]⊗E(x1, a1), where

E denotes an exterior algebra, a1, x1 are in degree 1 and y1 is in degree 2. The restriction
to C3 just kills a1. For CS1

2
(C ′

3) the result is similar, but we use the subscript 2 for the
generators, which we take to be the images of those in the first case under conjugation
by ω.

Henn [7] shows that the first of the maps above is injective. Its image is generated
as an algebra by x1, x2, y1, y2, (x1a1 − x2a2), y1a1, y2a2. The action of SD16 can now be
calculated and is given in [5]:

ω∗(xi) = −(−1)ixi+1, ω∗(yi) = −(−1)iyi+1, ω∗(ai) = −(−1)iai+1,

φ∗(xi) = −xi+1, φ∗(yi) = −yi+1, φ∗(ai) = −ai+1,

(where the subscripts are taken modulo 2).
The map ρ is also explicitly calculated in [6].
From this we can read off that ρ is surjective, except in degree 0, where the cokernel is

F3(χ) as an SD16-module. It is also injective in degrees 0 and 1. In degree 2 the kernel
is generated by x1a1 − x2a2, which gives a copy of F3(χ) again. In degree 3 the kernel is
generated by y1a1 and y2a2, so consists of two simples: one trivial generated by y1a1+y2a2

and a copy of F3(χ) generated by y1a1 − y2a2.
Thus the minimal projective resolution of N1 starts

· · · → PF3 ⊕ PF3(χ) → PF3(χ) → PF3(χ) → N1 → 0.

Now PF3(χ)
∼= IndG

SD16
Ẑ3(χ), because the latter is projective and, for any simple S,

HomG(IndG
SD16

Ẑ3(χ), S) ∼= HomSD16(Ẑ3(χ), S), which is non-zero only for S ∼= F3(χ) and
then it has dimension 1. So if we define N3 = Ω2N1 we have an exact sequence

0→ N3 → IndG
SD16

Ẑ3(χ)→ IndG
SD16

Ẑ3(χ)→ N1 → 0,

where N3 has projective cover PF3 ⊕ PF3(χ).
If we work stably we can obtain Ω2N1 another way. Recall that C3 is the only cyclic

subgroup of order 3 in G1
2 up to conjugacy. Write N = NG1

2
(C3); because Q8 normalizes

C3 it also normalizes CS1
2
(C3), and since the centralizer can be of index at most 2 in the

normalizer we see that N ∼= C3 × Ẑ3 o Q8.
From 2.4 we see that res : Ĥ∗(G1

2, M)→ Ĥ∗(N, M) is an isomorphism, or equivalently

that the augmentation map ε : Ind
G1

2
N Ẑ3 → Ẑ3 induces an isomorphism Êxt

∗
G1

2
(Ẑ3, M) →

Êxt
∗
G1

2
(Ind

G1
2

N Ẑ3, M), for any M ∈ CẐ3
(G). It follows from 2.5 that ε is a stable isomor-

phism.

So stably our complex starts Ind
G1

2
G24

Ẑ3 → Ind
G1

2
N Ẑ3, which is Ind

G1
2

N applied to the natural

augmentation map IndN
G24

Ẑ3 → Ẑ3 over N .
But the subgroup D < G24 generated by C3 and ωφ is normal in N , so N acts on

IndN
G24

Ẑ3 via its image N/D ∼= Ẑ3 o C2, the infinite virtually 3-adic dihedral group, so
we can resolve to obtain

(†) 0→ IndN
G24

Ẑ3(θ)→ IndN
G24

Ẑ3 → Ẑ3 → 0,
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where θ : Q8 → {±1} is the character with θ(ωφ) = 1 and θ(ω2) = −1.
This can be seen systematically using cohomology, as before. More explicitly, the non-

zero map on the left is determined by 1⊗ θ 7→ (g− g−1)⊗ 1, where g is a generator of the

group Ẑ3 and θ is considered as a basis element of Ẑ3(θ). The sequence is exact because

on restriction to Ẑ3 it is just a variation on the standard projective resolution for Ẑ3.
Similarly, since G24 has a quotient G24/〈ωφ〉 ∼= D6, the dihedral group of order 6, we

also have an exact sequence

0→ Ẑ3 → IndG24
Q8

Ẑ3 → IndG24
Q8

Ẑ3(θ)→ Ẑ3(θ)→ 0,

with middle map determined by 1⊗ 1 7→ (c− c−1)⊗ θ where c is a generator of C3.
Inducing this to N gives

(‡) 0→ IndN
G24

Ẑ3 → IndN
Q8

Ẑ3 → IndN
Q8

Ẑ3(θ)→ IndN
G24

Ẑ3(θ)→ 0.

Now splice † and ‡ together at IndN
G24

Ẑ3(θ) and induce up to G1
2 to obtain

0→ Ind
G1

2
G24

Ẑ3 → Ind
G1

2
Q8

Ẑ3 → Ind
G1

2
Q8

Ẑ3(θ)→ Ind
G1

2
G24

Ẑ3 → Ind
G1

2
N Ẑ3 → 0.

The second and third non-zero terms are projective, so stably Ind
G1

2
G24

Ẑ3 ' N3. But

Ind
G1

2
G24

Ẑ3 is cofibrant by construction and, on restriction to an open torsion free subgroup,
N3 is a third syzygy hence also cofibrant, so, by 2.7, there are finitely generated projective

modules P and Q such that Ind
G1

2
G24

Ẑ3 ⊕ P ∼= N3 ⊕Q.

Let S be a simple Ẑ3[[G1
2]]-module (recall that these correspond to simple SD16-modules).

Then HomG1
2
(Ind

G1
2

G24
Ẑ3, S) ∼= HomG24(Ẑ3, S). For this to be non-zero we need Res

G1
2

G24
S ∼=

F3, so S must be either F3 or F3(χ); in both cases the dimension of the Hom group is 1.

It follows that the projective cover of Ind
G1

2
G24

Ẑ3 is PF3 ⊕ PF3(χ). Now, taking projective

covers in Ind
G1

2
G24

Ẑ3 ⊕ P ∼= N3 ⊕ Q, we obtain PF3 ⊕ PF3(χ) ⊕ P ∼= PF3 ⊕ PF3(χ) ⊕ Q, so

P ∼= Q and thus Ind
G1

2
G24

Ẑ3
∼= N3, by 2.1.

Remark. This construction generalizes to G1
p−1 for larger primes p. It is simpler to discuss

if we restrict to the Sylow p subgroup. We now have N = Cp × Ẑp−2
p . Since Ẑp−2

p has
cohomological dimension p− 2, we could take its projective resolution to the penultimate
term and inflate to N . We then splice on a part induced from a partial projective resolution
of Ẑ3 over Cp that is long enough to make the last term cofibrant. It is not clear whether
this has any significance in the homotopy theory.

Remark. The Tate-Farrell cohomology of G1
p−1 is easy to compute (see [9]). It is the low-

dimensional cohomology that is difficult to calculate, but that is precisely what is needed
to identify the projective modules in the complex. If we are satisfied with a complex
with unknown projectives then the construction is much easier and only depends on the
structure of N .
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