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Abstract. Draft, 17 Jan 2006. We prove a relative version of the theorem of Webb that
the augmented chain complex of the p-subgroup complex of a finite group, considered as a
complex of modules for the group, is homotopy equivalent to a complex of projectives. This
allows us to take into account the group of automorphisms of the group.

Let p be a prime and R a complete p-local ring.

Theorem. Let G be a finite group, H C G, and let ∆ be a CW-complex on which G acts
admissibly. Suppose that the fixed point set ∆P is R-acyclic for each p-subgroup P ≤ G that
intersects H non-trivially. Let C̃•(∆) denote the augmented CW-chain complex of ∆ over
R, considered as a complex of RG-modules.

Then C̃•(∆) ∼= P• ⊕ E•, where P• is a complex of trivial source RG-modules that are
projective relative to subgroups that have trivial intersection with H, and E• is split exact.

The case where H = G is a celebrated theorem of Peter Webb [3].
The following corollary was conjectured to us by Jesper Grodal. It is basically the same

as Webb’s Theorem, but it incorporates the action of the automorphism group of the group.
This can be useful in induction arguments.

Corollary. Let Γ be a finite group and let ∆ be the Brown complex of Γ (i.e. the geometric
realization of the poset of chains of non-trivial p-subgroups). Thus Aut(Γ) acts on ∆ and
also on C̃•(∆).

Then C̃•(∆) ∼= P• ⊕ E• as a complex of R Aut(Γ)-modules, where P• is a complex of
R Aut(Γ)-modules that are projective on restriction to Γ (via the map Γ → Inn(Γ) ≤ Aut(Γ))
and E• is split exact.

Proof. We wish to apply the Theorem with G = Aut(Γ) and H = Inn(Γ).
Note that the kernel of the natural map Γ → H is the centre, Z(Γ), of Γ. The condition

that ∆P be R-acyclic for each p-subgroup P ≤ G that intersects H non-trivially is satisfied

because ∆P is contractible via the inclusions Q ≤ Q(P̃ ∩H) ≥ P̃ ∩H, where Q is a non-

trivial p-subgroup of Γ and P̃ ∩H is the unique Sylow p-subgroup of the inverse image of
P ∩H in Γ, (see e.g. [1] Ch. 6).

We deduce that C̃•(∆) ∼= P•⊕E•, where P• is a complex of trivial source R Aut(Γ)-modules
that are projective relative to subgroups that trivial intersection with Inn(Γ) and E• is split
exact. If the order of Z(Γ) is coprime to p then the modules in P• are also projective over
Γ. Otherwise, if Zp ≤ Z(Γ) denotes the Sylow p-subgroup then ∆ is equivariantly conically

contractible, by Q ≤ QZp ≥ Zp. Thus C̃•(∆) is homotopy equivalent to 0, i.e. it is itself

split, so we can take E• = C̃•(∆) and P• = 0. �
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Our proof of the theorem follows closely that of Webb’s Theorem that we gave in [2]. In
fact, it can be viewed as extracting from that paper a quick proof of Webb’s theorem even
for the reader who is not interested in the relative version.

We use the machinery of coefficient systems that was developed in [2], but we sketch the
relevant parts.

Given a finite group G, let W be a class of subgroups that is closed under conjugation.
We let S denote the class of all subgroups. A coefficient system over R is just an addi-
tive contravariant functor from the category of G-sets with stabilizers in W to R-modules.
The morphisms are the natural transformations of functors and we denote the category by
CSW(G).

Sometimes it is easier to think of this in a slightly different, but equivalent, way. A
coefficient system L gives an R-module L(H) for each subgroup H ∈ W together with
restriction maps L(H) → L(K) for each K ≤ H, K,H ∈ W . There are also conjugation
maps cg : L(Hg) → L(H) for H ∈ W and all these maps satisfy certain obvious relations.
In particular, the conjugation maps make L(H) into an RNG(H)-module and H is required
to act trivially, so L(H) is actually an RNG(H)/H-module.

For V ⊆ W there is a forgetful map ResWV : CSW(G) → CSV(G). We denote its left adjoint
by lim−→

W
V .

For any G-set X, let R[X?] denote the coefficient system with evaluation on H equal to
R[XH ], the free R-module on the fixed points under H. It is easily verified that, for any
other coefficient system L, HomCSW (G)(R[(G/H)?], L) ∼= L(H) by f 7→ f(eH ∈ R[(G/H)H ])
provided that H ∈ W .

It follows that:

(1) R[(G/H)?] is projective in CSW(G) provided that H ∈ W ,
(2) If V ⊆ W and H ∈ V then lim−→

W
V ResWV R[(G/H)?] ∼= R[(G/H)?].

If ∆ is a CW-complex on which G acts admissibly (i.e. G permutes the cells and the
stabilizer of a cell stabilizes all the points in the cell) then we construct a chain complex
C•(∆

?) in CSS(G): the term in degree n is R[∆?
n], where ∆n denotes the G-set of the n-cells.

The boundary maps are defined in the usual way. There is also an augmented version C̃•(∆
?)

and a relative version C•((∆, ∆′)?) when ∆′ ⊆ ∆.
The evaluation of C•(∆) at H is just the usual CW-chain complex C•(∆

H), which is nat-
urally a complex of permutation NG(H)/H-modules. In particular, if we evaluate at the
trivial subgroup 1 we recover the usual CW-chain complex C•(∆) as a complex of permuta-
tion RG-modules.

From now on we are in the context of the Theorem, so H is a normal subgroup of G; let
F be a Sylow p-subgroup of G and let V denote the class of subgroups that have non-trivial
intersection with H. Let ∆S denote the subcomplex of ∆ consisting of cells δ ∈ ∆ such that
StabF (δ) ∈ V . There is an action of F on ∆S. There is a short exact sequence of chain
complexes in CSS(F )

(3) 0 → C̃•(∆
?
S) → C̃•(∆

?)
q→ C•((∆, ∆S)?) → 0.

Consider ResSV C̃•(∆
?
S), a chain complex in CSV(F ). It is exact, by hypothesis, and consists

of projective modules, by (1) and the definition of V . Thus it is split exact.
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But C̃•(∆
?
S) ∼= lim−→

S
V ResSV C̃•(∆

?
S), by (2), so is also split exact. It now follows from (3)

that the map q is a quasi-isomorphism; since it is a map between complexes of projectives,
q must be a homotopy equivalence.

We now need an easy lemma from homological algebra (see [2] 6.5). In this lemma and
from now on all complexes are bounded and finitely generated over R in each degree (i.e.
each evaluation in each degree is finitely generated).

Lemma. Let f : C• → P• be a homotopy equivalence of chain complexes, where P• is a
complex of projectives. Then C• ⊕ S• ∼= P• ⊕E•, where S• and E• are split exact complexes
and S• is also a complex of projectives.

We deduce that in our context C̃•(∆
?)⊕ S• ∼= P•⊕E•. Now evaluate at the trivial group

to obtain a complex of RF -modules C̃•(∆)⊕S•(1) ∼= P•(1)⊕E•(1), where P•(1) is a complex
of permutation RF -modules with stabilizers that are not in V , so they intersect H trivially.

Now induce from F to G. This preserves the properties of being split, exact or projective,
so we obtain an isomorphism of complexes of RG-modules IndSV ResSV C̃•(∆)⊕S ′

•
∼= P ′

•⊕E ′
•,

where P ′
• is a complex of permutation RG-modules which are projective relative to subgroups

that intersect H trivially and E ′
• is split exact.

But C̃•(∆) is a summand of IndG
F ResG

F C̃•(∆) by the maps

c 7→
∑

g∈G/F

g ⊗ g−1c, h⊗ c 7→ |G : F |−1hc, c ∈ C̃•(∆), h ∈ G.

Thus C̃(∆) is a summand of P ′
•⊕E ′

•. The Krull-Schmidt property applies to complexes of
RG-modules (since R is complete and the complexes are bounded and finitely generated in
each degree), so there is a summand P• of P ′

• and a summand E• of E ′
• such that C̃•(∆) ∼=

P• ⊕ E•, as required to complete the proof.

Remark. We only need the ring R to be complete in the last paragraph of the proof; the pre-
ceding statements are true for any p-local ring. In particular, C̃•(∆) is homotopy equivalent
to a bounded complex of trivial source RG-modules that are projective relative to subgroups
that have trivial intersection with H.
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