The Asymptotic Behavior of Frobenius Direct Images of Rings of Invariants

Mitsuyasu Hashimoto Peter Symonds

Abstract

We define the Frobenius limit of a module over a ring of prime characteristic to be the limit of the normalized Frobenius direct images in a certain Grothendieck group. When a finite group acts on a polynomial ring, we calculate this limit for all the modules over the twisted group algebra that are free over the polynomial ring; we also calculate the Frobenius limit for the restriction of these to the ring of invariants. As an application, we generalize the description of the generalized F-signature of a ring of invariants by the second author and Nakajima to the modular case.

1. Introduction

(1.1) In commutative algebra, the study of the asymptotic behavior of the Frobenius direct images of a ring of prime characteristic p (or a module over it) has been very fruitful. This includes the study of invariants such as the Hilbert-Kunz multiplicity [Mon] and the F-signature [HL] and its variants [San, HasN].

These invariants have been studied for the ring of invariants of a finite group acting on a ring, see [WY, (2.7), (5.4)], [HL, Example 18], [WY2, (4.2)], [HasN, (3.9)], and [Nak].

[^0](1.2) Let $T=\bigoplus_{n \geq 0} T_{n}$ be a graded Noetherian commutative ring, where T_{0} is a finite direct product of Henselian local rings. Let $S=\bigoplus_{n \geq 0} S_{n}$ be a finite graded T-algebra, which might not be commutative.

Let $\Theta^{*}(S)$ denote the Grothendieck group of the commutative monoid of finitely generated \mathbb{Q}-graded S-modules under direct sum, but tensored with \mathbb{R}; this means that $\Theta^{*}(S)$ is the \mathbb{R}-space generated by the finitely generated \mathbb{Q}-graded S-modules subject to the relations $[M]=\left[M_{1}\right]+\left[M_{2}\right]$ whenever $M \cong M_{1} \oplus M_{2}$. We define $\Theta^{\circ}(S)$ to be the quotient of $\Theta^{*}(S)$ by the relation $[M]=[M[\lambda]]$ for a finitely generated \mathbb{Q}-graded S-module M and $\lambda \in \mathbb{Q}$, where ? $[\lambda]$ denotes shift of degree by λ.

Because of our hypotheses on S, the Krull-Schmidt property holds and so the finitely generated indecomposable \mathbb{Q}-graded modules form a basis for $\Theta^{*}(S)$. Thus $\operatorname{Ind}^{\circ}(S)$, the set of indecomposable \mathbb{Q}-graded modules modulo shift of degree, forms a basis for $\Theta^{\circ}(S)$. For $\alpha \in \Theta^{\circ}(S)$ we can write

$$
\alpha=\sum_{M \in \operatorname{Ind}^{\circ} S} c_{M}[M] \quad\left(c_{M} \in \mathbb{R}\right)
$$

uniquely. We define $\|\alpha\|_{S}:=\sum_{M}\left|c_{M}\right| u_{S}(M)$, where $u_{S}(M)$ denotes $\ell_{S}\left(M / \mathfrak{m}_{S} M\right)$, where $\mathfrak{m}_{S}=S_{+}+J\left(S_{0}\right)$ is the graded Jacobson radical of S and ℓ_{S} denotes the length function. It is easy to see that $(\Theta(S),\|\cdot\|)_{S}$ is a normed space.
(1.3) Now let k be an F-finite (that is, $\left[k: k^{p}\right]<\infty$) field of characteristic p, and $R=\bigoplus_{n \geq 0} R_{n}$ a graded Noetherian commutative ring such that R_{0} is an F-finite Henselian local ring. We assume that $\operatorname{dim}_{k} R_{0} / J\left(R_{0}\right)<\infty$. Let G be a finite group acting on R as k-algebra automorphisms. Let $S=R * G$ and $T=R^{G}$. Then T and S are as in (1.2).

Let d be the Krull dimension of R. Set $\mathfrak{d}:=\log _{p}\left[k: k^{p}\right]$, and $\delta:=d+\mathfrak{d}$. For any finitely generated S-module M, we define the Frobenius limit of M to be

$$
\mathrm{FL}(M)=\lim _{e \rightarrow \infty} \frac{1}{p^{\delta_{e}}}\left[{ }^{e} M\right]
$$

in $\Theta(S)$, provided that this limit exists, where ${ }^{e} M$ is the e th Frobenius direct image of M. Note that $\mathrm{FL}(M)$ is considered to be the limit of the modules themselves, rather than of some numerical invariant. If the ring is commutative and $\mathrm{FL}(M)$ exists, the Hilbert-Kunz multiplicity and the (generalized) F-signature can be read off from it; see section 3.
(1.4) Suppose that R be commutative. The group $\Theta(R)$ is larger than the Grothendieck group $G_{0}(R)_{\mathbb{R}}$, where the relations come from short exact sequences. The latter is isomorphic to $A_{*}(R)_{\mathbb{R}}$, the Chow group of R (tensored with \mathbb{R}) through the Riemann-Roch isomorphism τ_{R}, see [Ful]. Let us write $\tau_{R}([R])=c_{d}+c_{d-1}+\cdots+c_{0}$, where c_{i} is the component of dimension i. Then $\tau_{R}(\mathrm{FL}[R])$ is just c_{d}, which plays an important role in the intersection theory of commutative algebra, see [Kur, (2.2)] and [KurO].

Bruns gave a formula for $\mathrm{FL}(R)$ for a normal affine semigroup ring (although he did not define Frobenius limits, he proved a theorem [Bru, Theorem 3.1] giving some more information than $\mathrm{FL}(R)$, see Example 3.23).
(1.5) Now suppose that a finite group G acts faithfully on a graded polynomial ring B, so we can form the twisted group algebra $B * G$. The generators of B must be in positive degrees, but not necessarily all the same. Let $A=B^{G}$.

Theorem ((4.13), (4.16)). Suppose that F is a \mathbb{Q}-graded $B * G$-module that is free of rank f over B. Then the F-limits of $[F]$ and $\left[F^{G}\right]$ exist and

$$
\mathrm{FL}(F)=\frac{f}{|G|}[B * G]
$$

in $\Theta^{\circ}(B * G)$ and

$$
\operatorname{FL}\left(F^{G}\right)=\frac{f}{|G|}[B]
$$

in $\Theta^{\circ}(A)$. Analogous formulas hold after completion at the irrelevant ideal.
As a consequence we obtain the following theorem.
Theorem ((5.1)). Let $k=V_{0}, V_{1}, \ldots, V_{n}$ be the simple $k G$-modules. For each i, let $P_{i} \rightarrow V_{i}$ be the projective cover, and $M_{i}:=\left(B \otimes_{k} P_{i}\right)^{G}$. Suppose that F is a \mathbb{Q}-graded $B * G$-module that is free of rank f over B. Then the F-limit of $\left[F^{G}\right]$ exists, and

$$
\mathrm{FL}\left(\left[F^{G}\right]\right)=\frac{f}{|G|}[B]=\frac{f}{|G|} \sum_{i=0}^{n} \frac{\operatorname{dim}_{k} V_{i}}{\operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)}\left[\hat{M}_{i}\right]
$$

in $\Theta^{\circ}(A)$. The analogous formula holds after completion at the irrelevant ideal.

In particular, we have a formula for $\operatorname{FL}[A]$ and $\operatorname{FL}([\hat{A}])$: see Corollary 5.2. Using this theorem, we generalize a result on the generalized F-signature [HasN, (3.9)] to the modular case (Corollary 5.7). We also get a new proof of the theorem of Broer [Bro] and Yasuda [Yas] which says that if G does not have a pseudo-reflection and p divides the order $|G|$ of G, then A is not weakly F-regular.

For another application of this work to invariant theory, see [Has2].
In section 2, we fix our notation for Frobenius direct images. In section 3, we study the group $\Theta(S)$ and define the Frobenius limits. In section 4, we prove the main theorems and in section 5 we derive some consequences.

Acknowledgments: the authors are grateful to Professor Kazuhiko Kurano for his valuable advice.

2. Rings, modules and Frobenius direct image

(2.1) Let k be a field. By a module over a ring we mean a left module, unless otherwise specified. A graded ring means a ring graded by the semigroup of non-negative integers. Modules will be graded by \mathbb{Q}; since we only consider finitely generated modules, the graded pieces are only non-zero on a discrete subgroup, which is contained in $\frac{1}{r} \mathbb{Z}$ for some $r \in \mathbb{N}$. The morphisms are degree preserving. Let G be a finite group acting on a ring R. By an (R, G)-module M, we mean an R-module that is also a $k G$-module in such a way that $g(r m)=(g r)(g m), g \in G, r \in R, m \in M$. If M is an (R, G)-module and V a G-module, then $M \otimes_{k} V$ is an (R, G)-module by $r(m \otimes v)=r m \otimes v$ and $g(m \otimes v)=g m \otimes g v$ for $r \in R, m \in M, v \in V$, and $g \in G$.
(2.2) By a virtually commutative ring we mean a ring S that contains some central subalgebra T such that S is finite over T. The example we have in mind is when G acts on a commutative ring R and S is the twisted group algebra $R * G$. That is, $R * G=\bigoplus_{g \in G} R g$ as an R-module, and the product is given by $(r g)\left(r^{\prime} g^{\prime}\right)=\left(r\left(g r^{\prime}\right)\right)\left(g g^{\prime}\right)$. The ring $R * G$ is finite over the ring of invariants $T=R^{G}$ in many cases. For example, assume that R is a commutative Noetherian k-algebra and the action of G is by k-algebra automorphisms. If R is of finite type over $k ; R$ is complete with residue field k; the characteristic of k is $p>0$ and R is F-finite (see 2.10) [Fog], [Has, (9.6)]; or the order of G is not divisible by the characteristic of k, then R and $S=R * G$ are finite over $T=R^{G}$.

An $R * G$-module is an (R, G)-module in an obvious way, and vice versa. We identify these two objects.
(2.3) Note that the (G, R)-module $R \otimes_{k} k G$ as an $R * G$-module is identified with the rank-one free module $R * G$ by the obvious map $r \otimes g \mapsto r g$.
(2.4) Let k be of characteristic $p>0$. For a commutative k-algebra R, the Frobenius homomorphism $F: R \rightarrow R$ is defined by $F(a)=a^{p}$. For $r \in \mathbb{Z}$, let ${ }^{r} R$ be a copy of the ring R, except that, in the graded case, the values of the grading are divided by p^{r} (here we briefly suspend our convention that all rings are integer graded). For any $e \geq 0$, we regard ${ }^{r+e} R$ an ${ }^{r} R$-algebra through the Frobenius map $F^{e}:{ }^{r} R=R \rightarrow R={ }^{r+e} R$. An R-module M, viewed as an ${ }^{r} R$-module is denoted by ${ }^{r} M ; m \in M$ is denoted by ${ }^{r} m$ when it is viewed as an element of ${ }^{r} M$. When $e \geq 0$, we can regard ${ }^{e} M$ as an R-module by $a\left({ }^{e} m\right)=F^{e}(a)^{e} m={ }^{e}\left(a^{p^{e}} m\right)$. Then $F^{e}\left({ }^{r} a\right)={ }^{r+e}\left(a^{p^{e}}\right)=\left({ }^{r+e} a\right)^{p^{e}}$. The R-module ${ }^{e} M$ is sometimes written as $F_{*}^{e} M$, and is called the eth Frobenius direct image (also called Frobenius pushforward) of M. If R is graded, M is \mathbb{Q}-graded, and m is a homogeneous element of degree λ, then letting ${ }^{r} m$ of degree λ / p^{r}, we have that ${ }^{r} M$ is a \mathbb{Q}-graded ${ }^{r} R$-module. If $e \geq 0,{ }^{e} M$ is a \mathbb{Q}-graded R-module via $F^{e}: R={ }^{0} R \rightarrow{ }^{e} R$.
(2.5) If V is a k-vector space then ${ }^{e} V$ is considered to be a k-vector space through the map F^{e} for $e \geq 0$: more explicitly, ${ }^{e} v+{ }^{e} v^{\prime}={ }^{e}\left(v+v^{\prime}\right)$ and $\alpha \cdot{ }^{e} v={ }^{e}\left(\alpha^{p^{e}} v\right)$ for $\alpha \in k$ and $v, v^{\prime} \in V$. When k is perfect, ${ }^{r} V$ has a meaning for $r \in \mathbb{Z}$, and it has the same dimension as V. Note that ${ }^{e} A$ is again a k-algebra, and $F^{e^{\prime}}: e^{e^{\prime}} A \rightarrow{ }^{e^{\prime}+e} A$ is a k-algebra map for $e, e^{\prime} \geq 0$.
(2.6) In the notation above, ${ }^{0} R,{ }^{0} M,{ }^{0} m$, and so on, are sometimes written as R, M, m, and so on.
(2.7) Slightly more generally, for a commutative k-algebra R and a finite group G acting on R, we define the Frobenius map $F=F_{S}$ of $S=R * G$ by $F_{S}\left(\sum_{g \in G} r_{g} g\right)=\sum_{g} r_{g}^{p} g$. If G is trivial, then $R=S$, and F_{S} is the usual Frobenius map. Thus for an $R * G$-module $M,{ }^{e} M$ is again an $R * G$-module.
(2.8) Applying this to the group ring $k G$ (the case that $R=k$), we find that ${ }^{e} V$ is a $k G$-module by $g \cdot{ }^{e} v={ }^{e}(g v)$ for $g \in G$ and $v \in V$.

If V is n-dimensional, let v_{1}, \ldots, v_{n} be a basis of V; then we can write $g v_{j}=\sum_{i} c_{i j} v_{i}$. If k is perfect, then $g \cdot{ }^{e} v_{j}={ }^{e}\left(g v_{j}\right)={ }^{e}\left(\sum_{i} c_{i j} v_{i}\right)=\sum_{i} c_{i j}^{p^{-e} e} v_{i}$. Namely, ${ }^{e} V$, as a matrix representation, is obtained by taking the p^{e} th root
of each matrix entry.
Lemma 2.9. Let k and G be as above.
1 Let V be a finite dimensional G-module. If V is defined over \mathbb{F}_{q}, the field with $q=p^{e}$ elements, and $\mathfrak{d}:=\log _{p}\left[k: k^{p}\right]<\infty$, then ${ }^{e} V \cong V^{p^{0 e}}$.
$2^{e}(k G) \cong(k G)^{p^{p e}}$ for any e ≥ 0.
Proof. 1. We set $r:=\left[{ }^{e} k: k\right]=p^{\mathrm{de}}$. Let V_{0} be the finite dimensional \mathbb{F}_{q}-module such that $k \otimes_{\mathbb{F}_{q}} V_{0} \cong V$. Then

$$
{ }^{e} V \cong{ }^{e} k{\otimes \mathbb{F}_{q}}^{e} V_{0} \cong k^{r} \otimes_{\mathbb{F}_{q}} V_{0} \cong V^{r} .
$$

2. Since $k G$ is defined over \mathbb{F}_{p}, the assertion follows from 1.
(2.10) S is said to be F-finite if ${ }^{1} S$ is a finite S-module. If so, then F^{e} : ${ }^{r} S \rightarrow{ }^{r+e} S$ is finite for any $r \in \mathbb{Z}$ and $e \geq 0$.

3. The Grothendieck group $\Theta(S)$

(3.1) Let \mathcal{C} be an additive category. We define its (additive) Grothendieck group to be

$$
[\mathcal{C}]:=\left(\bigoplus_{M \in \operatorname{Iso} \mathcal{C}} \mathbb{Z} \cdot M\right) /\left(M-M_{1}-M_{2} \mid M \cong M_{1} \oplus M_{2}\right),
$$

where Iso \mathcal{C} is the set of isomorphism classes of objects in \mathcal{C}. The class of M in the group $[\mathcal{C}]$ is denoted by $[M]$. We define $[\mathcal{C}]_{\mathbb{R}}:=\mathbb{R} \otimes_{\mathbb{Z}}[\mathcal{C}]$. Note that we only have relations for split exact sequences, not all exact sequences, even if \mathcal{C} is abelian.
(3.2) The group $[\mathcal{C}]$ is universal for additive maps from \mathcal{C} to abelian groups, i.e. given an abelian group Γ and an additive map $f: \mathcal{C} \rightarrow \Gamma$ (that is, f is a map $\mathcal{C} \rightarrow \Gamma$ such that $f(M)=f\left(M_{1}\right)+f\left(M_{2}\right)$ for every M, M_{1}, M_{2} such that $M \cong M_{1} \oplus M_{2}$), f extends to a unique homomorphism of abelian groups $f_{*}:[\mathcal{C}] \rightarrow \Gamma$. Thus $[\mathcal{C}]_{\mathbb{R}}$ is universal for additive maps to \mathbb{R}-spaces. It follows that an additive functor $h: \mathcal{C} \rightarrow \mathcal{D}$ yields a homomorphism $h_{*}:[\mathcal{C}] \rightarrow[\mathcal{D}]$ which maps $[M]$ to $[h M]$.

Example 3.3. Let S be a k-algebra. Let $S \bmod$ denote the category of finitely generated S-modules. Let $J(S)$ denote the Jacobson radical of S and assume that $S / J(S)$ is finite dimensional over k. Then $u_{k, S}(M):=$ $\operatorname{dim}_{k}(M / J(S) M)$ defines an additive function on S mod, which extends to $[S \mathrm{mod}]_{\mathbb{R}}$.

If S is a commutative integral domain and we let $Q(S)$ denote the field of fractions of S, then $\operatorname{rank}_{S}(M)=\operatorname{dim}_{Q(S)} Q(S) \otimes_{S} M$ is also additive and extends to $[S \mathrm{mod}]_{\mathbb{R}}$.
(3.4) An additive category \mathcal{C} is said to have the Krull-Schmidt property if the endomorphism ring of any object is semiperfect. If so, the endomorphism ring of an indecomposable object is local, and hence the Krull-Schmidt theorem holds, see $[\operatorname{Pop},(5.1 .3)]$. Thus $[\mathcal{C}]$ is a \mathbb{Z}-free module with $\operatorname{Ind} \mathcal{C}$ as free basis, where $\operatorname{Ind} \mathcal{C}$ is the set of isomorphism classes of indecomposable objects of \mathcal{C} and Ind \mathcal{C} is an \mathbb{R}-basis of $[\mathcal{C}]_{\mathbb{R}}$.
(3.5) Let $T=\bigoplus_{n \geq 0} T_{n}$ be a commutative non-negatively graded Noetherian ring (which might not be a k-algebra) such that T_{0} is a finite direct product of Henselian local rings. Let $S=\bigoplus_{n \geq 0} S_{n}$ be a graded T-algebra that is a finite T-module. For any finite graded S-module $M, \operatorname{End}_{S \text { Gr mod }} M=$ $\left(\operatorname{End}_{S} M\right)_{0}$ is a finite T_{0}-algebra and is semiperfect [Fac, (3.8)], where $S \mathrm{Gr} \bmod$ is the category of graded finite S-modules. Thus the Krull-Schmidt theorem holds for the category S Gr mod; see [Pop][(5.1.3)]. Let \mathfrak{m}_{S} denote the graded Jacobson radical $S_{+}+J\left(S_{0}\right)$, where $S_{+}=\bigoplus_{n>0} S_{n}$ is the irrelevant ideal. We denote by $\hat{?}$ the \mathfrak{m}_{S}-adic completion, which agrees with the \mathfrak{m}_{T}-adic completion, where \mathfrak{m}_{T} is the graded Jacobson radical of T.
(3.6) We write $\Theta^{*}(S):=[S \mathrm{Gr} \bmod]_{\mathbb{R}}$, where $S \mathrm{Gr} \bmod$ is the category of S finite \mathbb{Q}-graded modules. It will be convenient to consider the quotient of this where we identify any two indecomposable modules that differ only by a shift in degree, which we denote by $\Theta^{\circ}(S)$ or $\Theta(S)$. We write $\Theta^{\wedge}(S):=[S \text { mod }]_{\mathbb{R}}$, where $S \bmod$ is the category of S-finite ungraded modules.
(3.7) There is a sequence of natural maps $\Theta^{*}(S) \rightarrow \Theta^{\circ}(S) \rightarrow \Theta^{\wedge}(S) \rightarrow$ $\Theta^{\wedge}(\hat{S})$.
(3.8) It is easy to see that if S is concentrated in degree zero, then $\Theta^{\circ}=\Theta^{\wedge}$, and the theory of Θ^{\wedge} for ungraded S is contained in that of Θ°.
(3.9) From now on we will assume that all our rings are of the type just described. If $f: S^{\prime} \rightarrow S$ is a finite degree-preserving map, there is a natural restriction map $f^{*}: \Theta(S) \rightarrow \Theta\left(S^{\prime}\right)$ and the inflation map $f_{*}: \Theta\left(S^{\prime}\right) \rightarrow \Theta(S)$.

If I is an ideal in S and $q: S \rightarrow S / I$ is the quotient map then we sometimes write $\alpha / I \alpha$ for $q_{*}(\alpha)$.
(3.10) For $\alpha \in \Theta^{\circ}(S)$, we can write

$$
\alpha=\sum_{[M] \in \operatorname{Ind}^{\circ} S} c_{M}[M]
$$

uniquely, where $\operatorname{Ind}^{\circ}(S)$ denotes $\operatorname{Ind}(S \mathrm{Gr} \bmod) / \sim$, where $M \sim M^{\prime}$ if $M \cong$ $M^{\prime}[\lambda]$ for some $\lambda \in \mathbb{Q}(?[\lambda]$ denotes shift of degree $)$. We define $\|\alpha\|_{S}:=$ $\sum_{M}\left|c_{M}\right| u_{S}(M)$, where $u_{S}(M)=\ell_{S}\left(M / \mathfrak{m}_{S} M\right)$. Then $\left(\Theta(S),\|\cdot\|_{S}\right)$ is a normed space. Thus $\Theta(S)$ becomes a metric space with the distance function d given by $d(\alpha, \beta):=\|\alpha-\beta\|_{S}$.

Lemma 3.11. Let S be as above.
1 Let J be any ideal of S such that there exists some $n \geq 1$ such that $\mathfrak{m}_{S}^{n} \subset$ $J \subset \mathfrak{m}_{S}$. Define a norm $\|\cdot\|_{S}^{J}$ on $\Theta(S)$ by $\|\alpha\|_{S}^{J}=\sum_{M}\left|c_{M}\right| \ell_{S}(M / J M)$, where $\ell_{S}(-)$ denotes the length of an S-module. Then $\|\cdot\|_{S}^{J}$ is equivalent to $\|\cdot\|_{S}$.

2 Let $f: S^{\prime} \rightarrow S$ be a degree-preserving ring homomorphism such that $\mathfrak{m}_{S^{\prime}} S \supset \mathfrak{m}_{S}^{n}$ for some $n \geq 1$ and $\mathfrak{m}_{S^{\prime}}^{m} S \subset \mathfrak{m}_{S}$ for some $m \geq 1$ (e.g. S is S^{\prime}-finite). Define $\|\cdot\|_{S^{\prime}}^{S}$ by $\|\alpha\|_{S^{\prime}}^{S}=\sum_{M}\left|c_{M}\right| \ell_{S^{\prime}}\left(M / \mathfrak{m}_{S^{\prime}} M\right)$. Then $\|\cdot\|_{S^{\prime}}^{S}$ is equivalent to $\|\cdot\|_{S}$.

3 Let k be a field, and assume that S is a k-algebra and $\operatorname{dim}_{k} S / \mathfrak{m}_{S}<\infty$. Define $\|\alpha\|_{k, S}=\sum_{M}\left|c_{M}\right| \operatorname{dim}_{k} M / \mathfrak{m}_{S} M$. Then $\|\cdot\|_{k, S}$ is equivalent to $\|\cdot\|_{S}$.

Proof. 1. For $M \in S \mathrm{Gr} \bmod$ we have $\ell_{S}(M / J M) \geq \ell_{S}\left(M / \mathfrak{m}_{S} M\right)$ and $\|\alpha\|_{S}^{J} \geq\|\alpha\|_{S}$ follows easily. There is a surjective map of graded S-modules $F \rightarrow M$, with F free of rank $\ell_{S}\left(M / \mathfrak{m}_{S} M\right)$, which induces a surjection $F / \mathfrak{m}_{S}^{n} F \rightarrow M / \mathfrak{m}_{S}^{n} M$. Setting $r:=\ell_{S}\left(S / \mathfrak{m}_{S}^{n}\right)$, we obtain $\ell_{S}(M / J M) \leq$ $\ell_{S}\left(M / \mathfrak{m}_{S}^{n} M\right) \leq \ell_{S}\left(F / \mathfrak{m}_{S}^{n} F\right)=r \ell_{S}\left(M / \mathfrak{m}_{S} M\right)$, and $\|\alpha\|_{S}^{J} \leq r\left\|\alpha_{S}\right\|$ follows easily. It follows that $\|\cdot\|_{S}^{J}$ is equivalent to $\|\cdot\|_{S}$, as required.
2. Let T^{\prime} be the center of S^{\prime}.

First we assume that S is S^{\prime}-finite (or equivalently, T^{\prime}-finite) and show that the hypothesis on f is satisfied. If $\mathfrak{m}_{T^{\prime}} S \not \subset \mathfrak{m}_{S}$, then there exists some $a \in \mathfrak{m}_{T^{\prime}}$ such that the ideal $a\left(S / \mathfrak{m}_{S}\right)$ of S / \mathfrak{m}_{S} is nonzero. As S / \mathfrak{m}_{S} has finite length, $a^{n}\left(S / \mathfrak{m}_{S}\right)=a^{n+1}\left(S / \mathfrak{m}_{S}\right)$ for some $n \geq 1$, then by the graded Nakayama's lemma $a^{n}\left(S / \mathfrak{m}_{S}\right)=0$. Since S / \mathfrak{m}_{S} is semisimple, $a\left(S / \mathfrak{m}_{S}\right)$ is an idempotent ideal and so $a^{n}\left(S / \mathfrak{m}_{S}\right) \neq 0$, a contradiction. Therefore $\mathfrak{m}_{T^{\prime}} S \subset$ \mathfrak{m}_{S}. Note that $S / \mathfrak{m}_{T^{\prime}} S$ is a finite $T^{\prime} / \mathfrak{m}_{T^{\prime}}$-algebra and is an Artinian algebra, so its radical $\mathfrak{m}_{S} / \mathfrak{m}_{T^{\prime}} S$ is nilpotent, and $\mathfrak{m}_{S}^{n} \subset \mathfrak{m}_{T^{\prime}} S$ for some $n \geq 1$. If S is T^{\prime}-finite, then $\mathfrak{m}_{S}^{n} \subset \mathfrak{m}_{T^{\prime}} S \subset \mathfrak{m}_{S}$ for some n. Similarly, $\mathfrak{m}_{S^{\prime}}^{m} \subset \mathfrak{m}_{T^{\prime}} S^{\prime} \subset \mathfrak{m}_{S^{\prime}}$ for some m. So $\mathfrak{m}_{S^{\prime}}^{m} S \subset \mathfrak{m}_{S}$ and $\mathfrak{m}_{S}^{n} \subset \mathfrak{m}_{S^{\prime}} S$, and the hypothesis is satisfied.

Now we prove the assertion. Let $M \in S \mathrm{Gr}$ mod. Then

$$
\begin{aligned}
u_{S}(M)=\ell_{S}\left(M / \mathfrak{m}_{S} M\right) \leq \ell_{S^{\prime}}\left(M / \mathfrak{m}_{S} M\right) & \leq \ell_{S^{\prime}}\left(M / \mathfrak{m}_{S^{\prime}}^{m} M\right) \\
& \leq \ell_{S^{\prime}}\left(S^{\prime} / \mathfrak{m}_{S^{\prime}}^{m} S^{\prime}\right) \cdot \ell_{S^{\prime}}\left(M / \mathfrak{m}_{S^{\prime}} M\right)
\end{aligned}
$$

That $\|\alpha\|_{S} \leq \ell_{S^{\prime}}\left(S^{\prime} / \mathfrak{m}_{S^{\prime}}^{m} S^{\prime}\right)\|\alpha\|_{S^{\prime}}^{S}$ follows easily. On the other hand, we have

$$
\ell_{S^{\prime}}\left(M / \mathfrak{m}_{S^{\prime}} M\right) \leq \ell_{S^{\prime}}\left(M / \mathfrak{m}_{S}^{n} M\right) \leq \ell_{S^{\prime}}\left(S / \mathfrak{m}_{S}^{n} S\right) \cdot u_{S}(M)
$$

and $\|\alpha\|_{S^{\prime}}^{S} \leq \ell_{S^{\prime}}\left(S / \mathfrak{m}_{S^{n}}^{n} S\right)\|\alpha\|_{S}$ follows easily. Hence $\|\alpha\|_{S^{\prime}}^{S}$ is equivalent to $\|\alpha\|_{S}$.
3. This is because

$$
\ell_{S}\left(M / \mathfrak{m}_{S} M\right) \leq \operatorname{dim}_{k} M / \mathfrak{m}_{S} M \leq \operatorname{dim}_{k} S / \mathfrak{m}_{S} \cdot \ell_{S}\left(M / \mathfrak{m}_{S} M\right)
$$

Lemma 3.12. The following \mathbb{R}-linear maps are continuous:
$1 \Theta^{*}(S) \rightarrow \Theta^{\circ}(S) ;$
$2 \Theta^{\circ}(S) \rightarrow \Theta^{\wedge}(\hat{S})$;
$3 f^{*}: \Theta(S) \rightarrow \Theta\left(S^{\prime}\right)$, for $f: S^{\prime} \rightarrow S$, finite;
$4 f_{*}: \Theta\left(S^{\prime}\right) \rightarrow \Theta(S)$ given by $f_{*}(M)=S \otimes_{S^{\prime}} M$, for $f: S^{\prime} \rightarrow S$, finite;
$5 \ell_{S}: \Theta(S) \rightarrow \mathbb{R}$, when $\ell_{S}(S)<\infty$.
$6 \operatorname{rank}_{R}:=\operatorname{dim}_{Q(R)}\left(Q(R) \otimes_{R}-\right): \Theta(R) \rightarrow \mathbb{R}$, where R is a domain (graded or not) and $Q(R)$ is its (ungraded) field of fractions.

Proof. We only prove $\mathbf{3}$ and leave the routine verifications of the others to the reader.

Let $\|\cdot\|_{S^{\prime}}^{S}$ be as in Lemma 3.11. By Lemma 3.11, there exists some $r>0$ such that $\|\cdot\|_{S^{\prime}}^{S} \leq r \cdot\|\cdot\|_{S}$. For $\alpha=\sum_{M} c_{M}[M]$ as a sum of indecomposable modules in $\Theta(S)$, we have

$$
\begin{aligned}
\left\|f^{*} \alpha\right\|_{S^{\prime}}=\left\|\sum_{M} c_{M}[M]\right\|_{S^{\prime}} \leq \sum_{M}\left|c_{M}\right|\|M\|_{S^{\prime}} & =\sum_{M}\left|c_{M}\right|\|M\|_{S^{\prime}}^{S} \\
& \leq r \cdot \sum_{M}\left|c_{M}\right|\|M\|_{S}=r \cdot\|\alpha\|_{S}
\end{aligned}
$$

and continuity follows.
(3.13) Define $\Theta_{+}(S)$ to be the subset of $\Theta(S)$ consisting of the $\alpha=\sum c_{M}[M]$ with all the $c_{M} \geq 0$.
Lemma 3.14. Suppose that $f: S^{\prime} \rightarrow S$ is finite and let $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of elements of $\Theta(S)$ such that each α_{i} is in $\Theta_{+}(S)$ or $-\Theta_{+}(S)$. Then $\left\|\alpha_{i}\right\|_{S} \rightarrow$ 0 if and only if $u_{S^{\prime}}\left(f^{*} \alpha_{i}\right) \rightarrow 0$.
Proof. Note that $\left\|\alpha_{i}\right\|_{S} \rightarrow 0$ if and only if $\left\|\alpha_{i}\right\|_{S^{\prime}}^{S} \rightarrow 0$ by Lemma 3.11. As $\alpha_{i} \in \pm \Theta_{+}(S)$, we have that $\left\|\alpha_{i}\right\|_{S^{\prime}}^{S}=\left|u_{S^{\prime}}\left(f^{*}\left(\alpha_{i}\right)\right)\right|$, and we are done.
(3.15) For $M, N \in S$ Gr mod, we define

$$
\begin{aligned}
& \operatorname{sum}_{N} M:=\max \left\{n \in \mathbb{Z}_{\geq 0} \mid \bigoplus_{i=1}^{n} N\left[\lambda_{i}\right]\right. \text { is a direct summand } \\
&\left.\quad \text { of } M \text { for some } \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Q}\right\} .
\end{aligned}
$$

For $N \in \operatorname{Ind}^{\circ} S$, $\operatorname{sum}_{N}: S \mathrm{Gr} \bmod \rightarrow \mathbb{Z}$ is an additive function, and hence induces a linear map $\operatorname{sum}_{N}: \Theta(S) \rightarrow \mathbb{R}$. More precisely, sum $_{N}$ is given by $\operatorname{sum}_{N}\left(\sum_{M} c_{M}[M]\right)=c_{N}$, thus sum ${ }_{N}$ is continuous.
(3.16) Let k be a field of prime characteristic p. Let $R=\bigoplus_{n>0} R_{n}$ be a commutative graded k-algebra such that R_{0} is an F-finite Henselian local ring. Let \mathfrak{m}_{R} be the graded maximal ideal of R, and assume that R / \mathfrak{m}_{R} is a finite-dimensional k-vector space. Let G be a finite group acting on R as degree-preserving k-algebra automorphisms (the case that G is trivial is also important in what follows). Let $S:=R * G$. Note that T is central in R and S. Note also that R / \mathfrak{m}_{R} and k are F-finite, and R and S are finite over $T:=R^{G}[$ Has, (9.6)]. It is easy to see that T is F-finite and Henselian.

Let $d=\operatorname{dim} R, \mathfrak{d}:=\log _{p}\left[k: k^{p}\right]$, and set $\delta=d+\mathfrak{d}$.
(3.17) For $\alpha=\sum_{M \in \operatorname{Ind}{ }^{\circ} S} c_{M}[M] \in \Theta(S)$, define

$$
{ }^{e} \alpha=\sum_{M \in \operatorname{Ind}^{\circ} S} c_{M}\left[^{e} M\right],
$$

and call it the e th Frobenius direct image of α. We define $\mathrm{NF}_{e}(\alpha)=\frac{1}{p^{\delta e}}{ }^{e} \alpha$.
Definition 3.18. Let

$$
\mathrm{FL}(\alpha):=\lim _{e \rightarrow \infty} \frac{1}{p^{\delta e}}{ }^{e} \alpha=\lim _{e \rightarrow \infty} \mathrm{NF}_{e}(\alpha)
$$

in $\Theta(S)$, provided the limit exists. We call $\mathrm{FL}(\alpha)$ the Frobenius limit of α.
(3.19) Assume that R is a domain. As we have $\log _{p}\left[Q(R): Q(R)^{p}\right]=\delta$ by [Kun, (2.3)], $\operatorname{rank}_{R}{ }^{e} M=p^{\delta e} \operatorname{rank}_{e_{R}}{ }^{e} M=p^{\delta e} \operatorname{rank}_{R} M$. It follows that $\operatorname{rank}_{R} \mathrm{NF}_{e}(\alpha)=\operatorname{rank}_{R} \alpha$ for $\alpha \in \Theta(S)$. If $\mathrm{FL}(\alpha)$ exists, then $\operatorname{rank}_{R} \mathrm{FL}(\alpha)=$ $\operatorname{rank}_{R} \alpha$.
(3.20) When I is a G-ideal in R, we sometimes write $\alpha / I \alpha$ for $R / I \otimes_{R} \alpha$. Note that ${ }^{e} \alpha / I\left({ }^{e} \alpha\right)={ }^{e}\left(\alpha / I^{\left[p^{e}\right]} \alpha\right)$, where $I^{\left[p^{e}\right]}$ is the ideal generated by $\left\{a^{p^{e}} \mid\right.$ $a \in I\}$, which is a G-ideal.
(3.21) If \mathfrak{q} is a homogeneous \mathfrak{m}_{T}-primary ideal of T, the Hilbert-Kunz multiplicity of $M \in T \mathrm{Gr} \bmod [\mathrm{Mon}]$ is defined by

$$
e_{\mathrm{HK}}(\mathfrak{q}, M):=\lim _{e \rightarrow \infty} \frac{\ell_{T}\left(M / \mathfrak{q}^{\left[p^{e}\right]} M\right)}{p^{d e}}=\lim _{e \rightarrow \infty} \frac{\ell_{T}\left(T / \mathfrak{q} \otimes_{T}^{e} M\right)}{p^{\delta e}} .
$$

This is an additive function, so it induces a function on $\Theta(T)$:

$$
e_{\mathrm{HK}}(\mathfrak{q}, \alpha)=\lim _{e \rightarrow \infty} \frac{\ell_{T}\left(T / \mathfrak{q} \otimes_{T}{ }^{e} \alpha\right)}{p^{\delta e}}=\lim _{e \rightarrow \infty} \ell_{T}\left(T / \mathfrak{q} \otimes_{T} \mathrm{NF}_{e}(\alpha)\right) .
$$

By Lemma 3.12, $e_{\mathrm{HK}}(\mathfrak{q}, \alpha)=\ell_{T}\left(T / \mathfrak{q} \otimes_{T} \mathrm{FL}(\alpha)\right)$, provided $\mathrm{FL}(\alpha)$ exists. Note that if T is a domain then $e_{\mathrm{HK}}(\mathfrak{q}, M)=\operatorname{rank}_{T} M \cdot e_{\mathrm{HK}}(\mathfrak{q}, T)$.
(3.22) Let $N \in \operatorname{Ind}^{\circ} S$. We define

$$
\mathrm{FS}_{N}(\alpha):=\lim _{e \rightarrow \infty} \operatorname{sum}_{N}\left(\mathrm{NF}_{e}(\alpha)\right),
$$

provided the limit exists. We call it the generalized F-signature of M with respect to N, see $[\mathrm{HasN}]$. If $\mathrm{FL}(\alpha)$ exists, then $\mathrm{FS}_{N}(\alpha)=\operatorname{sum}_{N}(\mathrm{FL}(\alpha))$, since sum_{N} is continuous.

Example 3.23. In [Bru], Bruns studied the asymptotic behavior of the Frobenius direct images of normal affine semigroup rings; we follow the notation used there. In [Bru, Theorem 3.1], assume for simplicity that M is positive in the sense that there is a rational hyperplane H of \mathbb{R}^{d} through the origin such that $H \cap M=\{0\}$. Let $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a defining equation of H (that is, $h^{-1}(0)=H$) such that $h\left(\mathbb{Z}^{d}\right) \subset \mathbb{Z}$ and $h(M) \subset \mathbb{Z}_{\geq 0}$. Then $R=\bigoplus_{n \in \mathbb{Z}} R_{n}$ is positively graded (that is, $R_{n}=0$ for $n<0$ and $R_{0}=K$), where $R_{n}=\bigoplus_{x \in h^{-1}(n) \cap M} K x$. Let $\mathfrak{m}=\bigoplus_{n>0} R_{n}$. By [Bru, Theorem 3.1], we immediately have that

$$
\mathrm{FL}(R)=\sum_{\gamma} \operatorname{vol}(\gamma)\left[\mathcal{C}_{\gamma}\right]
$$

in $\Theta^{\circ}(R)$.

4. The Frobenius limit for a group acting on a polynomial ring

(4.1) Let k be a field, and let B be a graded polynomial ring over k with the degrees of the generators all positive integers, but not necessarily the same. Let G be a finite group that acts faithfully on B as a graded k-algebra. We can form the twisted group algebra $B * G$ and we define the Frobenius operator on it as in (2.7).

Let $A=B^{G}$, the ring of invariants. Let \mathfrak{m}_{A} and \mathfrak{m}_{B} denote the irrelevant maximal ideals of A and B, respectively. Let \hat{A} be the \mathfrak{m}_{A}-adic completion of A and let \hat{B} be the \mathfrak{m}_{B}-adic completion of B (it is also the $\mathfrak{m}_{A^{-}}$-adic completion).

Let \mathcal{V} be the category of \mathbb{Q}-graded $k G$-modules and let \mathcal{M} be the category of \mathbb{Q}-graded $B * G$-modules.

Let \mathcal{F} denote the full subcategory of \mathcal{M} consisting of $F \in \mathcal{M}$ such that F is B-finite and B-free. In other words, F is a \mathbb{Q}-graded $B * G$-lattice.
(4.2) Let $V=\bigoplus_{\lambda} V_{\lambda}$ be an object of \mathcal{V}. Then V is a projective object of \mathcal{V} if and only if it is so as a $k G$-module, since $\operatorname{Hom}_{\mathcal{V}}(V, W)=$ $\prod_{\lambda} \operatorname{Hom}_{k G}\left(V_{\lambda}, W_{\lambda}\right)$. We denote the category of finite dimensional projective objects of \mathcal{V} by \mathcal{P}_{0}. Then clearly $\mathcal{P}_{0}=\operatorname{add}\{k G[\lambda] \mid \lambda \in \mathbb{Q}\}$, where $[\lambda]$ denotes shift of degree by λ.

Lemma 4.3. Let $R=\bigoplus_{i \geq 0} R_{i}$ be a commutative positively-graded (that is, $\left.R_{0}=k\right) k$-algebra. Let F and F^{\prime} be graded R-finite R-free modules, and $h: F \rightarrow F^{\prime}$ a graded R-homomorphism. Then the following are equivalent:
$1 h$ is injective, and $C:=$ Coker h is R-free;
$21 \otimes h: R / \mathfrak{m} \otimes_{R} F \rightarrow R / \mathfrak{m} \otimes_{R} F^{\prime}$ is injective;
where $\mathfrak{m}=\bigoplus_{i>0} R_{i}$ is the irrelevant ideal.
Proof. $\mathbf{1} \Rightarrow \mathbf{2}$. As the sequence

$$
0 \rightarrow F \xrightarrow{h} F^{\prime} \rightarrow C \rightarrow 0
$$

is exact,

$$
0=\operatorname{Tor}_{1}^{R}(R / \mathfrak{m}, C) \rightarrow R / \mathfrak{m} \otimes_{R} F \xrightarrow{1 \otimes h} R / \mathfrak{m} \otimes_{R} F^{\prime}
$$

is exact.
$\mathbf{2} \Rightarrow \mathbf{1}$. Take a homogeneous free basis f_{1}, \ldots, f_{r} of F, and take homogeneous elements $f_{1}^{\prime}, \ldots, f_{s}^{\prime}$ of F^{\prime} such that their images in C form a minimal set of generators for C. As

$$
0 \rightarrow R / \mathfrak{m} \otimes_{R} F \rightarrow R / \mathfrak{m} \otimes_{R} F^{\prime} \rightarrow R / \mathfrak{m} \otimes_{R} C \rightarrow 0
$$

is exact, we have that $\operatorname{rank} F^{\prime}=r+s$, and $h\left(f_{1}\right), \ldots, h\left(f_{r}\right), f_{1}^{\prime}, \ldots, f_{s}^{\prime}$ generate F^{\prime} by the graded version of Nakayama's lemma (this applies since the grading on the modules must be discrete). Thus it is easy to see that this set of elements forms a free basis for F^{\prime}. In particular, $h\left(f_{1}\right), \ldots, h\left(f_{r}\right)$ are linearly independent and hence h is injective. Also, $C=F^{\prime} / F$ is a free module with basis $f_{1}^{\prime}, \ldots, f_{s}^{\prime}$.

Lemma 4.4. $1 P:=\{(B \otimes k G)[\lambda] \mid \lambda \in \mathbb{Q}\}$ is a set of Noetherian projective objects that generate \mathcal{M}. In particular, $\mathcal{P}:=\operatorname{add} P$ is the full subcategory of Noetherian projective objects of \mathcal{M}.

2 For $M \in \mathcal{M}$, the following are equivalent.
a $M \in \mathcal{P}$;
$\mathbf{b} M \cong B \otimes_{k} V$ as graded modules, for some $V \in \mathcal{P}_{0}$;
c $M \in \mathcal{F}$, and $M / \mathfrak{m}_{B} M \in \mathcal{P}_{0}$.
If these conditions are satisfied, then $M \cong B \otimes_{k} M / \mathfrak{m}_{B} M$ as graded modules.
$3 \mathcal{F}$ is a Frobenius category with respect to all short exact sequences (see [Hap] for definition), and \mathcal{P} is its full subcategory of projective and injective objects.

Proof. 1 Obviously, each $\left(B \otimes_{k} k G\right)[\lambda]$ is a Noetherian object. On the other hand,

$$
\operatorname{Hom}_{\mathcal{M}}(B \otimes k G[\lambda], N) \cong \operatorname{Hom}_{\mathcal{V}}(k G[\lambda], N) \cong \operatorname{Hom}_{\operatorname{Gr} \operatorname{Mod} k}(k[\lambda], N) \cong N_{-\lambda},
$$

and each object of P is a projective object, and P generates \mathcal{M}, where Gr Mod k denotes the category of graded k-vector spaces.
2. $\mathbf{a} \Leftrightarrow \mathbf{b} \Rightarrow \mathbf{c}$ is trivial. We show the last assertion, assuming \mathbf{c}. This also proves $\mathbf{c} \Rightarrow \mathbf{b}$. As $M / \mathfrak{m}_{B} M$ is projective in \mathcal{V}, the canonical map $M \rightarrow$ $M / \mathfrak{m}_{B} M$ has a splitting $j: M / \mathfrak{m}_{B} M \rightarrow M$ in \mathcal{V}. Then, defining $\varphi: B \otimes_{k}$ $M / \mathfrak{m}_{B} M \rightarrow M$ by $\varphi(b \otimes v)=b j(v), \varphi$ is $B * G$-linear. By Lemma 4.3, it is easy to see that φ is an isomorphism.
3. By $1, \mathcal{P}$ is the category of the projectives of \mathcal{F}, and \mathcal{F} has enough projectives. On the other hand, $\operatorname{Hom}_{B}(?, B)$ is a dualizing functor on the exact category \mathcal{F} and \mathcal{P} is mapped to itself by it. Thus \mathcal{P} is also the category of injectives of \mathcal{F}, and \mathcal{F} has enough injectives.

Lemma 4.5. Let $F \in \mathcal{F}$. Then there is a filtration

$$
0=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=F
$$

in \mathcal{M} such that for each $i=1, \ldots, n$, there exist $\lambda_{i} \in \mathbb{Q}$ and $V_{i} \in k G \bmod$ such that $F_{i} / F_{i-1} \cong B \otimes_{k} V_{i}\left[-\lambda_{i}\right]$ (so F_{i} and F_{i} / F_{i-1} are in \mathcal{F}), where $k G \bmod$ denotes the category of finite dimensional $k G$-modules, and each object of $k G \bmod$ is viewed as an object of \mathcal{V} of degree zero.

Proof. We use induction on $\operatorname{rank}_{B} F$. If $\operatorname{rank}_{B} F=0$, there is nothing to prove. Assume that rank $F>0$ and take the smallest $\lambda \in \mathbb{Q}$ such that $F_{\lambda} \neq 0$. Set $V_{1}=F_{\lambda}[\lambda], \lambda_{1}=\lambda$, and $F_{1}=B \otimes_{k} V_{1}[-\lambda]$. There is a canonical map

$$
q: F_{1}=B \otimes_{k} V_{1}[-\lambda]=B \otimes_{k} F_{\lambda} \xrightarrow{a} F,
$$

where $a(b \otimes f)=b f$. Then, by Lemma 4.3, q is injective, and $C \in \mathcal{F}$, where $C=$ Coker q. Applying the induction hypothesis to C, we are done.

Lemma 4.6. Let $F \in \mathcal{F}$ and $f \geq 0$. Then the following are equivalent.
$1 F \cong B \otimes_{k} F_{0}$ for some \mathbb{Q}-graded G-module F_{0} such that $F_{0} \cong(k G)^{f}$ as G-modules.
$2 F \cong\left(B \otimes_{k} k G\right)^{f}$ as a $B * G$-module.
$3 F / \mathfrak{m}_{B} F \cong(k G)^{f}$ as a G-module.
Proof. $\mathbf{1} \Rightarrow \mathbf{2} \Rightarrow \mathbf{3}$ is trivial. $\mathbf{3} \Rightarrow \mathbf{1}$ follows from Lemma 4.4, $\mathbf{2}$.
(4.7) We denote the full subcategory of \mathcal{F} with objects the $F \in \mathcal{F}$ satisfying the equivalent conditions in Lemma 4.6 by \mathcal{G}. Note that \mathcal{G} is closed under extensions and shift of degree.

Lemma 4.8. Let V be a $k G$-module. Let V^{\prime} be the k-vector space V with the trivial G-action. Then $k G \otimes V \cong k G \otimes V^{\prime}$. Hence $k G \otimes V$ is a direct sum of copies of $k G$.

Proof. The map $g \otimes v \mapsto g \otimes g^{-1} v$ gives a $k G$-isomorphism $k G \otimes V \cong$ $k G \otimes V^{\prime}$.
(4.9) From now on, we assume that k is of characteristic p, and is F-finite. We set $\mathfrak{d}:=\log _{p}\left[k: k^{p}\right]$ and $\delta:=d+\mathfrak{d}$.

Lemma 4.10. If $F \in \mathcal{G}$, then ${ }^{e} F \in \mathcal{G}$.
Proof. We can write $F=B \otimes_{k} F_{0}$ with $F_{0} \cong(k G)^{f}$ as a $k G$-module for some f. We have ${ }^{e} F \in \mathcal{F}$ and

$$
{ }^{e} F / \mathfrak{m}_{B}{ }^{e} F \cong{ }^{e}\left(B / \mathfrak{m}_{B}^{\left[p^{e}\right]} \otimes_{B}\left(B \otimes_{k} F_{0}\right)\right) \cong{ }^{e}\left(B / \mathfrak{m}_{B}^{\left[p^{e}\right]} \otimes_{k} F_{0}\right) .
$$

As $F_{0} \cong(k G)^{f}$, we have that $B / \mathfrak{m}_{B}^{\left[p^{e}\right]} \otimes_{k} F_{0} \cong(k G)^{f p^{d e}}$ by Lemma 4.8. Hence ${ }^{e} F / \mathfrak{m}_{B}{ }^{e} F \cong{ }^{e}\left((k G)^{f p^{d e}}\right)=(k G)^{f p^{\delta e}}$ by Lemma 2.9. By Lemma 4.6, we have that ${ }^{e} F \in \mathcal{G}$.

Lemma 4.11. There exists some $e_{0} \geq 1$ such that for each $F \in \mathcal{F}$ of rank f, there exists some direct summand F^{\prime} of ${ }^{e_{0}} F$ in \mathcal{F} such that $F^{\prime} \cong\left(B \otimes_{k}\right.$ $k G)^{f p^{\partial e_{0}}}$ as $B * G$-modules.

Proof. Let $Q(A)$ and $Q(B)$ denote the fields of fractions of A and B respectively. Then $Q(B)$ is a Galois extension of $Q(A)$ with Galois group G (here we use the assumption G acts faithfully on $B)$. So $u: Q(B) \otimes_{Q(A)} Q(B)^{\prime} \rightarrow$ $k G \otimes_{k} Q(B)^{\prime}$ given by $u(x \otimes y)=\sum_{g \in G} g^{-1} \otimes(g x) y$ is an isomorphism of
$\left(G, Q(B)^{\prime}\right)$-modules, where $Q(B)^{\prime}$ is the field $Q(B)$ with the trivial G-action. So $Q(B)$ as a G-module is a direct sum of copies of $k G$. Thus there is at least one injective $k G$-map $k G \rightarrow Q(B)$. Multiplying by an appropriate element of $A \backslash\{0\}$, we get an injective G-linear map $k G \rightarrow B$. Its image is in $B_{0} \oplus B_{1} \oplus \cdots \oplus B_{r}$ for some $r \geq 1$, and it is a direct summand, since $k G$ is an injective module. Then by the Krull-Schmidt theorem, there is a graded $k G$-direct summand E_{0} of B which is isomorphic to $k G$ as a G-module. The argument so far, which we have given for the convenience of the reader, can be found in [Sym].

We can take e_{0} sufficiently large that $E_{0} \cap \mathfrak{m}_{B}^{\left[p^{e}\right]}=0$ for degree reasons, so $E_{0} \rightarrow B / \mathfrak{m}_{B}^{\left[e^{e}\right]}$ is injective. We claim that this choice of e_{0} has the required property.

Let V be any finite-dimensional $k G$-module. Then the inclusion $E_{0} \hookrightarrow B$ induces a split monomorphism $\phi:{ }^{e_{0}}\left(E_{0} \otimes_{k} V\right) \rightarrow{ }^{e_{0}}\left(B \otimes_{k} V\right)$. Note that the composite

$$
e_{0}\left(E_{0} \otimes_{k} V\right) \xrightarrow{\phi^{e_{0}}}\left(B \otimes_{k} V\right) \rightarrow B / \mathfrak{m}_{B} \otimes_{B}{ }^{e_{0}}\left(B \otimes_{k} V\right) \cong e^{e_{0}}\left(B / \mathfrak{m}_{B}^{\left[p^{\left.e_{0}\right]}\right.} \otimes_{k} V\right)
$$

is injective, since ${ }^{e_{0}}\left(? \otimes_{k} V\right)$ is an exact functor. Note that ${ }^{e_{0}}\left(E_{0} \otimes_{k} V\right) \cong$ $(k G)^{p^{\partial e_{0}} \operatorname{dim}_{k} V}$ as G-modules. By Lemma 4.3, it is easy to see that

$$
B \otimes_{k}{ }^{e_{0}}\left(E_{0} \otimes_{k} V\right) \rightarrow^{e_{0}}\left(B \otimes_{k} V\right)
$$

given by $b \otimes m \mapsto b \phi(m)$ is an injective map of \mathcal{F} whose cokernel D_{V} lies in \mathcal{F}. As $B \otimes_{k}{ }^{e_{0}}\left(E_{0} \otimes_{k} V\right) \in \mathcal{G} \subset \mathcal{P}$, we have a decomposition

$$
{ }^{e_{0}}\left(B \otimes_{k} V[\lambda]\right)=B \otimes_{k}{ }^{e_{0}}\left(E_{0} \otimes_{k} V\right)\left[\lambda / p^{e_{0}}\right] \oplus D_{V}\left[\lambda / p^{e_{0}}\right] .
$$

So if $F \cong B \otimes_{k} V[\lambda]$ for some finite-dimensional $k G$-module V and $\lambda \in \mathbb{Q}$, the lemma holds.

Now let

$$
0 \rightarrow E \rightarrow F \rightarrow H \rightarrow 0
$$

be a short exact sequence in \mathcal{F} such that the assertion of the lemma (for our e_{0}) is satisfied for E and H. That is, ${ }^{e_{0}} E$ has a direct summand E^{\prime} such that $E^{\prime} \cong\left(B \otimes_{k} k G\right)^{\oplus p^{\rho_{0}} 0}$ rank E as a $B * G$-module, and ${ }^{e_{0}} H$ has a direct summand H^{\prime} such that $H^{\prime} \cong\left(B \otimes_{k} k G\right)^{\oplus p^{p e} e_{0} \operatorname{rank} H}$ as a (G, B)-module. As H^{\prime} is a projective object of \mathcal{F}, the inclusion $H^{\prime} \hookrightarrow H$ lifts to $H^{\prime} \hookrightarrow F$. So we have
a commutative diagram of $B * G$-modules, with exact rows and columns

As E^{\prime} and H^{\prime} are direct summands of E and H, respectively, we have that $E^{\prime \prime} \in \mathcal{F}$ and $H^{\prime \prime} \in \mathcal{F}$. So $F^{\prime \prime} \in \mathcal{F}$, and hence $E^{\prime} \oplus H^{\prime}$ is a direct summand of F by Lemma 4.4. As $E^{\prime} \oplus H^{\prime} \cong\left(B \otimes_{k} k G\right)^{\oplus\left(p^{\mathrm{od} 0} 0\left(\operatorname{rank}_{B} E+\mathrm{rank}_{B} H\right)\right)}$ and $\operatorname{rank}_{B} E+\operatorname{rank}_{B} H=\operatorname{rank}_{B} F$, we conclude that the assertion of the lemma is also true for F.

Now by Lemma 4.5, we are done.
Proposition 4.12. There exists some $c>0$ and $0 \leq \alpha<1$ such that for any $F \in \mathcal{F}$ of rank f and any $e \geq 0$, there exists some decomposition

$$
\begin{equation*}
{ }^{e} F \cong F_{0, e} \oplus F_{1, e} \tag{1}
\end{equation*}
$$

such that $F_{1, e} \in \mathcal{G}$ and $\operatorname{rank}_{B} F_{0, e} \leq c \alpha^{e} f p^{\delta e}$.
Proof. If the dimension $d=0$, then $A=B=k$ and G is trivial, and this case is obvious, since we may set $c=1, \alpha=0, F_{0, e}=0$ and $F_{1, e}={ }^{e} F$ for each e.

So we may assume that $d \geq 1$. Take e_{0} as in Lemma 4.11, and set $\alpha:=\left(1-|G| \cdot p^{-d e_{0}}\right)^{1 / e_{0}}$ so that $0 \leq \alpha<1$. Set $c=\alpha^{-e_{0}}>0$.

We prove the existence of a decomposition by induction on $e \geq 0$.
If $0 \leq e<e_{0}$, then we set $F_{0, e}={ }^{e} F$ and $F_{1, e}=0$. As we have $\operatorname{rank}_{B} F_{0, e}=$ $f p^{\delta e}$ and $c \alpha^{e}=\alpha^{e-e_{0}}>1$, we are done.

Now assume that $e \geq e_{0}$. By the induction hypothesis, we have a decomposition

$$
{ }^{e-e_{0}} F \cong F_{0, e-e_{0}} \oplus F_{1, e-e_{0}}
$$

such that $F_{1, e-e_{0}} \in \mathcal{G}$ and $\operatorname{rank}_{B} F_{0, e-e_{0}} \leq c \alpha^{e-e_{0}} f p^{\delta\left(e-e_{0}\right)}$. Then

$$
{ }^{e} F \cong{ }^{e_{0}} F_{0, e-e_{0}} \oplus{ }^{e_{0}} F_{1, e-e_{0}} .
$$

By Lemma 4.10, that ${ }^{e_{0}} F_{1, e-e_{0}} \in \mathcal{G}$. Moreover,

$$
\operatorname{rank}_{B}{ }^{e_{0}} F_{0, e-e_{0}}=p^{\delta e_{0}} \operatorname{rank}_{B} F_{0, e-e_{0}}
$$

By the choice of e_{0}, there is a decomposition

$$
{ }^{e_{0}} F_{0, e-e_{0}} \cong F^{\prime} \oplus F^{\prime \prime}
$$

such that $F^{\prime} \in \mathcal{G}$ and $\operatorname{rank}_{B} F^{\prime}=|G| \cdot p^{0 e_{0}} \operatorname{rank}_{B} F_{0, e-e_{0}}$.
Now let $F_{0, e}:=F^{\prime \prime}$ and $F_{1, e}:={ }^{e_{0}} F_{1, e-e_{0}} \oplus F^{\prime}$. As ${ }^{e_{0}} F_{1, e-e_{0}} \in \mathcal{G}$ and $F^{\prime} \in \mathcal{G}$, we have $F_{1, e} \in \mathcal{G}$. On the other hand,

$$
\begin{aligned}
& \operatorname{rank}_{B} F_{0, e}=\operatorname{rank}_{B}{ }^{e_{0}} F_{0, e-e_{0}}-\operatorname{rank}_{B} F^{\prime}=\left(p^{\delta e_{0}}-|G| \cdot p^{\partial e_{0}}\right) \operatorname{rank}_{B} F_{0, e-e_{0}} \\
& \leq \alpha^{e_{0}} p^{\delta e_{0}} c \alpha^{e-e_{0}} f p^{\delta\left(e-e_{0}\right)}=c \alpha^{e} f p^{\delta e}
\end{aligned}
$$

and we are done.
Theorem 4.13. For any $B * G$-module F that is free of rank f over B we have

$$
\mathrm{FL}(F)=\frac{f}{|G|}[B * G]
$$

in $\Theta^{\circ}(B * G)$ and the analogous formula

$$
\operatorname{FL}(\hat{F})=\frac{f}{|G|}[\hat{B} * G]
$$

in $\Theta^{\wedge}(\hat{B} * G)$.
Proof. From Proposition 4.12, we have

$$
\frac{\left.{ }^{e} F\right]}{p^{\delta e}}-\frac{f}{|G|}[B * G]=\left(\frac{\left[F_{1, e}\right]}{p^{\delta e}}-\frac{f}{|G|}[B * G]\right)+\frac{\left[F_{0, e}\right]}{p^{\delta e}} .
$$

Notice that $\left[F_{0, e}\right] / p^{\delta e} \in \Theta_{+}^{\circ}(B * G)$ and $\lim _{e \rightarrow \infty} \operatorname{rank}_{B}\left(\left[F_{0, e}\right] / p^{\delta e}\right)=0$. But $F_{0, e}$ is free as a B-module, so $u_{B}\left(F_{0, e}\right)=\operatorname{rank}_{B}\left(F_{0, e}\right)$. It follows from Lemma 3.14 that $\lim _{e \rightarrow \infty}\left\|\left[F_{0, e}\right] / p^{\delta e}\right\|_{B * G}=0$.

By Lemma 4.6, the term $\left[F_{1, e}\right] / p^{\delta e}$ is of the form $a_{e}[B * G]$ for some number a_{e}; taking ranks shows that $\lim _{e \rightarrow \infty} a_{e}=f /|G|$. Thus

$$
\lim _{e \rightarrow \infty}\left(\frac{\left[F_{1, e}\right]}{p^{\delta e}}-\frac{f}{|G|}[B * G]\right)=0
$$

and the first part of the theorem is proved.
The second part follows from Lemma 3.12.
Lemma 4.14. $B \cong\left(B \otimes_{k} k G\right)^{G}$ as graded A-modules. More explicitly, $b \mapsto$ $\sum_{b_{e}} g b \otimes g$ gives a graded A-isomorphism. The inverse is given by $\sum_{g} b_{g} \otimes g \mapsto$

Proof. Easy.
Lemma 4.15. For any $B * G$-module M, $\operatorname{rank}_{A} M^{G}=\operatorname{rank}_{B} M$.
Proof. It is well known that $Q(B) * G$ is isomorphic to a matrix ring over $Q(A)$ ([CR, 28.3]), hence $Q(B)$ is its only indecomposable module. Thus

$$
Q(A) \otimes_{A} M^{G} \cong\left(Q(A) \otimes_{A} M\right)^{G} \cong\left(Q(B) \otimes_{B} M\right)^{G} \cong\left(Q(B)^{m}\right)^{G} \cong Q(A)^{m}
$$

where $m=\operatorname{rank}_{B} M$.
Theorem 4.16. For any $B * G$-module F that is free of rank f over B we have

$$
\mathrm{FL}\left(F^{G}\right)=\frac{f}{|G|}[B]
$$

in $\Theta^{\circ}(A)$ and

$$
\operatorname{FL}\left(\hat{F}^{G}\right)=\frac{f}{|G|}[\hat{B}]
$$

$\Theta^{\wedge}(\hat{A})$, where $A=B^{G}$.
Proof. From the proof of Theorem 4.13 we have $\left[{ }^{e} F\right] / p^{\delta e}=a_{e}\left[B \otimes_{k} k G\right]+$ $\left[F_{0, e}\right] / p^{\delta e}$, where $\lim _{e \rightarrow \infty} a_{e}=f /|G|$. Applying the fixed point functor and using Lemma 4.14 yields

$$
\left[{ }^{e} F^{G}\right] / p^{\delta e}=a_{e}[B]+\left[F_{0, e}^{G}\right] / p^{\delta e} .
$$

The theorem will follow once we can show that $\lim _{e \rightarrow \infty} u_{A}\left(\left[F_{0, e}^{G}\right] / p^{\delta e}\right)=0$, since this takes place in $\Theta_{+}(A)$.

Applying u_{A} gives

$$
u_{A}\left(\left[{ }^{e} F^{G}\right] / p^{\delta e}\right)=u_{A}\left(a_{e}[B]\right)+u_{A}\left(\left[F_{0, e}^{G}\right] / p^{\delta e}\right) .
$$

Clearly,

$$
\lim _{e \rightarrow \infty} u_{A}\left(a_{e}[B]\right)=(f /|G|) u_{A}(B)=(f /|G|) \operatorname{dim}_{k} B / \mathfrak{m}_{A} B
$$

Now we use the Hilbert-Kunz multiplicity (see (3.21)).

$$
\lim _{e \rightarrow \infty} u_{A}\left(\frac{\left[{ }^{e} F^{G}\right]}{p^{\delta e}}\right)=e_{\mathrm{HK}}\left(\mathfrak{m}_{A}, F^{G}\right)=\operatorname{rank}_{A}\left(F^{G}\right) \cdot e_{\mathrm{HK}}\left(\mathfrak{m}_{A}, A\right) .
$$

But $\operatorname{rank}_{A}\left(F^{G}\right)=\operatorname{rank}_{B}(F)=f$, by Lemma 4.15.
It was shown by Watanabe and Yoshida [WY, 2.7] that $e_{\mathrm{HK}}\left(\mathfrak{m}_{A}, A\right)=$ $\frac{1}{|G|} \ell_{B}\left(B / \mathfrak{m}_{A} B\right)$, and this right hand side is equal to $\frac{1}{|G|} \operatorname{dim}_{k} B / \mathfrak{m}_{A} B$. Combining these, we see that $\lim _{e \rightarrow \infty} u_{A}\left(\left[F_{0, e}^{G}\right] / p^{\delta e}\right)=0$, as required.

Remark 4.17. When p does not divide $|G|$ it is easy to see that the map induced by the fixed point functor $\Theta^{\circ}(B * G) \rightarrow \Theta^{\circ}(A)$ is continuous, so Theorem 4.16 follows immediately from Theorem 4.13.

5. Applications

We continue to use the notation of (4.1).
Theorem 5.1. Let k be a field of characteristic $p>0$ such that $\left[k: k^{p}\right]<\infty$, and let V be a faithful G-module. Let $k=V_{0}, V_{1}, \ldots, V_{n}$ be the simple $k G$ modules. For each i, let $P_{i} \rightarrow V_{i}$ be the projective cover, and set $M_{i}:=$ $\left(B \otimes_{k} P_{i}\right)^{G}$. Let F be a \mathbb{Q}-graded B-finite B-free $B * G$-module. Then the F-limit of $\left[F^{G}\right]$ exists in $\Theta^{\circ}(A)$, where $A=B^{G}$, and

$$
\mathrm{FL}\left(\left[F^{G}\right]\right)=\frac{f}{|G|}[B]=\frac{f}{|G|} \sum_{i=0}^{n} \frac{\operatorname{dim}_{k} V_{i}}{\operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)}\left[M_{i}\right]
$$

where $f=\operatorname{rank}_{B} F$. An analogous formula holds for $\operatorname{FL}\left(\left[\hat{F}^{G}\right]\right)$ in $\Theta^{\wedge}(\hat{A})$.
Proof. The first equality is just Theorem 4.16.
We can write $k G=\bigoplus_{i=0}^{n} P_{i}^{\oplus u_{i}}$ for some $u_{i} \geq 0$, so $B \cong\left(B \otimes_{k} k G\right)^{G} \cong$ $\bigoplus_{i=0}^{n} M_{i}^{\oplus u_{i}}$. Applying $\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(-, V_{i}\right)$ to the first equality shows that $u_{i}=\operatorname{dim}_{k}\left(V_{i}\right) / \operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)$.

Corollary 5.2. Under the conditions of Theorem 5.1, we have

$$
\mathrm{FL}([A])=\frac{1}{|G|}[B]=\frac{1}{|G|} \sum_{i=0}^{n} \frac{\operatorname{dim}_{k} V_{i}}{\operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)}\left[M_{i}\right]
$$

in $\Theta^{\circ}(A)$ and similarly after completion.
(5.3) Let the notation be as in Theorem 5.1. We say that the action of G on B (or on $X:=\operatorname{Spec} B$) is small if there is a G-stable open subset U of X such that the action of G on U is free, and the codimension of $X \backslash U$ in X is at least two.

For $g \in G$, let X_{g} be the locus in X that the action of g and the identity map agree. Note that X_{g} is a closed subscheme of X. If all the generators of B are in degree one, then X_{g} is nothing but the eigenspace in V with eigenvalue 1 of the action of g on V, where $V=B_{1}$. We say that g is a pseudo-reflection if the codimension of X_{g} in X is one. The action of G on B is small if and only if G does not have a pseudo-reflection.

Now assume further that the action of G on B is small.
Theorem 5.4. Let the notation be as in (5.3). Then $\left(B \otimes_{A}\right.$?) : $\operatorname{Ref}(A) \rightarrow$ $\operatorname{Ref}(G, B)$ is an equivalence with quasi-inverse $(?)^{G}: \operatorname{Ref}(G, B) \rightarrow \operatorname{Ref}(A)$, where $\operatorname{Ref}(A)$ denotes the category of reflexive A-modules, and $\operatorname{Ref}(G, B)$ denotes the full subcategory of $(G, B) \bmod$ consisting of (G, B)-modules which are reflexive as B-modules. A similar assertion for $\hat{A} \rightarrow \hat{B}$ also holds.

Proof. This is a special case of [Has, (14.24)]. See also [HasN, (2.4)].
Using Theorem 5.4, we can obtain the following equivalences.
Corollary 5.5. Let the notation be as in (5.3). For $V \in k G \bmod$, define $M_{V}:=\left(B \otimes_{k} V\right)^{G}$.

1 For $V \in G$ mod, the following are equivalent.
a V is an indecomposable $k G$-module.
b $B \otimes_{k} V$ is an indecomposable object in $(B * G) \bmod$.
$\hat{\mathbf{b}} \hat{B} \otimes_{k} V$ is an indecomposable object in $(\hat{B} * G)$ mod.
c M_{V} is an indecomposable A-module.
$\hat{\mathbf{c}} \hat{M}_{V}$ is an indecomposable \hat{A}-module.

2 Let $V, V^{\prime} \in G \bmod$. Then the following are equivalent.
a $V \cong V^{\prime}$ in $G \bmod$.
b $B \otimes_{k} V \cong B \otimes_{k} V^{\prime}$ in $(B * G) \bmod$.
$\hat{\mathrm{b}} \hat{B} \otimes_{k} V \cong \hat{B} \otimes_{k} V^{\prime}$ in $(\hat{B} * G) \bmod$.
c $M_{V} \cong M_{V^{\prime}}$ as A-modules.
$\hat{\mathbf{c}} \hat{M}_{V} \cong \hat{M}_{V^{\prime}}$.
Proof. We only prove 1.
$\mathbf{b} \Rightarrow \mathbf{a}$. This is because $B \otimes_{k}$? is a faithful exact functor from $G \bmod$ to $B * G \bmod$.
$\mathbf{a} \Rightarrow \mathbf{b}$. This is because $B / \mathfrak{m}_{B} \otimes_{B}$? is an additive functor from the category of B-finite B-free $B * G$-modules to $k G$ mod, which sends a nonzero object to a nonzero object.
$\mathbf{a} \Leftrightarrow \hat{\mathbf{b}}$ is similar. $\mathbf{b} \Leftrightarrow \mathbf{c}$ and $\hat{\mathbf{b}} \Leftrightarrow \hat{\mathbf{c}}$ are by Theorem 5.4.
Theorem 5.6. Let the notation be as in (5.3), so in particular the action of G on B is small. Then for each $0 \leq i, j \leq n, \mathrm{FS}_{M_{j}}\left(M_{i}\right)$ exists, and

$$
\mathrm{FS}_{M_{j}}\left(M_{i}\right)=\frac{\left(\operatorname{dim}_{k} P_{i}\right)\left(\operatorname{dim}_{k} V_{j}\right)}{|G| \operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)}
$$

A similar formula holds in the complete case.
Proof. By Theorem 5.1, $\mathrm{FS}_{M_{j}}\left(M_{i}\right)$ exists and
$\mathrm{FS}_{M_{j}}\left(M_{i}\right)=\operatorname{sum}_{M_{j}}\left(\mathrm{FL}\left(M_{i}\right)\right)=\frac{\operatorname{rank}_{B}\left(B \otimes_{k} P_{i}\right)}{|G|} \sum_{l=0}^{n} \frac{\operatorname{dim}_{k} V_{l}}{\operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)} \operatorname{sum}_{M_{j}}\left[M_{l}\right]$.
Because each P_{l} is indecomposable and $P_{l} \cong P_{j}$ if and only if $l=j$, it follows from Corollary 5.5 that each M_{l} is indecomposable and $M_{j} \cong M_{l}$ (after shift of degree) if and only if $l=j$. This shows that $\operatorname{sum}_{M_{j}}\left[M_{l}\right]=\delta_{j l}$ (Kronecker's delta). The theorem follows.

Corollary 5.7 ([HasN, (3.9)]). Let the notation be as in (5.3) and assume that k is algebraically closed and that $|G|$ is not divisible by the characteristic of k. Then, for each $0 \leq i, j \leq n, \mathrm{FS}_{\hat{M}_{j}}\left(\hat{M}_{i}\right)$ exists, and

$$
\mathrm{FS}_{\hat{M}_{j}}\left(\hat{M}_{i}\right)=\frac{\left(\operatorname{dim}_{k} V_{i}\right)\left(\operatorname{dim}_{k} V_{j}\right)}{|G|} .
$$

Proof. This is because $P_{i} \cong V_{i}$, by Maschke's theorem.
Corollary 5.8 ([Bro, Corollary 2], [Yas, Corollary 3.3]). Let the notation be as in (5.3). If p divides $|G|$, then none of $\hat{A}, A_{\mathfrak{m}_{A}}$, nor A is weakly F-regular. Proof. By Corollary 5.5, 1, \hat{M}_{j} is indecomposable for $j=0,1, \ldots, n$. By Corollary 5.5, 2, $\hat{M}_{j}=\hat{M}_{P_{j}} \cong \hat{M}_{k}=\hat{A}$ if and only if $P_{j} \cong k$. This happens if and only if $j=0$ and $P_{0} \rightarrow k$ is an isomorphism. This is equivalent to saying that p does not divide $|G|$ and $j=0$. By our assumption, $\operatorname{sum}_{\hat{A}}\left(\hat{M}_{j}\right)=0$ for $j=0, \ldots, n$. So by Theorem 5.1,

$$
\mathrm{FS}_{\hat{A}}(\hat{A})=\operatorname{sum}_{\hat{A}}(\mathrm{FL}(\hat{A}))=\sum_{j=0}^{n} \frac{\operatorname{dim}_{k} V_{j}}{\operatorname{dim}_{k} \operatorname{End}_{k G}\left(V_{i}\right)} \operatorname{sum}_{\hat{A}}\left(\hat{M}_{j}\right)=0 .
$$

Since $\operatorname{FS}_{\hat{A}}(\hat{A})$ is just the F-signature of \hat{A} of Huneke-Leuschke [HL], we see that \hat{A} is not strongly F-regular, by the theorem of Aberbach and Leuschke [AL]. So \hat{A} cannot be a direct summand subring of the regular local ring \hat{B}. As a weakly F-regular ring is a splinter $[\mathrm{HH},(5.17)], \hat{A}$ is not weakly F regular. By smooth base change $[\mathrm{HH} 2,(7.3)], A_{\mathfrak{m}_{A}}$ is not weakly F-regular. It follows that A is not weakly F-regular.

References

[AL] I. Aberbach and G. Leuschke, The F-signature and strong F regularity, Math. Res. Lett. 10 (2003), 51-56.
[Bro] A. Broer, The direct summand property in modular invariant theory, Transform. Groups 10 (2005), 5-27.
[Bru] W. Bruns, Conic divisor classes over a normal monoid algebra, Commutative Algebra and Algebraic Geometry, Contemp. Math. 390, Amer. Math. Soc. (2005), 63-71.
[CR] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to finite Groups and Orders, Vol. 1, Wiley, New York (1981).
[Fac] A. Facchini, The Krull-Schmidt theorem, in Handbook of Algebra Vol. 3, ed. M. Hazewinkel, North-Holland, Amsterdam (2009), pp. 357-397.
[Fog] J. Fogarty, Kähler differentials and Hilbert's fourteenth problem for finite groups, Amer. J. Math. 102 (1980), 1149-1175.
[Ful] W. Fulton, Intersection Theory, second edition, Springer (1998).
[Hap] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lect. Note Series 119 Cambridge (1988).
[Has] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, arXiv:1503.02133v1
[Has2] M. Hashimoto, F-rationality of rings of modular invariants. Preprint 2015.
[HasN] M. Hashimoto and Y. Nakajima, Generalized F-signature of invariant subrings, J. Algebra 443 (2015), 142-152.
[HH] M. Hochster and C. Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), 599-670.
[HH2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1-62.
[HL] C. Huneke and G. Leuschke, Two theorems about maximal CohenMacaulay modules, Math. Ann. 324 (2002), 391-404.
[Kun] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999-1013.
[Kur] K. Kurano, The singular Riemann-Roch theorem and HilbertKunz functions, J. Algebra 304 (2006), 487-499.
[KurO] K. Kurano and K. Ohta, On the limit of Frobenius in the Grothendieck group, Acta Math. Vietnam. 40 (2015), 161-172.
[Mon] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49.
[Nak] Y. Nakajima, Dual F-signature of Cohen-Macaulay modules over rational double points, Algebr. Represent. Theory, Published on line (2015), DOI 10.1007/s10468-015-9538-7
[Pop] N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press (1973).
[San] A. Sannai, Dual F-signature, Internat. Math. Res. Notices 162 (2013), 197-211.
[Sym] P. Symonds, Group actions on polynomial and power series rings, Pacific J. Math. 195 (2000), 225-230.
[WY] K.-i. Watanabe and K.-i. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra $\mathbf{2 3 0}$ (2000), 295-317.
[WY2] K.-i. Watanabe and K.-i. Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 48 (2004), 273-294.
[Yas] Pure subrings of regular local rings, endomorphism rings and Frobenius morphisms, J. Algebra 370 (2012), 15-31.

Mitsuyasu Hashimoto, Okayama University, Okayama 700-8530, JAPAN mh@okayama-u.ac.jp

Peter Symonds, University of Manchester, United Kingdom
Peter.Symonds@manchester.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 13A50, 13A35. Key Words and Phrases. Frobenius direct image, Hilbert-Kunz multiplicity, F-signature.

